$6^{\text {th }}$ and older semesters

20 January 2022

1. Find the pressure at the center of a planet with mass M, due to gravitational compression. Consider the planet as a uniform sphere of radius R, and the planet's substance as a liquid with constant density.
2. One mole of an ideal gas participates in a reversible process in which the dependence of entropy S on temperature T has the form $S=B / T^{2}$, where B is constant. Find the amount of heat supplied to the gas if its temperature has changed from T_{1} to T_{2}.
3. A flat capacitor with circular plates of radius R is charged so that the electric field inside the capacitor changes according to the law $E(t)=E_{0}+\alpha t$. The distance between the plates is much smaller than R. Find the magnetic field H inside the capacitor at the distance $r=R / 3$ from the axis. Neglect the edge effects.
4. Optical radiation containing two spectral lines $\left(\lambda_{1}=600 \mathrm{~nm}\right.$ and $\left.\lambda_{2}=600.1 \mathrm{~nm}\right)$ of the same intensity falls normally on a diffraction grating with a total number of $\operatorname{slits} N=1800$. At diffraction angle $\theta=30^{\circ}$, the spectral lines are observed at the resolution limit (according to the Rayleigh criterion). Find the period of the grating.
5. In a homogeneous magnetic field with induction B, nonrelativistic protons move along a circular trajectory of radius R. Find the de Broglie wavelength of the protons.
