Все статьи » ЗФТШ Физика

Статьи , страница 10

  • 2.2. Электрические цепи. Источники электрического тока

    Электрический ток течёт в электрических цепях, представляющих собой различные приборы и устройства, соединённые проводниками.

    Если бы носители заряда, приведённые в движение в замкнутом проводнике, не взаимодействовали с ионами, то они двигались бы бесконечно долго. Такой ток можно наблюдать в некоторых веществах при весьма низких температурах; удельное сопротивление таких веществ – их называют сверхпроводниками – равно нулю при этих температурах.

    Но в большинстве проводников при протекании тока движущиеся заряженные частицы взаимодействуют с неподвижными и теряют кинетическую энергию.

    Для получения постоянного тока, т. е. не изменяющегося с течением времени, на заряды в электрической цепи должны действовать не только силы электрического поля, но и другие силы, отличные от сил электрического взаимодействия. Такие силы получили общее название сторонних электродвижущих сил. Всякое устройство, в котором возникают сторонние силы, называют источником тока. Источниками тока являются, например, батарейки, аккумуляторы и т. д.

    Сторонние силы в источниках возникают по разным причинам. В химических источниках, например, в автомобильном аккумуляторе или в гальваническом элементе, они возникают благодаря химическим реакциям в области контакта пластин аккумулятора или электродов батарейки с жидким электролитом. В фотоэлементе они возникают в результате действия электромагнитного излучения на электроны в металле или полупроводнике. В генераторах на электростанции сторонние силы возникают в проводниках при движении их в магнитном поле.

    Если воспользоваться гидростатической аналогией, то силы электрического поля в электрической цепи можно уподобить силе тяжести, стремящейся выравнивать уровни жидкости в сообщающихся сосудах; источник тока с действующими в нём сторонними электродвижущими силами можно сравнить с насосом, работающим против силы тяжести и восстанавливающим разность уровней в сосудах, несмотря на течение жидкости.

    Источник тока по результатам своего действия представляет собой устройство, отделяющее положительные заряды от отрицательных. После разделения заряды перемещаются на полюса (электроды) источника. При этом один из электродов заряжается положительно, другой отрицательно. И если к источнику подключить проводник, то эти заряды действуют на заряды проводника вблизи полюсов, те в свою очередь действуют на соседние и т. д. В результате этих коллективных взаимодействий в цепи на поверхности проводника возникает такое распределение зарядов, которое обеспечивает существование внутри проводника электрического поля, а в проводнике под действием сил этого поля течёт электрический ток.

  • 2.3. Электрическое напряжение. Работа и мощность электрического тока. Тепловое действие тока

    В электрической цепи, подключённой к источнику, возникают электрические силы, действующие на носители зарядов и приводящие их в движение. Пусть под действием электрической силы `F` частица, несущая заряд `q`, переместилась вдоль проводника из точки `1` в точку `2`, а сила `F` совершила над заряженной частицей работу `A_(12)`. Отношение работы `A_(12)` электрической силы над зарядом `q` при перемещении его из точки `1` в точку `2` к самому заряду $$ q$$ называют электрическим напряжением между точками `1` и `2`:

     `U_(12)=(A_(12))/q`.                                                  (3)

    Единицей измерения напряжения в СИ является вольт (В).

    За один вольт принимается напряжение на концах проводника, при котором работа сил электрического поля по перемещению через этот проводник заряда в один кулон равна одному джоулю.

    Эта единица  названа в честь итальянского физика А. Вольта, который в 1800 г. изобрёл электрическую батарею и впервые получил с её помощью постоянный ток, устойчиво поддерживавшийся в электрической цепи. Это открытие ознаменовало начало новой эпохи, полностью преобразившей нашу цивилизацию: современная жизнь немыслима без использования электрического тока.

    В соотношении (3) индексы `1` и `2` можно опустить, если помнить, что `1` – это точка «старта», `2` – точка «финиша».

    Зная напряжение `U` на концах проводника и силу тока `I`, текущего в проводнике в течение времени `t` постоянного тока, вычислим заряд `q=I*t`, который протечёт за указанное время по проводнику. Тогда за это время силы электрического поля в проводнике совершат работу

     `A=q*U=I*t*U`.                                             (4)

    Это позволяет судить о скорости совершения работы электрическими силами, т. е. о мощности, развиваемой силами электрического поля. Из (4) следует, что в проводнике, напряжение на концах которого равно `U`, а сила тока `I`, силы электрического поля в единицу времени совершают работу

    `P=A/t=I*U`.                                                (5)

    Напомним, что единицей измерения мощности в СИ служит ватт (Вт).

    Очень часто работу и мощность электрических сил называют соответственно работой и мощностью электрического тока, тем самым подчёркивают, что это работа по поддержанию электрического тока в цепи.

    Пример 8

    По проводнику в течение `T=1` мин течёт постоянный ток силой `I=0,2` А. Напряжение на проводнике `U=1,5` В. Какую работу `A` совершают электрические силы в проводнике за указанное время? Найдите мощность `P` электрического тока в проводнике.

    Решение

    За время `T` через проводник пройдёт заряд `Q=I*T`. Работа сил электрического поля над этим зарядом в соответствии с (4) равна

    `A=Q*U=I*T*U=0,2*60*1,5=18` Дж.

    Для ответа на второй вопрос задачи воспользуемся соотношением (5):

    `P=I*U=0,2*1,5=0,3` Вт.

    Заметим, что в повседневной жизни, рассчитываясь «за электричество», мы оплачиваем расход электроэнергии – работу электрических сил, а не мощность. И здесь принято работу электрических сил выражать во внесистемных единицах – киловатт-часах:

    `1` кВт`*`ч`=1000`Вт`*3600`с`=3,6*10^6`Дж

    Работа электрического тока может идти на изменение механической и внутренней энергий проводника. Например, в результате протекания электрического тока через электродвигатель его ротор (подвижная часть, способная вращаться, в отличие от статора) раскручивается. При этом большая часть работы электрических сил идёт на увеличение механической энергии ротора, а также других тел, с которыми ротор связан теми или иными механизмами. Другая часть работы электрического тока (в современных электродвигателях один – два процента) идёт на изменение внутренней энергии обмоток двигателя, что приводит к их нагреванию (обмотка электродвигателя представляет собой катушку, изготовленную обычно из меди, с большим числом витков).

    Обсудим тепловое действие электрического тока более подробно. Из опыта известно, что электрический ток нагревает проводник. Объясняется это явление тем, что свободные электроны в металлах, перемещаясь под действием сил электрического поля, взаимодействуют с ионами вещества и передают им свою энергию. В результате увеличивается энергия колебаний ионов в проводнике, его температура растёт, при этом говорят, что в проводнике за некоторое время `t` выделяется количество теплоты `Q_("тепл")`. Если проводник с током неподвижен и величина тока постоянна, то работа электрических сил идёт на изменение внутренней энергии проводника. По закону сохранения энергии это количество равно работе сил электрического поля (4) в проводнике за то же самое время,      т. е.

     `Q_("тепл")=I*t*U`.                                             (6)

    Отсюда мощность `P` тепловыделения, т. е. количество теплоты, выделяющейся в единицу времени на участке цепи, где напряжение равно `U`, а сила тока равна `I` составляет

    `P=(Q_("тепл"))/t=U*I`.                                            (7) 

    Пример 9

    По спирали электроплитки, подключённой к источнику с напряжением `U=120` В, протекает постоянный ток силой `I=5` А в течение `T=1` ч. Какое количество теплоты `Q_("тепл")`  отдаёт при этом плитка в окружающую среду?

    Решение

    В окружающую среду будет передано то количество теплоты, которое выделится в спирали нагревательного элемента плитки за указанное время. По формуле (6) находим:

    `Q_("тепл") =I*T*U=5*3600*120=2,16*10^6` Дж.

    Пример 10

    Электродвигатель, включённый в электрическую сеть с напряжением `U=24` В, за время `T=1` ч работы совершил механическую работу `A=1680` кДж. Сила тока в обмотке `I=20` А. Найдите мощность `P` электрического тока и коэффициент полезного действия  `eta` двигателя. Какое количество теплоты `Q_("тепл")` выделится в обмотке?

    Решение

    Мощность электрического тока найдём по формуле (5):

    `P=I*U=20*24=480` Вт.

    По определению коэффициент полезного действия (КПД) `eta` двигателя равен отношению полезной механической работы `A` к работе электрических сил `A_("эл")`, умноженному на `100%`. С учётом выражения (4) для работы электрических сил находим КПД электродвигателя:

    `eta=A/(A_("эл"))*100%=A/(UIT)*100%=(1680*10^3)/(24*20*3600)*100%~~97%`.

    Количество `Q_("тепл")` теплоты, выделившейся в обмотке, найдём по закону сохранения энергии `A_("эл")=A+Q_("тепл")`. Отсюда  `Q_("тепл")=A_("эл")-A=UIT-A=24*20*3600-1680*10^3=48*10^3` Дж.

  • 2.4. Закон Ома. Электрическое сопротивление. Закон Джоуля – Ленца

    Как отмечалось выше, для поддержания постоянного тока в проводнике, т. е. движения электронов с постоянной скоростью, необходимо непрерывное действие сил электрического поля на носители заряда. Это означает, что электроны в проводниках движутся «с трением», иначе говоря, проводники обладают электрическим сопротивлением.

    Если состояние проводника остаётся неизменным (не изменяется его температура и т. д.), то для каждого проводника существует однозначная зависимость между напряжением `U` на концах проводника и силой `I` тока в нём `I=f(U)`. Она называется вольтамперной характеристикой данного проводника.

    Для многих проводников эта зависимость особенно проста – линейная: сила тока прямо пропорциональна приложенному напряжению, т. е.

     `I=1/RU`,                                                 (8)

    где `R` – электрическое сопротивление проводника (постоянная при неизменных условиях величина).

    Этот закон носит название закона Ома. Немецкий физик Г. Ом в 1827 г. в результате серии экспериментов установил, что для широкого класса проводников сила `I` электрического тока в проводнике пропорциональна напряжению `U` на концах проводника.

    Сопротивление `R` проводника зависит от рода вещества проводника, от его размеров и формы, а также от состояния проводника.

    Единицей сопротивления в СИ является один Ом (Ом). За один Ом принимается сопротивление такого проводника, в котором при напряжении между его концами один вольт течёт постоянный ток силой один ампер: `1`Ом`=1`В`//1`A.

    Вытекающее из закона Ома (8) соотношение

     `R=U/I`                                                 (9)

    можно рассматривать и как определение сопротивления по приведённой формуле.

    Г. Ом установил, что для проводников  $$ R$$ не зависит от $$ U.$$ 

    В технических приложениях для описания процессов в электрических цепях часто используется понятие  вольтамперной характеристики. Для проводников, подчиняющихся закону Ома (8), графиком зависимости силы `I` тока в проводнике от напряжения `U` на нём будет прямая линия, проходящая через начало координат (см. рис. 1). При этом говорят, что проводник имеет линейную вольтамперную характеристику.

    В то же время для полупроводников, электронных ламп, диодов, транзисторов зависимость `I=f(U)` носит сложный характер, и такие элементы называют нелинейными (или неомическими). Для таких элементов величина `R`, вычисленная по формуле `R=U/I`, зависит от `U`. В частности, при измерении вольтамперной характеристики лампочки накаливания с вольфрамовой нитью мы обнаружим, что она имеет вид, схематически показанный на рис. 2. Искривление вольтамперной характеристики связано с нагревом нити и увеличением сопротивления нити накала с ростом температуры. В некоторых устройствах, таких как диод, сопротивление зависит от направления тока.


    Обсудим вопрос о тепловыделении в проводнике. С учётом закона Ома (8) формула (7) для мощности тепловыделения принимает вид:

    `P=U*I=U^2/R=I^2R`.                                      (10)

    Другими словами, если через резистор `R` протекает постоянный ток силой `I`, то за `t` секунд в резисторе выделяется количество теплоты, равное

    `Q_("тепл")=P*t=U^2/R*t=I^2*R*t`.                               (11)

    Соотношения (10), (11) являются математическим выражением закона, открытого в XIX веке практически одновременно и независимо английским физиком Д. Джоулем и русским физиком Э.Х. Ленцем.

    Обратим внимание, что полученный закон является прямым следствием закона сохранения энергии в применении к движению электрических зарядов под действием сил электрического поля.

  • 2.5 Расчёт сопротивления проводника. Удельное сопротивление

    Причиной электрического сопротивления является взаимодействие электронов с ионами кристаллической решётки. Зависимость сопротивления проводника от его размеров и вещества, из которого изготовлен проводник, на опытах изучил Г. Ом. Он установил, что сопротивление проволоки длиной `l` и площадью поперечного сечения `S` определяется по формуле

    `R=rho l/S`                                               (12)

    где `rho` – удельное сопротивление вещества, из которого изготовлен проводник. Эту величину определяют экспериментально, результаты измерений удельного сопротивления приводят в физических справочниках (и в справочных разделах задачников по физике).

    В соответствии с формулой (12) единицей удельного сопротивления в СИ служит Ом`*`м.

    Удельное сопротивление вещества зависит от температуры. Для металлов с ростом температуры растёт и удельное сопротивление. У электролитов наблюдается обратная зависимость. Эти обстоятельства следует учитывать на практике при расчётах спиралей электронагревательных приборов,   нитей лампочек накаливаний и т. д.

    Пример 11

    Резистор сопротивлением `R=38` Ом изготовлен из медного провода кругового сечения массой `m=11,2` г. Найдите длину `l` провода. Удельное сопротивление меди `rho=1,7*10^(-8)` Ом`*`м, плотность меди `delta=8,9*10^3 "кг"//"м"^3`. Обратите внимание, что в настоящем примере приняты обозначения: `delta` – плотность, `rho` – удельное сопротивление.

    Решение

    Обозначим площадь поперечного сечения проводника `S`. Тогда объём проводника равен  `V=S*l`, его масса `m=delta*V=delta*S*l`. По формуле (12) сопротивление проводника равно `R=rhol/S`.

    Исключая `S` из двух последних соотношений, приходим к ответу на вопрос задачи:

    `l=sqrt((mR)/(rho delta))=sqrt((11,2*10^(-3)*38)/(1,7*10^(-8)*8,9*10^3))~~53` м.

  • 2.6. Соединение проводников в электрической цепи

    В электрических цепях, с которыми мы встречаемся на практике, проводники могут быть соединены различными способами. Наиболее простые способы соединения известны как последовательное и параллельное соединения резисторов.

    Рассмотрим участок $$ AB$$ цепи, в котором резисторы с сопротивлениями `R_1` и `R_2` соединены последовательно (рис. 3). Поставим вопрос: каким сопротивлением `R_("экв")`, подключённым между точками `A` и `B`, можно заменить последовательно соединенные сопротивления `R_1` и `R_2` так, чтобы напряжение на участке `AB` и сила тока, текущего от `A` к `B`, остались неизменными?

    Для ответа на поставленный вопрос заметим, что при последовательном соединении сила тока во всех проводниках одинакова – иначе заряды накапливались бы (или исчезали) в каких-то точках цепи. Так что `I=I_1=I_2`.

    Далее: работа сил электрического поля над любым зарядом при перемещении его из `A` в `B` будет равна сумме работ электрических сил над этим зарядом, совершаемых силами поля при его перемещении в каждом проводнике.

    Отсюда следует, что напряжение на `AB` равно сумме напряжений на резисторах

    $$ {U}_{AB}={U}_{1}+{U}_{2}=I·\left({R}_{1}+{R}_{2}\right).$$

    В эквивалентной схеме сила $$ I$$ тока и напряжение $$ {U}_{AB}$$ «не заметили» замены `R_1` и `R_2` на `R_("экв")`. В этом случае по закону Ома `U_(AB)=I*R_("экв")`. Из сопоставления двух последних равенств находим

     `R_("экв")=R_1+R_2`.                                           (13)

    Этот результат легко обобщается на случай `n` последовательно соединённых резисторов `R_1,R_2,...,R_n`. В этом случае (рекомендуем лично выполнить соответствующий вывод):

    `R_("экв")=sum_(i=1)^n R_i=R_1+R_2+...+R_n`.

    Рассмотрим теперь участок `AB` цепи, в котором резисторы с сопротивлениями `R_1` и `R_2` соединены параллельно (см. рис. 4). Поставим вопрос: каким сопротивлением `R_("экв")`, подключённым между точками `A` и `B`,  можно заменить параллельно соединённые `R_1` и `R_2` так, чтобы напряжение на участке `AB` и сила тока, текущего к узлу `A` и вытекающего из узла `B` остались неизменными?

    Для ответа на поставленный вопрос заметим, что при параллельном соединении проводников работа сил электрического поля в расчёте на единичный заряд (см. (3)) в проводниках одинакова (иначе нарушался бы закон сохранения энергии). Это означает, что напряжения на параллельно соединённых проводниках одинаковы. Обозначим его `U_(AB)`. Силу тока в каждом проводнике определим по закону Ома:  `I_1=(U_(AB))/R_1`,  `I_2=(U_(AB))/R_2`.

    Далее, в любом узле, т. е. точке, где сходятся более двух проводов, по закону сохранения электрического заряда сумма токов, втекающих в узел, равна сумме токов, вытекающих из него. Отсюда следует, что в рассматриваемой задаче (рис. 4) сила `I` тока на входе и на выходе равна сумме сил токов в отдельных ветвях параллельной цепи:

    `I=I_1+I_2=(U_(AB))/R_1+(U_(AB))/R_2=U_(AB)(1/R_1+1/R_2)`.

    В эквивалентной схеме сила $$ I$$ тока и напряжение $$ {U}_{\mathrm{AB}}$$ связаны с `R_("экв")` законом Ома (8) `I=(U_(AB))/R_"экв"`. Два последних равенства справедливы при любых значениях, входящих в них величин `I` и `U_(AB)` если

    `1/(R_("экв"))=1/R_1+1/R_2`.                                (14)

    Этот результат легко обобщается на случай `n` параллельно соединённых резисторов `R_1, R_2, ..., R_n`. В этом случае

    `1/(R_("экв"))=1/R_1+1/R_2+...+1/R_n`.     

    Пример 12

    Между точками `A` и `B` электрической цепи подключены резисторы `R_1=10` Ом, `R_2=20` Ом, `R_3=30` Ом, как показано на рис. 5. Найдите эквивалентное сопротивление `R_(AB)` этого участка цепи.

    Решение

    Эквивалентное сопротивление `R_(12)` цепочки последовательно соединённых резисторов `R_1` и `R_2` найдём по формуле (13)

    `R_(12)=R_1+R_2`.

    Заменяя эти резисторы эквивалентным сопротивлением, получаем участок цепи, в котором к точкам `A` и `B` параллельно присоединены резисторы `R_(12)` и `R_3`. Тогда искомое эквивалентное сопротивление найдём из (14)

    `1/(R_("экв"))=1/(R_(12))+1/(R_3)`,

    `R_("экв")=(R_(12)R_3)/(R_(12)+R_3)=((R_1+R_2)R_3)/(R_1+R_2+R_3)=((10+20)30)/(10+20+30)=15`Ом.

    Пример 13

    Лестничная цепь состоит из последовательности `N` одинаковых звеньев (рис. 6 а). Последнее звено замкнуто резистором `R`. При какой величине отношения `R/r` сопротивление цепи не зависит от числа звеньев?

    Решение

    Сопротивление цепи не будет зависеть от числа звеньев, если эквивалентное сопротивление последнего звена (рис. 6 б) будет равно `R`. Из решения предыдущей задачи получаем:

    `1/R=1/r+1/(r+R)`.

    Отсюда находим `R/r=(sqrt5-1)/2~~0,618`.

  • 2.7. Измерения силы тока и напряжения в электрических цепях. Амперметр и вольтметр

    Для измерения токов и напряжений в электрических цепях используются амперметры и вольтметры, основным элементом которых служит гальванометр – прибор, предназначенный для измерения величин токов. Эти измерения могут быть основаны на одном из действий тока: тепловом, физическом, химическом. Гальванометр, градуированный на величину тока, называется амперметром. По закону Ома (8) напряжение и сила тока связаны прямо пропорциональной зависимостью, поэтому гальванометр можно градуировать и на напряжение. Такой прибор называют вольтметром.

    В этом задании мы не будем касаться вопросов, связанных с конкретным устройством электроизмерительных приборов, с их системами и принципами работы. Остановимся лишь на требованиях, предъявляемых к внутренним сопротивлениям амперметров и вольтметров. Важно, чтобы при включении в цепь для измерений эти приборы вносили как можно меньшее искажение в измеряемую величину.

    Амперметр включается в цепь последовательно. Если сопротивление амперметра `R_"а"` и его подключают к участку цепи с сопротивлением `R_"ц"` (рис. 7а), то эквивалентное сопротивление участка цепи и амперметра в соответствии с (13) равно `R=R_"ц"+R_"а"=R_"ц"(1+(R_"а")/(R_"ц"))`.

    Отсюда следует, что амперметр не будет заметно изменять сопротивление участка цепи, если его собственное (внутреннее) сопротивление будет мало по сравнению с сопротивлением участка цепи.

    Чтобы добиться этого, гальванометр снабжают шунтом (синоним – добавочный путь): вход и выход гальванометра соединяются некоторым сопротивлением, обеспечивающим параллельный гальванометру дополнительный путь для тока (рис. 7 б). Поэтому внутреннее сопротивление амперметра меньше, чем у применённого в нём гальванометра. (Читателю рекомендуется лично убедиться в этом с помощью соотношения (14).) Амперметр называется идеальным, если его внутреннее сопротивление можно считать равным нулю.

    Вольтметр подключается к электрической цепи параллельно тому участку, напряжение на котором требуется измерить. Присоединив, например, вольтметр с сопротивлением  `R_"в"` параллельно лампочке с сопротивлением `R_"л"` (рис. 8 а), получим участок цепи, эквивалентное сопротивление которого вычисляется по формуле (14)  `R=R_"л" (R"в")/(R_"л"+R_"в")`.

    Отсюда следует, что чем больше сопротивление вольтметра по сравнению с сопротивлением лампочки, тем меньше эквивалентное сопротивление будет отличаться от сопротивления лампочки. Вывод: чтобы процесс измерения меньше искажал значение измеряемого напряжения, собственное (внутреннее) сопротивление вольтметра должно быть как можно больше. Поэтому в вольтметре последовательно гальванометру включают некоторое сопротивление (рис. 8б). Внутреннее сопротивление такого вольтметра, как правило, во много раз больше сопротивления входящего в него гальванометра. Вольтметр называется идеальным, если его внутреннее сопротивление можно считать бесконечно большим.

    Каждый измерительный прибор рассчитан на определённый интервал значений измеряемой величины. И в соответствии с этим проградуирована его шкала. Для расширения пределов измерений в амперметре можно использовать добавочный шунт, а в вольтметре – добавочное сопротивление. Найдём значения этих сопротивлений, увеличивающих максимальную измеряемую величину тока или напряжения в  раз.

  • 2.8. Шунт к амперметру

    Если амперметр рассчитан на силу тока `I_m`, а с его помощью необходимо измерять силу тока в `n` раз большую (см. рис. 9), то в этом случае, подключив параллельно амперметру шунт, разделим ток силой `nI_m` на два тока: один из них силой `I_m` будет течь через амперметр, тогда через шунт будет протекать ток силой `I_"ш"=(n-1)I_m`.

    Поскольку шунт включён параллельно амперметру, то напряжения на шунте `U_"ш"=(n-1)I_mR_"ш"`  и амперметре `U_"А"=I_mR_"А"`  равны. Из равенства напряжений

    `I_mR_"А"=(n-1)I_mR_"ш"`

    находим

    `R_"ш"=(R_"А")/(n-1)`                                                  (15)

  • 2.9. Добавочное сопротивление к вольтметру

    Если вольтметр рассчитан на максимальное напряжение `U_max`, а с его помощью необходимо измерять напряжение, в `n` раз большее, то, подключив последовательно с вольтметром добавочное сопротивление `R_2` (рис. 10), разделим напряжение `n*U_max` на два слагаемых: одно из них – это напряжение $$ {U}_{\mathrm{max}}$$ на вольтметре, второе – напряжение $$ \left(n-1\right){U}_{\mathrm{max}}$$ на добавочном сопротивлении.

    Поскольку добавочное сопротивление включено последовательно с вольтметром, то через вольтметр и добавочное сопротивление течёт одинаковый ток, т. е. справедливо равенство

    `(U_max)/(R_"в")=((n-1)U_max)/(R_"д")`.

    Отсюда                                     

    `R_"д"=(n-1)R_"в"`.                                       (16)

    Пример 14

    Шкала гальванометра имеет `N=100` делений, цена деления $$ \delta =1\mathrm{мкА}.$$. Внутреннее сопротивление гальванометра $$ {R}_{G}=\mathrm{1,0} \mathrm{кОм}.$$. Как из этого прибора сделать вольтметр для измерения напряжений до $$ U=100 \mathrm{В}$$ или амперметр для измерения токов силой до $$ I=1\mathrm{A}$$?

    Решение

    Максимально допустимый ток `I_max` через гальванометр равен цене деления, умноженной на число делений: `I_max=delta*N=1*100=100` мкА. При максимальном токе напряжение на приборе максимально и по закону Ома (8) равно

    `U_max=I_max*R_G=10^(-4)*10^3=0,1` В.

    Для использования этого гальванометра в качестве амперметра для измерения токов силой до `I=1` А необходимо параллельно с ним включить шунт, сопротивление которого найдём по формуле (15):

    $$ {R}_{\mathrm{ш}}={\displaystyle \frac{{R}_{\mathrm{G}}}{n-1}}={\displaystyle \frac{{R}_{\mathrm{G}}}{{\displaystyle \frac{I}{{I}_{\mathrm{max}}}}-1}}={\displaystyle \frac{{10}^{3}}{{\displaystyle \frac{1}{{10}^{-4}}}-1}}\approx \mathrm{0,1}  \mathrm{Ом}.$$

    В этом случае максимальному отклонению стрелки на шкале гальванометра соответствует ток в цепи силой `I=1` А.

    Для использования этого гальванометра в качестве вольтметра для измерения напряжений до `U=100` В необходимо последовательно с ним включить добавочное сопротивление, величину которого найдём из (16):

    `R_"д"=(U/U_max -1)R_G=((100)/(0,1)-1)*10^3=999` кОм.

    В этом случае максимальному отклонению стрелки на шкале гальванометра соответствует напряжение между точками подключения  `U=100` В.

    Пример 15

    Для измерения сопротивления `R` проводника собрана электрическая цепь, показанная на рис. 11. Вольтметр `V` показывает напряжение `U_V=5` В. Показание амперметра `A` равно `I_A=25` мА. Найдите величину `R` сопротивления проводника. Внутренне сопротивление вольтметра `R_V=1,0` кОм. Внутреннее сопротивление амперметра `R_A=2,0` Ом.

    Решение

    Ток `I_A`, протекающий через амперметр, равен сумме токов `I_V` и `I_R`, протекающих через вольтметр и амперметр соответственно. Напряжения на резисторе `U_R=I_R*R` и вольтметре `U_V=I_V*R_V` одинаковы и равны показанию `U_V` вольтметра. Таким образом, приходим к системе уравнений

    $$ \left\{\begin{array}{l}{I}_{A}={I}_{V}+{I}_{R},\\ {U}_{V}={I}_{V}·{R}_{V}={I}_{R}·R,\end{array}\right.$$

    решение которой

    $$ R={\displaystyle \frac{{U}_{V}}{{I}_{A}-{\displaystyle \frac{{U}_{V}}{{R}_{V}}}}}={\displaystyle \frac{5}{25·{10}^{-3}-{\displaystyle \frac{5}{{10}^{3}}}}}=250 \mathrm{Ом}.$$

    определяет величину `R` сопротивления проводника по результатам измерений. Заметим, что для приведённой схемы величина внутреннего сопротивления амперметра оказалась несущественной: `R_A` не входит в ответ.

  • 1. Жидкости и газы. Текучесть. Давление

    Жидкости и газы отличаются от твёрдых тел прежде всего тем, что обладают таким свойством, как текучесть. Текучесть проявляется в способности жидкости и газа принимать форму сосуда. Из-за чего появляется и чем объясняется текучесть, по наличию которой и устанавливают, что данное тело не является твёрдым?

    Многочисленные опытные факты подтверждают наличие в природе веществ (тел), у которых отсутствуют силы, препятствующие сдвигу с бесконечно малыми скоростями одних слоёв этих веществ относительно других, т. е. отсутствуют силы трения покоя, действующие вдоль поверхности соприкасающихся слоёв. Если при этом такое вещество принимает форму сосуда и его объём практически не зависит от формы и вида сосуда, то мы имеем дело с жидкостью. Если же это вещество занимает весь предоставленный ему в любом сосуде объём, то это - газ.

    У твёрдого тела сдвинуть один слой (часть) тела относительно другого без приложения значительных усилий невозможно. У жидкости и газа одни слои (части)  могут скользить по другим слоям под действием ничтожно малых сил. Этим и объясняется текучесть.

    наПример

    Если подуть вдоль поверхности воды, то верхние слои воды придут в движение относительно нижних, причём силы трения между слоями будут тем меньше, чем меньше относительная скорость движения слоёв. Другой пример текучести. Даже очень осторожное, медленное и малое наклонение сосуда с жидкостью приводит к перемещению верхних слоёв жидкости относительно нижних и в результате поверхность жидкости становится снова горизонтальной.

    Сила трения покоя между стенкой сосуда и соприкасающейся с ней неподвижной жидкостью тоже равна нулю.

    Мы здесь не будем рассматривать проявление так называемых сил поверхностного натяжения, возникающих из-за того, что поверхностный слой жидкости ведёт себя подобно тонкой упругой оболочке. Силами поверхностного натяжения объясняется существование капель жидкости, возможность каплям удерживаться на наклонной поверхности твёрдого тела, капиллярность и другое.

    Из всего сказанного выше следует, что в неподвижной жидкости (или газе) слои (части) жидкости действуют друг на друга и на стенки сосуда с силами, направленными перпендикулярно к поверхности их соприкосновения. На рисунке показан сосуд с жидкостью.

    Выделим мысленно из всей жидкости её части в объёмах `1` и `2`. Жидкость в объёме `1` давит на жидкость в объёме `2` с силой `F_1` направленной перпендикулярно к поверхности `AB` их соприкосновения. С такой же по модулю силой `F_2` давит и жидкость `2` на `1`. Это следует из так называемого третьего закона Ньютона, согласно которому тела действуют друг на друга с равными по модулю и противоположными по направлению силами. Жидкость в сосуде давит на часть `MN` стенки сосуда с силой `F_3`, направленной перпендикулярно стенке. Часть `MN` стенки давит на жидкость с такой же силой  `F_4`.

    Величиной, характеризующей взаимодействие частей жидкости или газа друг с другом и со стенками сосуда, служит давление.

    ОПРЕДЕЛЕНИЕ

    Давлением называется величина, равная отношению модуля силы `F` давления, действующей по нормали (перпендикулярно) к плоской поверхности, к площади  `S` этой поверхности: `P=F/S`.

    В системе СИ давление измеряется в $$ \mathrm{Н}/{\mathrm{м}}^{2}$$. Эта единица давления носит название паскаль (Па):          

    1 Па =1 Н/м21\;\mathrm{Па}\;=1\;\mathrm Н/\mathrm м^2

    Уточним, что следует понимать под давлением в жидкости или газе.

    Поместим в жидкость или газ небольшую плоскую пластину. Одну из сторон этой пластины назовём площадкой. Жидкость (газ) давит на площадку с некоторой силой `F`. Если площадь площадки `S`, то давление жидкости на площадку `P = F/S`. Из условия равновесия вырезанной мысленно из жидкости (газа) призмы с основанием в виде прямоугольного треугольника, находящейся в месте расположения площадки, можно вывести, что давление на площадку в жидкости или газе не зависит от ориентации площадки. Вывод приводить не будем. Теперь можно дать определение давления в жидкости или газе.

    определение

    Давлением в некоторой точке жидкости называется давление жидкости на небольшую площадку, произвольно ориентированную и помещённую вблизи этой точки. Аналогично и для газа.






  • 2. Закон Паскаля

    Рассмотрим связь между давлениями в различных точках жидкости. Будем рассматривать покоящуюся жидкость в неподвижном сосуде. Дополнительное давление в жидкости, возникающее из-за силы тяжести, учитывать не будем.

    Пусть жидкость заключена в замкнутый сосуд произвольной формы (см. рисунок).

    Будем давить на поршень. Покажем, что давление `P_A` в точке `A` равно давлению `P_B` в точке  `B`. Для этого выделим мысленно внутри жидкости тонкий цилиндр, ось которого проходит через точки `A` и `B`, а основания площадью `S` каждое перпендикулярны оси. На части боковой поверхности цилиндра из жидкости со стороны окружающей жидкости действуют силы давления, перпендикулярные оси цилиндра. На основания цилиндра жидкость действует с силами `F_A = P_A S` и `F_B = P_B S`,  направленными вдоль оси `AB`. Поскольку цилиндр находится в покое, то `F_A = F_B`,  т. е. `P_A S = P_B S`. Отсюда `P_A = P_B`. Значит,  давление в точках `A` и `B` одно и то же. Аналогично доказывается равенство давлений в точках `B` и `C` и в точках `C` и `K`. Таким образом, приходим к выводу, что давление во всех точках внутри жидкости одинаково. Поршень давит на жидкость на её границе в одном месте, но это давление ощущается во всей жидкости. Мы получили

    Закон Паскаля

    давление, оказываемое на жидкость в каком-либо одном месте на её границе, передаётся без изменения во все точки жидкости. 

    Этот закон был установлен экспериментально французским физиком и математиком  Блэзом  Паскалем  (1623 - 1662) и носит его имя.

    Всё сказанное в этом параграфе справедливо и для газов. Справедлив для газов и закон Паскаля.

    Отметим, что закон Паскаля выведен и сформулирован здесь при условии отсутствия силы тяжести. Наличие силы тяжести не изменяет сути закона и вносит дополнительную связь между давлениями в различных точках жидкости или газа.

    Закон Паскаля лежит в основе устройства гидравлических машин. Принцип устройства и действия такой машины следующий. Два цилиндрических сосуда разного диаметра с поршнями соединены трубкой и заполнены жидкостью (см. рис.).

    Пусть на малый поршень площадью `S_1` действует сила `F_1`. Тогда в жидкости создаётся давление `P = F_1 //S_1`. На большой поршень площадью `S_2` со стороны жидкости действует сила `F_2 = PS_2 = F_1 S_2 //S_1`. С этой же силой большой поршень может действовать на какое-нибудь тело, препятствующее его перемещению. Во сколько раз `S_2` больше `S_1`, во столько раз и развиваемая поршнем сила `F_2` больше приложенной силы `F_1`. Это используется в гидравлическом прессе, гидравлическом тормозе, гидравлическом домкрате.

    задача 1

    Площадь большого поршня гидравлического домкрата 20 см220\;\mathrm{см}^2, а малого 0,5 см20,5\;\mathrm{см}^2. Груз какой максимальной массы можно поднять этим домкратом, если на малый поршень давить с силой не более `200Н`? Силой трения поршней о стенки цилиндров пренебречь.

    Решение

    Пусть  S1=0,5 см2S_1=0,5\;\mathrm{см}^2S2=20 см2S_2=20\;\mathrm{см}^2F1=200 НF_1=200\;\mathrm Н.  Так как давление во всех точках жидкости одинаково, то

    `F_1 /S_1 =F_2 /S_2`.

    Здесь `F_2` - сила давления жидкости на большой поршень. Отсюда

    F2=F1S2S1=200 Н·20 см20,5 см2=8000 НF_2=\dfrac{F_1S_2}{S_1}=200\;\mathrm Н\cdot\dfrac{20\;\mathrm{см}^2}{0,5\;\mathrm{см}^2}=8000\;\mathrm Н.

    Поднять можно тело с максимальным весом `F_2 = 8000 Н`, что соответствует массе `m = F_2 //g`,  где g=9,8 м/с2g=9,8\;\mathrm м/\mathrm с^2.  Итак, m800 кгm\approx800\;\mathrm{кг}.


  • 3. Гидростатическое давление

    На Земле на все тела действует сила тяжести. Под действием силы тяжести верхние слои жидкости действуют на нижние. Следовательно, в жидкости существует дополнительное давление, обусловленное силой тяжести, называемое гидростатическим давлением.

    Можно показать, что в жидкости, на глубине `H`,  считая от поверхности жидкости в сосуде, гидростатическое давление вычисляется по формуле `P_sf"г" = rho gH`.

    Здесь `rho` - плотность жидкости. В системе единиц СИ  `g = 9,8  sf"м/с"^2`, а давление `P_sf"г"`, плотность `rho` и высота `H`  измеряются в  Па, `sf"кг/м"^3` и `sf"м"` соответственно.

    Полное давление `P` в жидкости, налитой в сосуд, складывается из давления у поверхности жидкости и гидростатического давления. Давление у поверхности жидкости часто равно атмосферному давлению `P_"атм"`, о котором будет сказано в дальнейшем. В этом случае `P = P_sf"г" + P_sf"атм"`.

    Для ответа на некоторые вопросы полезно знать, что на одном горизонтальном уровне давление в жидкости постоянно, а разность давлений `Delta P`  на двух уровнях жидкости `AB` и `MN`, отстоящих друг от друга по высоте на расстояние `H` (см. рисунок), вычисляется по формуле `Delta P = rho g H`, которая аналогична формуле для гидростатического давления.

    Справка

    Греческая  буква  `Delta` (дельта),  стоящая  перед любой величиной, обычно используется  для  обозначения  изменения  этой  величины.

  • 4. Сообщающиеся сосуды

    Сообщающимися называются сосуды, которые имеют связывающие их каналы, заполненные жидкостью (см. рис.).

    Можно показать, что справедлив закон сообщающихся сосудов.

    Закон сообщающихся сосудов:

    в сообщающихся сосудах, заполненных однородной жидкостью, давление во всех точках жидкости, расположенных в одной горизонтальной плоскости, одинаково, независимо от формы сосудов, а поверхности жидкости в сообщающихся сосудах (открытых вверху) устанавливаются на одном уровне (см. рис.).



  • 5. Атмосферное давление. Опыт Торричелли

    Земля окружена воздушной оболочкой, состоящей из смеси газов. Эта оболочка называется атмосферой. Каждый горизонтальный слой атмосферы сжат весом более верхних слоёв. Поэтому давление в нижних слоях атмосферы больше, чем в верхних. При этом и плотность воздуха в нижних слоях значительно больше, чем в верхних. Это связано с тем, что газы под воздействием давления могут сильно уменьшить свой объём. Жидкости же обладают очень малой сжимаемостью и практически не изменяют своей плотности даже при больших давлениях. Атмосферное давление на уровне моря равно примерно 105 Па10^5\;\mathrm{Па}, т. е. 100000 Па100000\;\mathrm{Па}. Это желательно помнить. С увеличением высоты над уровнем моря атмосферное давление уменьшается. На высоте примерно в 5,5 км5,5\;\mathrm{км} оно уменьшается вдвое.

    Значение атмосферного давления впервые определил экспериментально в 1634 г. итальянский учёный Торричелли, создав простейший ртутный барометр. Опыт Торричелли состоит в следующем. Стеклянная трубка длиной около метра, запаянная с одного конца, заполняется полностью ртутью. Затем, закрыв отверстие трубки, её переворачивают и погружают открытым концом в чашу со ртутью (см. рис.).

    Часть ртути из трубки выливается, и в ней остаётся столб ртути высотой `H`. Давление в трубке над ртутью равно нулю (если пренебречь ничтожным давлением паров ртути), так как там - пустота (вакуум):  `P_C = 0`. Давление `P_B` в точке `B` равно давлению `P_A` в точке `A`, поскольку в сообщающихся сосудах - чаше и трубке - точки `A` и `B` находятся на одном уровне. Давление `P_A` равно атмосферному давлению $$ {P}_{\mathrm{атм}}$$.  Поэтому $$ {P}_{B}={P}_{\mathrm{атм}}$$. Разность давлений `P_B - P_C = rho gH`, где `rho` - плотность ртути. Так как $$ {P}_{B}={P}_{\mathrm{атм}}$$  и `P_C = 0`, то $$ {P}_{\mathrm{атм}} =\rho gH$$. Измерив `H` и зная `rho`, можно определить атмосферное давление в условиях опыта. Торричелли нашёл, что для уровня моря H=760 ммH=760\;\mathrm{мм}.

    В опыте Торричелли каждому значению `H` соответствует определённое значение $$ {P}_{\mathrm{атм}}$$. Следовательно, атмосферное давление можно измерять в миллиметрах ртутного столба. Эта единица давления получила специальное название «Торр»: `1`Торр `= 1` мм. рт.ст. При этом высота столба ртути берётся той, которую он имел бы при `0^@"C"`. Атмосферное давление в `760` Торр называется нормальным атмосферным давлением. Значение этого давления называется нормальной (физической) атмосферой и обозначается 1 атм1\;\mathrm{атм}.  Зная плотность ртути  ρ=13595 кг/м3\rho=13595\;\mathrm{кг}/\mathrm м^3, находим по формуле    $$ {P}_{\mathrm{атм}}=\rho gH$$:

    1 атм=760 Торр101325 Па1,013·105 Па1\;\mathrm{атм}=760\;\mathrm{Торр}\approx101325\;\mathrm{Па}\approx1,013\cdot10^5\;\mathrm{Па}.                         

    Умножим равенство $$ {P}_{\mathrm{атм}}=\rho gH$$ на площадь `S` внутреннего сечения трубки: $$ {P}_{\mathrm{атм}}S=\rho gHS$$. Заметим, что последнее равенство можно получить и непосредственно, записав условие равновесия  столба `BC`  ртути (рис. 6). Произведение $$ {P}_{\mathrm{атм}}S$$ равно силе давления `F` на столб ртути `BC` снизу, вызванное наличием атмосферного давления, а `rho gHS` есть вес столба `BC` ртути в трубке. Поэтому говорят, что в опыте Торричелли давление, создаваемое весом столба ртути, уравновешивается атмосферным давлением.

    Замена ртути водой в опыте Торричелли требует высоты трубки более `10` м. Действительно, при нормальном атмосферном давлении 1 атм1\;\mathrm{атм} для значения плотности воды ρ=1000 кг/м3\rho=1000\;\mathrm{кг}/\mathrm м^3 из формулы $$ {P}_{\mathrm{атм}}=\rho gH$$ следует, что H10,3 мH\approx10,3\;\mathrm м. Это означает, что нормальное атмосферное давление уравновешивается столбом воды высотой `10,3` м.   

    Несколько замечаний для решения задач. Полезно помнить, что плотность воды равна 1000 кг/м31000\;\mathrm{кг}/\mathrm м^3 и гидростатическое давление в 105 Па10^5\;\mathrm{Па} создаётся в воде на глубине приблизительно 10 м10\;\mathrm м. Проверьте это, используя формулу для гидростатического давления.

    Поскольку плотность воздуха намного меньше плотности воды, изменением атмосферного давления, связанным с перепадом высоты в несколько метров, можно в ряде случаев пренебречь по сравнению с гидростатическим давлением воды, вызванным таким же перепадом высоты.

    Задача 2

    В сосуд налита вода (см. рис.).

    Расстояние от поверхности воды до дна H=0,5 мH=0,5\;\mathrm м. Площадь дна S=0,1 м2S=0,1\;\mathrm м^2. Найти гидростатическое давление `P_1` и полное давление `P_2` вблизи дна. Найти силу давления воды на дно.

    Решение

    Плотность воды ρ=103 кг/м3\rho=10^3\;\mathrm{кг}/\mathrm м^3. Гидростатическое давление

    $$ {P}_{1}=\rho gH={10}^{3} \mathrm{кг}/{\mathrm{м}}^{3}·\mathrm{9,8} \mathrm{м}/{\mathrm{с}}^{2}·\mathrm{0,5} \mathrm{м}\approx 5·{10}^{3} \mathrm{Па}=5000 \mathrm{Па}$$.

    Полное давление складывается из атмосферного $$ {P}_{\mathrm{атм}}={10}^{5}\mathrm{Па}$$ и гидростатического:

     $$ {P}_{2}={P}_{\mathrm{атм}}+{P}_{1}=100000 \mathrm{Па}+5000 \mathrm{Па}=105000 \mathrm{Па}$$.

    Интересно, что полное давление мало отличается от атмосферного, так как толщина слоя воды достаточно мала. Сила давления воды на дно $$ F={P}_{2}·S=105000 \mathrm{Па}·\mathrm{0,1} {\mathrm{м}}^{2}=10500 H$$.

    Задача 3

    На лёгкий поршень площадью `S`, касающийся поверхности воды, поставили гирю массой `m` (см. рис.).

    Высота слоя  воды в сосуде с вертикальными стенками  `H`. Определить давление в жидкости вблизи дна. Плотность воды `rho`.

    Решение

    На поршень снизу со стороны воды действует направленная вверх сила `F_1 = P_1 S`, где `P_1` давление вблизи поршня. Сверху на поршень действует гиря и атмосферный воздух с силой `F_2 = mg + P_"атм" S`, где g=9,8 м/с2g=9,8\;\mathrm м/\mathrm с^2, $$ {P}_{\mathrm{атм}}={10}^{5} \mathrm{Па}$$ - атмосферное давление. Поршень находится в равновесии. Поэтому `F_1 = F_2`. Итак,  `P_1 S = mg + P_"атм" S`. Отсюда  `P_1 = P_"атм" + (mg)/S`.

    Этот  результат можно писать и сразу, говоря, что давление под поршнем равно атмосферному `P_"атм"` и добавочному давлению  `mg//S`, создаваемому гирей.

    Разность давлений в воде у дна и вблизи поршня: `P_2 - P_1 = rho gH`.

    Отсюда  `P_2 = P_1 + rho gH`.  

    Окончательно, давление у дна `P_2 = P_"атм" + (mg)/S + rho gH`.


  • 6. Закон Архимеда

    На поверхности твёрдого тела, погружённого в жидкость (газ), действуют силы давления. Эти силы увеличиваются с глубиной погружения (см. рис.), и на нижнюю часть тела будет действовать со стороны жидкости большая сила, чем на верхнюю.

    Равнодействующая всех сил давления, действующих на поверхность тела со стороны жидкости, называется выталкивающей силой. Другое название этой силы - сила Архимеда. Истинная причина появления выталкивающей силы - это наличие различного гидростатического давления в разных точках жидкости.

    Закон Архимеда

    выталкивающая сила, действующая на тело, погружённое в жидкость, равна по модулю весу вытесненной жидкости и противоположно ему направлена.

    Закон открыт величайшим механиком и математиком Древней Греции Архимедом (287 - 212 г.г. до н. э.).

    Приведённая формулировка закона Архимеда справедлива, если вся поверхность тела соприкасается с жидкостью или если тело плавает в жидкости, или если тело частично погружено в жидкость через свободную (не соприкасающуюся со стенками) поверхность жидкости.

    Если же часть поверхности тела плотно прилегает к стенке или дну сосуда так, что между ними нет прослойки жидкости, то закон Архимеда неприменим!

    Иллюстрацией к сказанному служит опыт, когда ровную нижнюю поверхность деревянного кубика натирают парафином и плотно приставляют ко дну сосуда (см. рис.).

    Затем осторожно наливают воду. Кубик не всплывает, т. к. со стороны воды на него действует сила, прижимающая его ко дну, а не выталкивающая вверх. Известно, что это представляет опасность для подводной лодки, лёгшей на грунт.

    Закон Архимеда применим и в случае погружения тела в газ.
    Строго говоря, в законе Архимеда вес вытесненной жидкости надо брать в вакууме, а не в воздухе, так как вес жидкости в воздухе меньше веса этой жидкости в вакууме на величину веса воздуха, вытесненного этой жидкостью. Но это различие обычно мало, и им пренебрегают.

    Если тело погружено в жидкость частично, то результирующая выталкивающая сила со стороны жидкости и воздуха равна сумме веса вытесненной жидкости и вытесненного этим телом воздуха. Здесь оба веса берутся в вакууме.

    Задача 4

    Железный предмет, полностью погружённый в воду, весит меньше, чем в воздухе на F=100 HF=100\;\mathrm H.   Определить вес предмета в воздухе. Плотность железа ρ=7900 кг/м3\rho=7900\;\mathrm{кг}/\mathrm м^3.

    Решение

    Выталкивающей силой в воздухе можно пренебречь. Пусть вес тела в воздухе `Q`.  Тогда его вес в воде `Q - rho_в Vg`.  Здесь `V` - объём тела, ρв=1000 кг/м3\rho_\mathrm в=1000\;\mathrm{кг}/\mathrm м^3 - плотность воды, g=9,8 м/с2g=9,8\;\mathrm м/\mathrm с^2. Разность этих весов равна  `F`. Поэтому `Q - (Q - rho_в Vg) = F`. 

    Отсюда `V = F/(rho_в g)`.  Вес тела в воздухе 

    Q=ρgV=Fρρв=100 H·7900 кг/м31000 кг/м3=790 HQ=\rho gV=\dfrac{F\rho}{\rho_\mathrm в}=\dfrac{100\;\mathrm H\cdot7900\;\mathrm{кг}/\mathrm м^3}{1000\;\mathrm{кг}/\mathrm м^3}=790\;\mathrm H.


  • 7. Плавание тел

    Лодка из железа, спущенная на воду, плывёт, а эта же лодка, полностью погружённая в воду (затопленная), тонет. Из этого примера видно, что одно и тоже тело может плавать, а может и тонуть. Всё зависит от того, как тело приведено в контакт с жидкостью. Поэтому имеет смысл рассмотреть два случая взаимодействия тела с жидкостью.

    1-й случай

    Тело плавает в жидкости,  т. е. находится в покое, частично погрузившись в жидкость. Это может быть любое тело, например, кусок дерева или катер. Важен сам факт плавания. При этом тело соприкасается только с жидкостью и воздухом, плавая предоставленным самому себе, свободно. На начальном этапе рассмотрения вопроса о плавании не будем учитывать вес вытесненного воздуха. На тело действует направленная вниз сила тяжести `F_sf"Т"` и направленная вверх сила Архимеда `F_sf"А"`. Поскольку сила тяжести `F_sf"Т"` равна весу тела (в вакууме), а сила Архимеда `F_sf"А"` – весу (в вакууме) вытесненной жидкости, то можно сказать, что вес тела равен весу вытесненной жидкости. При более строгом рассмотрении вопроса с учётом веса вытесненного воздуха можно показать, что вес тела в воздухе равен весу (тоже в воздухе) вытесненной жидкости.

     Итак, если тело плавает в жидкости, то вес тела в воздухе равен весу в воздухе вытесненной им жидкости.

    При решении задач, когда ситуация реальна, различием в весе в воздухе и вакууме обычно пренебрегают, приравнивая вес любого тела силе тяжести, действующей на тело.

    Задача 5

    Кусок льда объёмом V=0,1 м3V=0,1\;\mathrm м^3 плавает в воде. Найти объём  `V_1`  надводной части льда. Плотность воды  ρ1=1 г/см3\rho_1=1\;\mathrm г/\mathrm{см}^3,  плотность льда ρ2=0,9 г/см3\rho_2=0,9\;\mathrm г/\mathrm{см}^3.

    Решение

    Вес льдины `rho_2 Vg`,  вес вытесненной воды `rho_1 (V - V_1)g`. По закону Архимеда  `rho_2 Vg = rho_1 (V - V_1)g`.  Отсюда 

    V1=ρ1-ρ2Vρ1=1-ρ2ρ1·V=0,01 м3V_1=\dfrac{\left(\rho_1-\rho_2\right)V}{\rho_1}=\left(1-\dfrac{\rho_2}{\rho_1}\right)\cdot V=0,01\;\mathrm м^3.

    2-й случай

    Тело полностью погружено в жидкость и отпущено. Возьмём в руки какое-нибудь тело (кусочек дерева, стальной болт), погрузим его полностью в жидкость (например, воду) и будем удерживать неподвижно. На тело со стороны Земли действует вниз сила тяжести FТ=ρТVgF_\mathrm Т=\rho_\mathrm ТVg, а со стороны жидкости - вверх выталкивающая сила по закону Архимеда  FА=ρЖVgF_\mathrm А=\rho_\mathrm ЖVg. Здесь `V` - объём тела, ρТ\rho_\mathrm Т и ρЖ\rho_\mathrm Ж - плотность тела и жидкости. Отпустим тело. Если окажется, что $$F_\mathrm Т\;>\;F_\mathrm А$$,  то тело начнёт двигаться вниз, т. е. тонуть.  Если будет $$F_\mathrm Т\ <\ F_\mathrm А$$, то тело станет двигаться вверх, т. е. всплывать. После всплытия, когда тело будет плавать, объём погружённой в жидкость части тела окажется таким, что будет обеспечено равенство силы Архимеда (уже меньшей, чем величина $$ {F}_{\mathrm{А}}$$) и силы тяжести $$ {F}_{\mathrm{Т}}$$.  Итак, тело будет плавать, если $$\rho_\mathrm ТVg\;<\;\rho_\mathrm ЖVg$$, т. е. $$\rho_\mathrm Т\;<\;\rho_\mathrm Ж$$.  

    Мы получили условие плавания тела: тело, предварительно полностью погружённое в жидкость, плавает в жидкости, если плотность тела меньше плотности жидкости.

    Если плотности тела и жидкости равны, то полностью погружённое в жидкость тело может находиться в равновесии (покое) в любом месте жидкости, т. е. тело плавает внутри жидкости. Реально такая ситуация трудно осуществима, так как добиться строгого равенства плотностей нелегко.

    Условие плавания сформулировано для тела, предварительно полностью погружённого в жидкость. Предварительное полное погружение важно, так как, например, металлическая миска, не полностью погружённая в воду, может плавать, а полностью погружённая утонет.

    Условие плавания сформулировано для однородного тела, т. е. тела, плотность которого одинакова во всех точках тела. Это условие плавания справедливо и для неоднородного тела, например, куска льда с полостью внутри или стеклянной бутылки, заполненной частично водой и закрытой пробкой. В таком случае под плотностью тела надо понимать его среднюю плотность, т. е. отношение массы тела к его объёму.

  • § 1. Инерция. Первый закон Ньютона

    По взглядам учёных античных времён считалось, что для движения необходимо наличие действия других тел. Если же действие это прекращается, то тело останавливается и возвращается в состояние покоя. Таким образом, покой выступал к ак основное состояние тела, а движение – как временное состояние, обязательно прекращающееся.

    Такая точка зрения просуществовала до XVI века, когда Галилеем были сформулированы суждения принципиально другого толка. Галилей считал, что любое тело сохраняет состояние, в котором оно находится, если на него не действуют другие тела или действия других тел скомпенсированы. Так, физическое тело, лежащее на столе, находится в покое, поскольку на него действует Земля и стол, а действия эти равны по величине и противоположны по направлению. Но тело может не только находиться в покое при равенстве действий других тел, но и двигаться равномерно и прямолинейно. Например, металлический шар, брошенный в воду, тонет с постоянной скоростью (на начальном участке движения это не так, но потом движение действительно станет равномерным). При этом действие Земли скомпенсировано действием воды. И, наконец, тело, движущееся вдали от других тел (современным примером было бы движение космического корабля вдали от гравитирующих масс), будет сохранять свою скорость постоянной относитель но некоторой системы отсчёта, потому что нет тел, которые своим действием изменили бы это состояние движения.

    Ньютон попытался построить учение о движении тел, основываясь на свойствах пространства и времени. По его мнению следовало, что вследствие однородности и изотропности пространства тело сохраняет состояние, в котором оно находится. Если оно в какой-либо системе отсчёта находилось в покое, то и продолжает сохранять покой в этой с. о., если оно двигалось равномерно и прямолинейно, то сохраняет состояние движения. Само движение остаётся равномерным и прямолинейным , потому что пространство во всех точках имеет одинаковые свойства (однородно) и по всем направлениям так же имеет одинаковые свойства (изотропно).

    Инерцией

    называют явление сохранения скорости телом, если на него не действуют другие тела или действие других тел скомпенсировано.

    Инерциальной системой отсчёта называется такая с. о., 

    относительно которой тело движется равномерно и прямолинейно или находится в покое, если на него не действуют другие тела, или действия других тел скомпенсированы.

    Любая другая система отсчёта, движущаяся относительно инерциальной равномерно и прямолинейно, тоже является инерциальной

    Таким образом, достаточно найти хотя бы одну и иерциальную систему отсчёта (далее ИСО), чтобы потом выбирать удобную ИСО. 

    Ньютон считал, что прос ранство абсолютно и неподвижно и что с ним можно связать хотя бы одну ИСО, неподвижную относительно пространства.

    Практический же поиск ИСО представляет целую научную проблему. Несмотря на сложность поиска ИСО, первый (основополагающий) закон Ньютона постулирует их существование.

    Первый Закон Ньютона

    Существуют такие системы отсчёта, относительно которых тело движется равномерно и прямолинейно или находится в покое, если на него не действуют другие тела или действия других тел скомпенсированы.

    Первый закон Ньютона является следствием свойств пространства и времени, т. е. тело может двигаться равномерно и прямолинейно или находиться в покое (если на него не действуют другие тела, или действия других тел скомпенсированы) только тогда, когда свойства пространства в разных точках и направления в нём (вдоль траектории движения тела) равноправны. Сами свойства пространства и времени являются содержанием первого закона (его физическим смыслом). И если хотя бы одна ИСО существует, то остальных ИСО сколько угодно, и все они выступают на равных правах!

    Данное утверждение имеет огромное значение и называется принципом относительности Галилея, и потому выпишем отдельно:

    1. Все ИСО равноправны.

    2. При переходе из одной ИСО в другую форма зписи законов механики не меняется.

    3. Никаким механическим экспериментом нельзя обнаружить равномерное прямолинейное движение.

    Все три формулировки имеют одинаковый смысл, но разнообразие этих формулировок расширяет понимание данного принципа.

    Например, третья формулировка говорит о следующем: пусть мы находимся в закрытом от внешнего мира пространстве (закрытый вагон на очень гладких прямолинейных рельсах без стыков) . Проводя внутри вагона разнообразные механические опыты и анализируя их результаты, мы не сможем ответить на вопрос – движемся ли мы равномерно и прямолинейно или находимся в покое относительно дороги (результаты опытов не зависят от места в пространстве и направления движения в нём).

    Вторая формулировка утверждает, что результаты опытов, проведённых в вагоне (движущемся равномерно и прямолинейно), будут точно такими же, как и те, что получены при наблюдении за тем же опытом через окно вагона наблюдателем, стоящим на поверхности Земли неподвижно.

    Первая формулировка лаконично обобщает все факты, но для полного понимания требуется пояснение или расшифровка, которая звучит в других формулировках. 

    Из перечисленных примеров вытекает, что вполне очевидной будет ситуация, в которой на тело действуют другие тела, а ускорения нет; и невероятной будет ситуация, когда на тело не действуют тела, а ускорение есть.

     

  • § 2. Взаимодействие тел, инертность, масса

    Из наблюдений можно заметить, что тела изменяют свою скорость только при наличии не скомпенсированного действия. Т. к. быстрота изменения скорости характеризуется ускорением тела, можем заключить, что причиной ускорения является некомпенсированное действие одного тела на другое. Но одно тело не может действовать на другое, не испытывая его действия на себе. Следовательно, ускорение появляется при взаимодействии тел. Ускорение приобретают оба взаимодействующие тела. Так же из наблюдений можно установить ещё один факт: при одинаковом действии разные тела приобретают разные ускорения.

    Условились считать: чем меньше ускорение приобретает тело при взаимодействии, тем инертнее это тело.

    Инертность

    это свойство тела сохранять свою скорость постоянной (то же, что и инерция). Проявляет себя в том, что для изменения скорости тела требуется некоторое время. Процесс изменения скорости не может быть мгновенным.

    Например, движущийся по дороге автомобиль не может мгновенно остановиться, для уменьшения скорости требуется некоторое время, а за это время он успевает переместиться на довольно большое расстояние (десятки метров). (Осторожно переходите дорогу!!!)

    Мерой инертности является инертная масса.

    Масса (инертная) – мера инертности тела.

    Чем инертнее тело, тем больше его масса. Чем больше инертность, тем меньше ускорение. Следовательно, чем больше масса тела, тем меньше его ускорение:

    `a~1/m`

    Данная зависимость записана единственно правильным способом, т. к. форма `m~1/m` не верна. Масса не может зависеть от ускорения, она является свойством тела, а ускорение является характеристикой состояния движения тела. 

    Данная зависимость подтверждается многочисленными опытными результатами.

    Два тела, скреплённые между собой сжатой пружиной, после пережигания нити, удерживающей пружину, начинают двигаться некоторое время с ускорением (рис. 1).

    Опыт показывает, что при любых взаимодействиях данных двух тел отношение ускорений тел равно обратному отношению их масс: 

    `a_1/a_2=m_2/m_1`;

    если взять первую массу за эталонную `(m_1=m_("эт"))`,  то `m_2=m_("эт") (a_("эт"))/(a_2)`.

    Масса, измеренная путём взаимодействия (измерения ускорения), называется инертной.

    Измерение массы методом взвешивания тел.

    Второй способ измерения масс основан на сравнении действия Земли на различные тела. Такое сравнение можно осуществить либо последовательно (сначала определяют растяжение пружины под действием эталонных масс, а потом под действием исследуемого тела в тех же условиях), либо одновременно располагают на равноплечих рычажных весах на одной чаше исследуемое тело, а на другой эталонные массы (рис. 2).

    Масса, измеренная путём взвешивания, называется гравитационной.

    Раньше в качестве эталона и той и другой массы была принята масса тела, выполненного в форме цилиндра высотой `39` мм и диаметром `39` мм, изготовленного из сплава `10 %` иридия и `90 %` платины (рис. 3). 

    Для создания нового эталона массы теперь применяется баланс Киббла – напоминающее весы устройство, которое определяет, какой ток нужен для того, чтобы создать электромагнитное поле, способное уравновесить чашу с тестируемым эталоном. Это позволяет вычислить постоянную Планка с беспрецедентной точностью. Знание постоянной Планка, в свою очередь, позволяет определить точную массу объекта в другом режиме работы баланса Киббла.

    Преимущество нового эталона в том, что баланс Киббла всегда можно изготовить заново и провести с помощью него необходимые вычисления. Материальный эталон может быть потерян и уничтожен, кроме того, его масса не остается постоянной, хотя он всегда равен одному килограмму по определению.

    Платиново-иридиевый цилиндр из Палаты мер и весов ушел из употребления 20 мая 2019 года.

    В 1971 г наши соотечественники Брагинский и Панов придумали и провели опыт по сравнению массы гравитационной и инертной. Оказалось, что с точностью до `10^(-12)%` эти массы равны.

    Данный факт известен был и ранее, и послужил основанием для формулировки Эйнштейном принципа эквивалентности.

    Принцип эквивалентности

    утверждает, что

    1) ускорение, вызванное гравитационным взаимодействием в малой области пространства, и за небольшой интервал времени, неотличимо от ускоренно движущейся системы отсчёта.

    2) ускоренно движущееся тело эквивалентно неподвижному телу, находящемуся в гравитационном поле.

    Пример 1

    Два тела массами `400` г и `600` г двигались навстречу друг другу и после удара остановились. Какова скорость второго тела, если первое двигалось со скоростью `3` м/с?

    Решение

    Сила, возникающая при взаимодействии тел, конечно же, не остаётся постоянной, и ускорения тоже. Мы будем считать, что и силы, и ускорения принимают некоторые средние значения, причём одинаковые для любого момента времени. Отношение ускорений тел равно обратному отношению их масс: `a_1/a_2=m_2/m_1`. В свою очередь, ускорение равно отношению изменения скорости ко времени изменения. Конечные скорости тел равны нулю, а время взаимодействия одинаково для обоих тел:

    `m_2/m_1=a_1/a_2=((Deltav_1)/(Deltat))/((Deltav_2)/(Deltat))=(v_("к"1)-v_(01))/(v_("к"2)-v_(02))=(v_(01))/(v_(02))`,

    откуда получим искомую скорость:  `v_(02)=m_1/m_2v_(01)`.

    Количественно ответ будет таким: `v_(02)=(0,4 "кг")/(0,6 "кг")*3"м"/"с"=2"м"/"с"`.


  • § 3. Сила, второй закон Ньютона

    Сила является мерой взаимодействия (взаимного действия). Если действие велико (мало), то говорят о большой (малой) силе. Сила обозначается буквой `F` (первая буква слова force).

    При взаимодействии чем больше сила, тем больше ускорение тела, на которое эта сила действует. Следовательно, ускорение прямо пропорционально действующей силе: `a~F`.

    Но уже говорилось о том, что ускорение зависит от массы тела: `a~1/m`.

    Обобщая эти зависимости получим:

    `a=F/m`,    или      `F=ma`.

    Теперь рассмотрим свойства силы, устанавливаемые опытным путём:

    свойства силы

    1) Результат действия (проявления) силы зависит от направления действующей силы, следовательно, сила – величина векторная.

    2) Результат действия (проявления) силы зависит от величины приложенной силы.

    3) Результат действия (проявления) силы зависит от точки приложения силы.

    4) За единицу силы принято значение такой силы, которая вызывает ускорение `1 "м"//"c"^2` у тела массой `1` кг. Единицу силы назвали в честь Исаака Ньютона `1` Ньютон. (Произносить фамилию считается правильным таким образом, как произносится фамилия в том государстве, где проживал или проживает учёный.) 

    `[vecF]=1"H"=1 "кг"*"м"/("с"^2)`  (Ньютон).

    5) Если на тело одновременно действуют несколько сил, то каждая сила действуетнезависимо от других. (Принцип суперпозиции сил). Тогда все силы необходимо сложить векторно и получить результирующую силу (рис. 4).

    Из приведённых свойств силы следует, как обобщение опытных фактов, второй закон Ньютона:

    Второй закон Ньютона

    Сумма всех сил, действующих на тело, равна произведению массы тела на ускорение, сообщаемое этой суммой сил:

    `sumvecF=mveca`.

    Данное выражение можно представить и в другой форме: так как  `veca=(vecv_"к"-vecv_0)/t`,  то второй закон Ньютона  примет вид: `sumvecF=m(vecv_"к"-vecv_0)/t`.

    Произведение массы тела и его скорости называют импульсом тела: `vecp=mvecv`,

    тогда получим новое выражение для второго закона Ньютона:  

    `sumvecF=(mvecv_"к"-mvecv_0)/t=(vecp_"к"-vecp_0)/t=(Deltavecp)/t`.

    `sum vecF=(vecp_"к"-vecp_0)/t` – второй закон Ньютона в импульсной форме для среднего значения силы. Здесь `vecp_"к"-vecp_0=Deltavecp` – изменение импульса тела, `t` – время изменения импульса тела.

    `sumvecF=(dvecp)/(dt)` – второй закон Ньютона в импульсной форме для мгновенного значения силы.

    Из второго закона в частности следует, что ускорение тела, подвергающегося действию нескольких сил, равно сумме ускорений, сообщаемых каждой силой:

    `veca=sumveca_i=veca_1+veca_2+...+veca_i=(sumvecF)/m=`

    `=(vecF_1+vecF_2+...+vecF_i)/m=(vecF_1)/m+(vecF_2)/m+...+(vecF_i)/m`.

    Первая форма записи второго закона `(sumvecF=mveca)`  справедлива только  при малых  скоростях  по  сравнению   со   скоростью   света. И, разумеется, выполняется второй закон Ньютона только в инерциальных системах отсчёта. Также следует отметить, что второй закон Ньютона справедлив для тел неизменной массы, конечных размеров и движущихся поступательно.

    Второе (импульсное) выражение имеет более общий характер и справедливо при любых скоростях.

    Как правило, в школьном курсе физики сила со временем не меняется. Однако последняя импульсная форма записи позволяет учесть зависимость силы от времени, и тогда изменение импульса тела будет найдено с помощью определённого интеграла на исследуемом интервале времени. В более простых случаях (сила изменяется со временем по линейному закону) можно брать среднее значение силы.

    Иногда очень полезно знать, что произведение `vecF*t` называют импульсом силы, и его значение `vecF*t=Deltavecp`  равно изменению импульса тела.

    Для постоянной силы на графике зависимости силы от времени можем получить, что площадь фигуры под графиком равна изменению импульса (рис. 5).

     

    Но даже если сила будет изменяться со временем, то и в этом случае, разбивая время на малые интервалы `Deltat` такие, что величина силы на этом интервале остаётся неизменной (рис. 6), а потом, суммируя полученные «столбики», получим:

    Площадь фигуры под графиком `F(t)` численно равна изменению импульса.

    В наблюдаемых природных явлениях сила, как правило, меняется со временем. Мы же часто, применяя простые модели процессов, считаем силы постоянными. Сама же возможность использования простых моделей появляется из возможности подсчёта средней силы, т. е. такой постоянной силы, у которой площадь под графиком от времени будет равна площади под графиком реальной силы.

    Следует добавить ещё одно очень важное следствие второго закона Ньютона, связанное с равенством инертной и гравитационной масс.

    следствие второго закона Ньютона

    Неразличимость гравитационной и инертной масс означает, что и ускорения, вызванные гравитационным взаимодействием (законом всемирного тяготения) и любым другим тоже неразличимы.


    Пример 2

    Мяч массой `0,5` кг после удара, длящегося `0,02` с, приобретает скорость `10` м/с. Найти среднюю силу удара.

    Решение

    В данном случае рациональнее выбрать второй закон Ньютона в импульсной форме, т. к. известны начальная и конечная скорости, а не ускорение, и известно время действия силы. Также следует отметить, что сила, действующая на мяч, не остаётся постоянной. По какому закону меняется сила со временем, не известно. Для простоты мы будем пользоваться предположением, что сила постоянная, и её мы будем называть средней.

    Тогда `sumvecF=(Deltavecp)/t`, т. е. `vecF_("ср")*t=Deltavecp`. В проекции на ось, направленной вдоль линии действия силы, получим:  `F_"ср"*t=p_"к"-p_0=mv_"к"`. Окончательно для искомой силы получим:

    `F_"ср"=(mv_"к")/t`.

    Количественно ответ будет таким:

    `F_"ср"=(0,5"кг"*10"м"/"с")/(0,02"с")=250"H"`.



  • §4. Взаимодействие тел, третий закон Ньютона

    Из анализов многочисленных опытов, как уже отмечалось, было получено соотношение масс взаимодействующих тел и их ускорений:

    `m_2/m_1=a_1/a_2`,         или         `m_1a_1=m_2a_2`.

    Но мы знаем из опытов, что при взаимодействии всегда ускорения тел противоположны друг другу: `veca_1 uarr darr veca_2`, следовательно, `m_1veca_1=m_2veca_2`.

    Но произведение массы тела на ускорение этого тела равно действующей на это тело силе. Тогда

    `vecF_1=-vecF_2`

    Данное утверждение и представляет собой третий закон Ньютона.

    Третий закон Ньютона

    При взаимодействии тела действуют друг на друга с силами, равными по величине, противоположными по направлению, одинаковыми по природе и лежащими на прямой, проходящей через центры тел.

    Данные проявления встречаются всюду:

    1) при столкновении (упругом или неупругом) тела деформируются, при этом появляются силы упругости. Первое тело действует на второе с силой `F_(21)`, а второе на первое с силой `F_(12)`. Причём обе силы по природе своей являются силами упругости – силами взаимодействия между молекулами (электромагнитными). Силы лежат на одной прямой, лежащей на линии точек приложения сил. Силы противоположны.

    2) при гравитационном взаимодействии двух тел (Земля и Луна, или Солнце и Юпитер и т. д.) возникают две гравитационные силы, которые тоже противоположны и равны друг другу.

    3) при взаимодействии прямоугольного тела, стоящего на поверхности стола, тоже возникают две силы упругости: сила `F_(12)` возникает потому, что стол деформировался (прогнулся, деформация изгиба см. далее), а сила `F_(21)` возникает потому, что прямоугольное тело тоже деформировалось (сжалось под действием силы тяжести, подробнее см. далее). Обе силы равны друг другу и противоположны.

    Рассмотрение примеров позволяет сформулировать следующие свойства сил, возникающих при взаимодействии:

    свойства сил, возникающих при взаимодействии:
    • силы всегда появляются (или исчезают) парами;
    • силы не компенсируют друг друга, т. к. приложены к разным телам;
    • силы одинаковой природы.
    Пример 3

    Для растяжения пружины жёсткостью `50` Н/м, закреплённой одним концом на стене, на `20` см требуется сила `10` Н. Какую силу нужно приложить к этой пружине, чтобы растянуть её на `20` см, прикладывая силу с двух сторон и действуя в противоположных направлениях?

    Решение

    В первом случае в растянутом состоянии пружина находилась в состоянии покоя. Следовательно, по второму закону Ньютона сила, приложенная к пружине со стороны руки, скомпенсирована силой, приложенной к пружине со стороны стены. Значит, стена действует на пружину с силой `10` Н.

    а) Первая пара сил: точка приложения силы со стороны руки неподвижна и находится в пружине, а сила упругости пружины приложена к точке, находящейся в руке, и тоже неподвижна. Эти две силы равны и противоположны по третьему закону Ньютона.

    б) Вторая пара сил: во второй паре взаимодействующих тел (стены и пружины) силы тоже равны и противоположны по тому же закону.

    Во втором случае пружина тоже находится в покое. Только теперь одна из сил создаётся одной рукой, а вторая сила второй рукой. Сила, создаваемая стеной в первом случае, заменяется силой, создаваемой второй рукой, во втором. Понятно, что неподвижной пружина останется во втором случае только тогда, когда величина силы тоже сохранит первоначальное значение. Следовательно, во втором случае к пружине нужно приложить силу `10` Н с обеих сторон.

  • § 5. Виды деформаций, закон Гука

    Из наличия упругих свойств твёрдых тел можем заключить, что между молекулами и атомами существуют как силы притяжения, так и силы отталкивания. Исследования показали, что эти силы сильно зависят от расстояния между молекулами.

    Если две молекулы разместить так, чтобы расстояние между их центрами составило примерно два радиуса, то сумма сил притяжения и отталкивания равна нулю.

    При этом сила отталкивания представлена на графике зависимости силы от расстояния в виде кривой $$ f=a/{r}^{13}$$, а сила притяжения в виде другой кривой $$ f=-b/{r}^{7}$$ (рис. 7). Сумма этих графиков и есть сила взаимодействия между молекулами. По графику видно, что при сближении молекул на расстояние, меньшее $$ 2{r}_{0}$$ между центрами, возникает быстро растущая сила отталкивания, а при удалении этих молекул возникает сначала растущая (по модулю) сила притяжения, а потом эта сила начинает убывать и стремится к нулю на больших расстояниях.

    рис. 7

    Теперь понятно, что даже если сила притяжения или отталкивания между парой молекул мала, то при деформации макроскопического тела таких пар сил возникнет колоссально много, и они дадут в сумме макроскопическую силу упругости, компенсирующую внешнюю силу.

    Деформацией

    называют изменение формы и размеров тела под действием внешних сил.

    Все деформации можно разделить на четыре вида: сжатия – растяжения, изгиб, сдвиг и кручение.

    Деформация сжатия-растяжения.

    Первоначальная длина тела равна $$ {l}_{0}$$, а конечная длина $$ {l}_{\mathrm{к}}$$. При такой деформации длина тела изменяется на величину:

    `Deltal=l_"k"-l_0` - абсолютное удлинение

    Величина деформации так же характеризуется безразмерной величиной:

    `varepsilon =(Deltal)/l_0` - относительное удлинение.

    Примеров таких деформаций очень много: ножки стула, стола, стены зданий, некоторые кости скелета, мачта парусника во время штиля и др.

    Робертом Гуком экспериментально было установлено, что:


    `(F_"упр")_X=-kDeltal` - закон Гука в интегральной форме (рис. 8).


    `k` - коэффициент упругости или жёсткости тела.

    Рис. 8


    Сила упругости, возникающая при деформации, прямо пропорциональна смещению частиц и направлена в сторону, противоположную смещению частиц при деформации.

    Закон Гука стал средством для измерения сил. Т. к. чтобы определить величину (модуль) какой - либо силы, необходимо сравнить её с эталоном. Две силы считаются равными по модулю и противоположно направленными, если при их одновременном действии на одно и то же тело его общее ускорение равно нулю (скорость тела не изменяется). Таким образом, можно сравнивать силы и измерять их (если одну из них выбрать в качестве эталона).

    На практике пружину, подчиняющуюся закону Гука, градуируют на разные значения силы для измерения силы. Далее воздействуют ею на тело так, чтобы тело стало двигаться равномерно. В этом состоянии сила, ранее действовавшая на тело, стано вится равной силе, действующей со стороны пружины, определяемой по граду и рованной шкале. Прибор для измерения силы называется динамометром.

    Пример 4

    К резиновому шнуру подвесили груз, под действием которого шнур растянулся на $$ 4 \mathrm{см}$$. Затем шнур сложили вдвое, закрепив сложенные концы вверху, а к середине снова подвесили тот же груз. На сколько шнур растянется во втором случае?

    Решение

    Если шнур в первом случае растянулся на $$ 4 \mathrm{см}$$, то каждая половина шнура растянулась на $$ 2 \mathrm{см}$$, а половины шнура были соединены между собой последовательно. Сила упругости внутри шнура везде одинакова и равна весу груза. Коэффициент жёсткости каждой половины можно представить в виде: $$ {k}_{2}={\displaystyle \frac{mg}{{x}_{0}/2}}$$.

    Во втором случае половинки шнура соединены между собой параллельно, следовательно, условие равновесия груза теперь выглядит так:

    \[mg = 2\cdot k_2x_2, \ \mathrm{откуда}\ x_2 = \dfrac{mg}{2k_2} = \dfrac{mg}{2\frac{mg}{x_0/2}} = \dfrac{x_0}{4} = 1\ \mathrm{см}.\]