Математика 11 класс ВФТШ 11-М-1

§1. Равносильность уравнений и неравенств

В нашем задании большую роль  будет играть понятие  равносильности.

Два неравенства    

`f_1 (x) > g_1 (x)`   и   `f_2 (x) > g_2 (x)` (1)

или два уравнения

`f_1 (x) = g_1 (x)`   и   `f_2 (x) = g_2 (x)`       (2)

называются равносильными на множестве `X`, если каждое решение первого неравенства (уравнения), принадлежащее множеству `X`, является решением второго и, наоборот, каждое решение второго, принадлежащее `X`, является решением первого, или, если, ни одно из неравенств (уравнений) на `X` не имеет решений. Т. е. два неравенства (уравнения) равносильны, по определению, если множества решений этих неравенств (уравнений) на `X` совпадают.

Отсюда следует, что вместо того, чтобы решать данное неравенство (уравнение), можно решать любое другое, равносильное данному. Замену одного неравенства (уравнения) другим, равносильным данному на `X`, называют равносильным переходом на `X`. Равносильный переход обозначают двойной стрелкой `hArr`. Если уравнение `f(x) = 0`  (или неравенство) `f(x) > 0`) равносильно уравнению `g(x) = 0` (или неравенству `g(x) > 0`), то это мы будем обозначать так:  

`f(x) = 0 hArr g(x) = 0`   (или `f(x) > 0 hArr g(x) > 0`).

Пример 1

`sqrt(x^2 -4) = 1 - x^2 hArr sqrt(sin ^2 x - 2) = 0`, т. к. ни то, ни другое не имеет решения.

Важно понимать, что для доказательства неравносильности двух неравенств (уравнений) нет необходимости решать каждое из неравенств (уравнений), а затем убеждаться в том, что множества их решений не совпадают - достаточно указать одно решение одного из неравенств (уравнений), которое не является решением другого неравенства (уравнения).

Пример 2

При каких значениях параметра  `a` системы

ax+3y=6a-4,x+y=2a\left\{\begin{array}{l}ax+3y=6a-4,\\x+y=2a\end{array}\right. и   x2-2y4-6x+8=0,x2+y2-2a+4x+2(a2+a+2)=0\left\{\begin{array}{l}x^2-2y^4-6x+8=0,\\x^2+y^2-\left(2a+4\right)x+2(a^2+a+2)=0\end{array}\right.

равносильны?


Решение

Решим сначала первую, более простую систему  

ax+3y=6a-4,x+y=2ay=2a-x,ax+3(2a-x)=6a-4x(a-3)=-4\left\{\begin{array}{l}ax+3y=6a-4,\\x+y=2a\end{array}\Leftrightarrow\left\{\begin{array}{l}y=2a-x,\\ax+3(2a-x)=6a-4\Leftrightarrow x(a-3)=-4\end{array}\Leftrightarrow\right.\right.

a3,x=-4a-3,y=2a+4a-3=2a2-6a+4a-3;a=3,0·x=-4.\Leftrightarrow\left[\begin{array}{l}\left\{\begin{array}{l}a\neq3,\\x=-\dfrac4{a-3},\\y=2a+\dfrac4{a-3}=\dfrac{2a^2-6a+4}{a-3};\end{array}\right.\\\left\{\begin{array}{l}a=3,\\0\cdot x=-4\Leftrightarrow\varnothing.\end{array}\right.\end{array}\right.

Подставим  `a = 3` во вторую систему

a=3:x2-2y4-6x+8=0,x2+y2-10x+28=0x-52+y2+3=0.a=3:\left\{\begin{array}{l}{x}^{2}-2{y}^{4}-6x+8=0,\\ {x}^{2}+{y}^{2}-10x+28=0\iff {\left(x-5\right)}^{2}+{y}^{2}+3=0\iff \varnothing .\end{array}\right.

Следовательно, при `a = 3` системы  равносильны,  т. к. при этом значении параметра обе системы не имеют решений.

При `a != 3` первая система имеет единственное решение. Заметим, что во второй системе `y` входит только в чётной степени, значит, если решением является пара `(x_0, y_0)`,  то пара `(x_0 , -y_0)` тоже будет решением. При этом если `y_0 != - y_0 iff y_0 != 0`, то решений будет два. Следовательно, единственным решением может быть только пара `(x_0 , 0)`. Посмотрим, при каких `a` такое решение у системы есть. Подставим эту пару в систему

x02-6x0+8=0x0=3±1,x02-2a+4x0+2a2+a+2=0\left\{\begin{array}{l}x_0^2-6x_0+8=0\Leftrightarrow x_0=3\pm1,\\x_0^2-\left(2a+4\right)x_0+2\left(a^2+a+2\right)=0\end{array}\right.x0=2,a2-a=0a=0,1;x0=4,a2-3a+2=0a=2,1.\Leftrightarrow\left[\begin{array}{l}\left\{\begin{array}{l}x_0=2,\\a^2-a=0\Leftrightarrow a=\left[\begin{array}{l}0,\\1;\end{array}\right.\end{array}\right.\\\left\{\begin{array}{l}x_0=4,\\a^2-3a+2=0\Leftrightarrow a=\left[\begin{array}{l}2,\\1.\end{array}\right.\end{array}\right.\end{array}\right.

Итак, таких  `a` три: `0, 1, 2`. Но при этих `a`  вторая система может иметь и другие решения, а если у неё других решений нет, то её единственное решение может не совпадать с решением первой системы, и тогда такое  `a` не удовлетворяет условию задачи. Проверим эти значения параметра.

1. `a=0`: Первая система имеет решение: `x = 4/3` и `y = - 4/3 != 0`. Следовательно, системы не равносильны, т. к. решения систем не совпадают (у второй `y=0`).

2. `a=1`: Вторая  система  имеет  вид 

x2-2y4-6x+8=0,x2+y2-6x+8=0y=0,x=3±1=4;2.\left\{\begin{array}{l}x^2-2y^4-6x+8=0,\\x^2+y^2-6x+8=0\end{array}\Leftrightarrow\left\{\begin{array}{l}y=0,\\x=3\pm1=4;2.\end{array}\right.\right.

Следовательно, системы не равносильны, т. к. вторая имеет два решения.

3. a=2:ax+3y=6a-4,x+y=2ax=4,y=0a=2:\left\{\begin{array}{l}ax+3y=6a-4,\\x+y=2a\end{array}\Leftrightarrow\left\{\begin{array}{l}x=4,\\y=0\end{array}\right.\right.

и x2-2y4-6x+8=0,x2+y2-2a+4x+2a2+a+2=0\left\{\begin{array}{l}x^2-2y^4-6x+8=0,\\x^2+y^2-\left(2a+4\right)x+2\left(a^2+a+2\right)=0\end{array}\right.\Leftrightarrow

x2-2y4-6x+8=0,x-42+y2=0x=4,y=0x=4,y=0.\Leftrightarrow\left\{\begin{array}{l}x^2-2y^4-6x+8=0,\\\left(x-4\right)^2+y^2=0\Leftrightarrow\left\{\begin{array}{l}x=4,\\y=0\end{array}\right.\end{array}\Leftrightarrow\left\{\begin{array}{l}x=4,\\y=0.\end{array}\right.\right.

Следовательно, системы при этом значении `a` равносильны – они имеют единственное решение `(4; 0)`.


Ответ

`2; 3`.

При решении неравенств и уравнений  часто используются следующие равносильные переходы.

1. Если  функции  `f(x)`, `g(x)`, `h(x)` определены на множестве `X` , то на этом множестве 

а) `f(x) < g(x) iff f(x) + h(x) < g(x) + h(x)`.  (УР 1)
б)  `f(x) = g(x) iff f(x) + h(x) = g(x) + h(x)`.  (УР 2)

                                                                                                                                       

2. Если `h(x) > 0` на `X`, то на `X`

`f(x) < g(x) iff f(x) h(x) < g(x) h(x)`,   (УР 3)

 т. е. умножение неравенства на положительную функцию приводит к равносильному неравенству с тем же знаком.

3. Если `h(x) < 0` на `X`, то на `X`

`f(x) < g(x) iff f(x) h(x) > g(x) h(x)`, (УР 4)

 т. е. при умножении неравенства на отрицательную функцию знак неравенства меняется на противоположный.

4. Если `h(x) != 0` на `X`, то на `X`

`f(x) = g(x) iff f(x) h(x) = g(x) h(x)`. (УР 5)

5. Если обе части неравенства неотрицательны на `X`, то возведение в квадрат обеих частей  приводит к равносильному неравенству, т. е.

`f(x) < g(x) iff f^2 (x) < g^2 (x)`.   (УР 6)

                                                                                   

Если обе  части  неравенства отрицательны, то  умножив обе части на `(­–1)`, придём к неравенству противоположного знака, но с положительными частями, и к нему применим (УР 6).

Если левая и правая части неравенства имеют разные знаки, то возведение в квадрат может привести как к верному, так и к неверному неравенству: `-4<5`; `16<25`; `-7<5`, но `49>25`, поэтому в этом случае нельзя возводить неравенство в квадрат.

6. Если обе части уравнения неотрицательны, то

 

`f(x) = g(x) iff f^2 (x) = g^2 (x)`.   (УР 7)

7. Для любых  `f(x)` и `g(x)` на `X` и любого натурального  `n`

`f(x) = g(x) iff f^(2n + 1) (x) = g^(2n + 1) (x)`. (УР 8)


8. Неравенство вида `f(x)>=0(<=0)` называется нестрогим. По определению,

$$f\left(x\right)\geq0\left(\leq0\right)\Leftrightarrow\left[\begin{array}{l}f\left(x\right)=0,\\f\left(x\right)>0\left(<0\right).\end{array}\right.$$ (УР 9)