Учебный год 2022/23

Задачи олимпиады: Математика 9 класс (2 попытка)

Задача 1.

Задача 1. #1 ID 1122

Известно, что число 3x-11y делится без остатка на число 130. Сколько различных остатков может давать число 4x+20y при делении на число 130, если известно, что x и y- целые?

Ответ:

5

Задача 1. #2 10 1121

Известно, что число 6x+17y делится без остатка на число 87. Сколько различных остатков может давать число 14x+y при делении на число 87, если известно, что x и y — целые?

Ответ:

3

Задача 1. #3 1D 1123

Известно, что число 15x-14y делится без остатка на число 143. Сколько различных остатков может давать число 7x-8y при делении на число 143, если известно, что x и y- целые?

Ответ:

13

Задача 1. #4 ID 1124

Известно, что число 4x-35y делится без остатка на число 117. Сколько различных остатков может давать число 7x-6y при делении на число 117, если известно, что x и y- целые?

Ответ:

9

Задача 1. #5 ID 1137

Известно, что число 5x+13y делится без остатка на число 138. Сколько различных остатков может давать число 11x+7y при делении на число 138, если известно, что x и y- целые?

Ответ:

23

Задача 2.

Задача 2. #6 ID 1125

Точка F лежит на катете KP прямоугольного треугольника KPM, периметр которого равен 45. Окружность радиуса 5 с центром в точке F касается гипотенузы PM и катета KM. Найдите все возможные значения KM. Если их несколько, запишите в ответе их сумму.

Ответ:

22,5

22.5

Задача 2. #7 ID 1126

Точка F лежит на катете KP прямоугольного треугольника KPM, периметр которого равен 64. Окружность радиуса 3 с центром в точке F касается гипотенузы PM и катета KM. Найдите все возможные значения KM. Если их несколько, запишите в ответе их сумму.

Ответ:

Задача 2. #8 ID 1127

Точка F лежит на катете KP прямоугольного треугольника KPM, периметр которого равен 144. Окружность радиуса $\frac{11}{2}$ с центром в точке F касается гипотенузы PM и катета KM. Найдите все возможные значения KM. Если их несколько, запишите в ответе их сумму.

Ответ:

72

Задача 2. #9 1D 1128

Точка F лежит на катете KP прямоугольного треугольника KPM, периметр которого равен 78. Окружность радиуса $\frac{13}{3}$ с центром в точке F касается гипотенузы PM и катета KM. Найдите все возможные значения KM. Если их несколько, запишите в ответе их сумму.

Ответ:

39

Задача 3.

Задача 3. #10 ID 1129

По шоссе в обоих направлениях с одинаковыми интервалами ходят рейсовые автобусы (скорости движения автобусов одинаковы). Человек бежит по обочине шоссе со скоростью $10~{\rm кm/ч}$ и замечает, что автобусы навстречу попадаются через каждые $\frac{297}{64}$ километра пути, а автобусы, едущие в том же направлении, в котором он бежит, обгоняют его каждые $40,5~{\rm muhyt}$. Определите интервал движения автобусов. Ответ выразите в минутах. Считаем, что человек и автобусы движутся равномерно.

Ответ:

33

Задача 3. #11 1D 1130

По шоссе в обоих направлениях с одинаковыми интервалами ходят рейсовые автобусы (скорости движения автобусов одинаковы). Человек бежит по обочине шоссе со скоростью $9~{\rm km/ч}$ и замечает, что автобусы навстречу попадаются через каждые $2,\!85~{\rm ku}$ километра пути, а автобусы, едущие в том же направлении, в котором он бежит, обгоняют его каждые $26,\!125~{\rm ku}$ минуты. Определите интервал движения автобусов. Ответ выразите в минутах. Считаем, что человек и автобусы движутся равномерно.

Ответ:

22

Задача 3. #12 10 1131

По шоссе в обоих направлениях с одинаковыми интервалами ходят рейсовые автобусы (скорости движения автобусов одинаковы). Человек бежит по обочине шоссе со скоростью $12~{\rm km/ч}$ и замечает, что автобусы навстречу попадаются через каждые 6,3 километра пути, а автобусы, едущие в том же направлении, в котором он бежит, обгоняют его каждые $42~{\rm muhy}$ ты. Определите интервал движения автобусов. Ответ выразите в минутах. Считаем, что человек и автобусы движутся равномерно.

Ответ:

36

Задача 3. #13 1D 1132

По шоссе в обоих направлениях с одинаковыми интервалами ходят рейсовые автобусы (скорости движения автобусов одинаковы). Человек бежит по обочине шоссе со скоростью $12~{\rm кm/ч}$ и замечает, что автобусы навстречу попадаются через каждые $4,76~{\rm ku}$ километра пути, а автобусы, едущие в том же направлении, в котором он бежит, обгоняют его каждые $34~{\rm ku}$ минуты. Определите интервал движения автобусов. Ответ выразите в минутах. Считаем, что человек и автобусы движутся равномерно.

Ответ:

28

Задача 4.

Задача 4. #14 ID 1133

Задана функция f(x) такая, что $f(0)=29\,892\,109$, а для любого натурального значения k справедливо равенство $f(0)+f(1)+\ldots+f(k)=(k+1)(3k+1)f(k)$. Найдите f(2021).

Ответ:

3,25

Задача 4. #15 ID 1134

Задана функция f(x) такая, что $f(1)=30\,356\,859$, а для любого натурального значения k справедливо равенство $f(1)+f(2)+\ldots+f(k)=rac{k(4k-1)}{3}f(k)$. Найдите f(1778).

Ответ:

12,6

Задача 4. #16 ID 1135

Задана функция f(x) такая, что $f(1)=21\,702\,919$, а для любого натурального значения k справедливо равенство $f(1)+f(2)+\ldots+f(k)=\dfrac{k(13-4k)}{9}f(k)$. Найдите f(2020).

Ответ:

15

Задача 4. #17 ID 1136

Задана функция f(x) такая, что $f(0)=5\,204\,186$, а для любого натурального значения k справедливо равенство $f(0)+f(1)+\ldots+f(k)=\dfrac{(k+1)(17-3k)}{17}f(k)$. Найдите f(2023).

Ответ:

33,8

Задача 5.

Задача 5. #18 ID 1138

За круглый стол сели 165 магистров двух орденов: ордена Лжецов (они всегда лгут) и ордена Рыцарей (они всегда говорят правду). Хотя бы по одному магистру из каждого ордена есть. Какое наибольшее число из сидящих за столом могло сказать: "Через 5 человек от меня есть магистр из ордена Рыцарей"?

Ответ:

165

Задача 5. #19 ID 1139

За круглый стол сели 205 магистров двух орденов: ордена Лжецов (они всегда лгут) и ордена Рыцарей (они всегда говорят правду). Хотя бы по одному магистру из каждого ордена есть. Какое наибольшее число из сидящих за столом могло сказать: "Через 9 человек от меня есть магистр из ордена Рыцарей"?

Ответ:

205

Задача 5. #20 ID 1140

За круглый стол сели 175 магистров двух орденов: ордена Лжецов (они всегда лгут) и ордена Рыцарей (они всегда говорят правду). Хотя бы по одному магистру из каждого ордена есть. Какое наибольшее число из сидящих за столом могло сказать: "Через 13 человек от меня есть магистр из ордена Рыцарей"?

Ответ:

175

Задача 5. #21 1D 1141

За круглый стол сели 159 магистров двух орденов: ордена Лжецов (они всегда лгут) и ордена Рыцарей (они всегда говорят правду). Хотя бы по одному магистру из каждого ордена есть. Какое наибольшее число из сидящих за столом могло сказать: "Через 14 человек от меня есть магистр из ордена Рыцарей"?

Ответ:

159