Все статьи

Подкатегории

Новости

488 статей

О Физтехе

1 подкатегорий

2 статей

Московский политех

2 подкатегорий

1 статей

Разное

16 статей

Статьи , страница 356

  • 2.1 ХИМИЧЕСКАЯ СВЯЗЬ

    Изучение природы химической связи между частицами вещества в соединении - одна из основных задач химии. Не зная природу взаимодействия атомов в веществе, нельзя понять причины многообразия химических соединений, представить механизм их образования, состав, строение и реакционную способность.

    Совокупность химически связанных атомов (например, молекула, кристалл) представляет собой сложную систему атомных ядер и электронов.

    Химическая связь осуществляется за счёт электростатического взаимодействия электронов и ядер атомов.

    Современные методы исследования позволяют экспериментально определить пространственное расположение атомных ядер в веществе. Данному пространственному размещению атомных ядер отвечает определенное распределение электронной плотности. Выяснить, как распределяется электронная плотность, по сути дела, и означает описать химическую связь в веществе.

    В зависимости от характера распределения электронной плотности в веществе различают три основных типа химической связи: ковалентную, ионную и металлическую. В "чистом" виде перечисленные типы связи проявляются редко. В большинстве соединений имеет место наложение разных типов связи.

    Важнейшей характеристикой химической связи является энергия, определяющая её прочность. Мерой прочности связи может служить количество энергии, затрачиваемое на ее разрыв. Для двухатомных молекул энергия связи равна энергии диссоциации молекул на атомы. `"E"_"дис"`, а следовательно, и энергия связи `"E"_"св"` в молекуле $$ {\mathrm{H}}_{2}$$ составляют $$ 435$$ кДж/моль. В молекуле фтора $$ {\mathrm{F}}_{2}$$ она равна $$ 159$$ кДж/моль, а в молекуле азота $$ {\mathrm{N}}_{2}$$- $$ 940$$ кДж/моль.

    Энергия связи напрямую коррелирует с длиной связи.

    Длина связи

    это межъядерное расстояние между химически связанными атомами. Она зависит от радиуса образующих связь атомов и от кратности самой связи.

    Угол между воображаемыми линиями, проходящими через ядра химически связанных атомов, называют валентным.

    Химическая связь в основном осуществляется так называемыми валентными электронами. У `s`- и `p`-элементов валентными являются электроны `s`- и `p`-орбиталей внешнего слоя, у `d`-элементов - электроны `s`-орбиталей внешнего слоя и `d`-орбиталей предвнешнего слоя, а у `f`-элементов − электроны `s`-орбиталей внешнего слоя и `f`-орбиталей предпредвнешнего слоя.

  • 2.2 Основные виды химической связи

    Взаимодействие валентных (наименее прочно связанных с ядром) электронов атомов приводит к образованию химических связей, т. е. к объединению атомов в молекулу. Образование молекулы из атомов возможно лишь тогда, когда оно приводит к выигрышу энергии; молекулярное состояние должно обладать меньшей энергией, чем атомное состояние, и, следовательно, быть устойчивее. Таким наиболее устойчивым является состояние атома, когда число электронов на внешнем электронном уровне максимальное, которое он может вместить; такой уровень называется завершенным и характеризуется наибольшей прочностью. Таковы электронные конфигурации атомов благородных газов. Значит, образование химической связи должно приводить к завершению внешнего электронного уровня атомов.

    Это взаимодействие валентных электронов, приводящее к образованию химической связи, может осуществляться по-разному. Различают три основных вида химической связи: ковалентную, ионную и металлическую.

    Рассмотрим механизм возникновения ковалентной связи на примере образования молекулы водорода (рис. 3):

    `"H" + "H" = "H"_2`;  `Delta"H"=-436` кДж/моль

    Реакция сопровождается высвобождением большого количества тепла, значит, она энергетически выгодна.

    Ядро свободного атома водорода окружено сферически симметричным электронным облаком, образованным `1s`-электроном. При сближении атомов до определенного расстояния происходит частичное перекрывание их электронных облаков (орбиталей).

    Обычно наибольшее перекрывание электронных облаков осуществляется вдоль линии, соединяющей ядра двух атомов.

    Ковалентная связь, которая образуется при перекрывании орбиталей вдоль линии, связывающей центры соединяющихся атомов, называется `sigma`-связью.


    Химическую связь можно изобразить:

    1) в виде точек, обозначающих электроны и поставленных у химического знака элемента:

    $$ \mathrm{H}·+·\mathrm{H}=\mathrm{H}:\mathrm{H}$$  где «`:`» означает `sigma`-связь;

    2) с помощью квантовых ячеек (орбиталей), как размещение двух электронов с противоположными спинами в одной молекулярной квантовой ячейке:

    3) часто, особенно в органической химии, ковалентную связь изображают черточкой, которая символизирует пару электронов: `"H"-"H"`.

    Ковалентная связь в молекуле хлора также осуществляется с помощью двух общих электронов или электронной пары:

    $$ :\underset{··}{\overset{··}{\mathrm{Cl}}}·+·\underset{··}{\overset{··}{\mathrm{Cl}}}:\to :\underset{··}{\overset{··}{\mathrm{Cl}}}:\underset{··}{\overset{··}{\mathrm{Cl}}}:$$

    В каждом атоме хлора `7` валентных электронов, из них `6` в виде неподеленных пар, а `1` - неспаренный электрон. Образование химической связи происходит именно за счёт неспаренных электронов каждого атома хлора. Они связываются в общую пару (или неподелённую пару) электронов. Если считать, что общая пара принадлежит обоим атомам, то каждый из них становится обладателем `8` электронов, т. е. приобретает устойчивую конфигурацию благородного газа. Поэтому ясно, что молекула хлора энергетически выгоднее, чем отдельные атомы.

    Примечание

    неподелённые пары остаются при своих атомах, а та что их связывает уже становится поделённой между двумя атомными центрами.

    Это также `sigma`-связь, но она образована перекрыванием `p`-электронных орбиталей по оси `x` (рис. 4).

    Если в реагирующих атомах имеется $$ 2$$ или $$ 3$$ неспаренных электрона, то могут образоваться не $$ 1$$, а $$ 2$$ или $$ 3$$ связи, т. е. общие электронные пары. Если между атомами возникла одна ковалентная связь, то она называется одинарной, если две -двойной, если три - тройной. Они обозначаются соответственно «`=`» или «`-=`» штрихами.

    Но хотя обозначение их одинаково, они отличаются по своим свойствам от одинарной `sigma`-связи. Чтобы пояснить разницу, рассмотрим образование тройной связи в молекуле азота `"N"_2`. В ней атомы имеют три общие пары электронов:

    $$ :\underset{·}{\overset{·}{\mathrm{N}}}·+·\underset{·}{\overset{·}{\mathrm{N}}}:\to \stackrel{··}{\mathrm{N}}⋮⋮\stackrel{··}{\mathrm{N}}$$

    Они образованы неспаренными `p`-электронами двух атомов азота:

    Орбитали `2p`-электронов расположены взаимно перпендикулярно, т. е. по осям `x`, `y` и `z`. Если перекрывание по оси `x` ведёт к образованию `σ`-связи (перекрывание вдоль линии, связывающей центры атомов), то перекрывание по осям `y` и `z` происходит по обе стороны от линии, связывающей центры соединяющихся атомов. Такая ковалентная связь, возникающая при перекрывании орбиталей по обе стороны от линии, связывающей центры соединяющихся атомов, называется `pi`-связью.

    Очевидно, что взаимное перекрывание орбиталей в случае `pi`-связи меньше, чем в случае `sigma`-связи, поэтому `pi`-связь всегда менее прочная, чем `sigma`-связь. Но в сумме три связи `(sigma_x+pi_y+pi_z)` придают молекуле $$ {\mathrm{N}}_{2}$$ большую прочность (рис. 5), поэтому молекула азота при нормальных условиях нереакционноспособна.

    Таким образом, если имеется ординарная связь, то это обязательно `sigma`-связь; если имеется двойная или тройная связь, то одна из составляющих её связей обязательно `sigma`-связь (как более прочная она формируется первая и разрушается последняя), а остальные -`pi`-связи. И `sigma`-, и `pi`-связи – это разновидности ковалентной связи.

    В общем случае ковалентной называется химическая связь, осуществляемая электронными парами.

    Различают неполярную и полярную ковалентную связь. Все рассмотренные выше молекулы образованы атомами одного и того же элемента, при этом двухэлектронное облако связи распределяется в пространстве симметрично относительно ядер обоих атомов, и электронная пара в одинаковой мере принадлежит обоим атомам. Такая связь называется неполярной ковалентной связью.

    Иной случай реализуется, если связь образуют два атома различных элементов с отличающимися величинами относительной электроотрицательно-сти, например $$ \mathrm{HCl}$$, $$ {\mathrm{H}}_{2}\mathrm{O}$$, $$ {\mathrm{H}}_{2}\mathrm{S}$$, $$ {\mathrm{NH}}_{3}$$ и др. В этом случае электронное облако связи смещено к атому с большей относительной электроотрицательностью. Такой вид связи называется полярной ковалентной связью.

    Например, полярная ковалентная связь образуется при взаимодействии атомов водорода и хлора (рис. 6).

    $$ \mathrm{H}·+·\underset{··}{\overset{··}{\mathrm{Cl}}}:\to \mathrm{H}:\underset{··}{\overset{··}{\mathrm{Cl}}}:$$

    Электронная пара смещена к атому хлора, так как относительная электроотрицательность хлора `(x=3)` больше, чем у водорода `(x=2,1)`.

    У молекул, содержащих неполярную связь, связующее облако распределяется симметрично между ядрами обоих атомов, и ядра в равной степени тянут его к себе. Электрический момент диполя таких молекул $$( {\mathrm{H}}_{2},{\mathrm{F}}_{2},{\mathrm{Cl}}_{2}$$ и др.`)` равен нулю. Молекулы, содержащие полярную связь, образованы связующим электронным облаком, смещенным в сторону атома с большей относительной электроотрицательностью.

    Описанные выше примеры образования ковалентной связи относятся к обменному механизму, когда каждый из соединяющихся в молекулу атомов предоставляет по электрону. Однако образование ковалентной связи может происходить и по донорно-акцепторному механизму. В этом случае химическая связь возникает за счёт двухэлектронного облака одного атома (спаренных электронов) и свободной орбитали другого атома. Атом, предоставляющий неподеленную пару, называется донором, а атом, принимающий её (т. е. предоставляющий свободную орбиталь) – акцептором.

    Механизм образования ковалентной связи за счёт двухэлектронного облака одного атома (донора) и свободной орбитали другого атома (акцептора) называется донорно-акцепторным; образованная таким путём ковалентная связь называется донорно-акцепторной или координационной связью.

    Рассмотрим в качестве примера механизм образования иона $$ {\mathrm{NH}}^{4+}$$. В молекуле аммиака атом азота имеет неподеленную пару электронов; у иона водорода свободна `1s`-орбиталь. При образовании катиона аммония двухэлектронное облако азота становится общим для атомов $$ \mathrm{N}$$ и $$ \mathrm{H}$$, т. е. оно превращается в молекулярное электронное облако. Таким образом, возникает четвертая ковалентная связь:

    Положительный заряд иона водорода становится общим (он рассредоточен между всеми атомами), а двухэлектронное облако (неподеленная электронная пара), принадлежавшее азоту, становится общим с водородом. По своим свойствам четвертая $$ \mathrm{N}-\mathrm{H}$$ связь в ионе $$ {\mathrm{NH}}_{4}^{+}$$ ничем не отличается от остальных трех. Поэтому донорно-акцепторная связь - это не особый вид связи, а лишь особый механизм (способ) образования ковалентной связи.

    Еще один тип связи - ионная связь - возникает, когда взаимодействуют электронные облака атомов, чьи относительные электроотрицательности резко отличаются. В этом случае общая электронная пара настолько смещена к одному из атомов, что практически переходит в его владение. При этом он образует отрицательно заряженный анион, а атом, отдавший электрон - катион. Например, атомы натрия и хлора резко отличаются по электроотрицательности (`x=0,9` и `x=3` соответственно), поэтому атом хлора очень сильно притягивает электрон, стремясь завершить свой внешний электронный уровень, а атом натрия охотно его отдаёт, поскольку ему для получения устойчивой конфигурации внешнего слоя удобнее отдать единственный валентный электрон:

    $$ \mathrm{Na}\left(1{s}^{2}2{s}^{2}2{p}^{6}3{s}^{1}\right)–е={\mathrm{Na}}^{+}\left(1{s}^{2}2{s}^{2}2{p}^{6}\right)$$

    $$ \mathrm{Cl}\left(1{s}^{2}2{s}^{2}2{p}^{6}3{s}^{2}3{p}^{5}\right)+е={\mathrm{Cl}}^{-}\left(1{s}^{2}2{s}^{2}2{p}^{6}3{s}^{2}3{p}^{6}\right)$$.

    Электронная оболочка атома натрия превратилась в устойчивую оболочку атома неона, а оболочка хлора - в устойчивую оболочку другого инертного газа - аргона. Между ионами $$ {\mathrm{Na}}^{+}$$ и $$ {\mathrm{Cl}}^{-}$$, несущими разноименные заряды, возникают силы электростатического притяжения, в результате чего образуется соединение $$ \mathrm{NaCl}$$.

    Химическая связь между ионами, возникающая в результате их электростатического притяжения, называется ионной связью.

    Ионные соединения образуют атомы элементов, резко отличающихся по электроотрицательности, например атомы элементов главных подгрупп $$ \mathrm{I}$$ и $$ \mathrm{II}$$ и групп с элементами главных подгрупп $$ \mathrm{VI}$$ и $$ \mathrm{VII}$$ групп.

    Таким образом, между механизмами возникновения ковалентной и ионной связей нет принципиального различия. Они различаются лишь степенью поляризации (смещения) общих электронных пар. Поэтому можно рассматривать ионную связь как предельный случай полярной ковалентной связи.

    Вместе с тем надо помнить о важных отличиях ионной связи от ковалентной. Ионная связь характеризуется ненаправленностью в пространстве (каждый ион может притягивать ион противоположного знака по любому направлению) и ненасыщаемостью (взаимодействие ионов не устраняет способность притягивать или отталкивать другие ионы). Вследствие ненаправленности и ненасыщаемости ионные соединения в твёрдом состоянии представляют собой ионную кристаллическую решётку, в которой каждый ион взаимодействует не с одним, а со многими ионами противоположного знака; например, в решётке хлорида натрия катион натрия окружён шестью хлорид-анионами и наоборот. Связи между ионами многочисленны и прочны, поэтому вещества с ионной решёткой тугоплавки, малолетучи и обладают сравнительно высокой твёрдостью. При плавлении ионных кристаллов прочность связи между ионами уменьшается, и расплавы их проводят электрический ток. Ионные соединения, как правило, хорошо растворяются в воде и других полярных растворителях.

    В то же время ковалентная связь отличается насыщаемостью (т. е. способностью атомов  образовывать ограниченное  количество  ковалентных связей, определяемое числом неспаренных электронов) и направленностью (определённой пространственной структурой молекул, которой мы коснёмся ниже).

    Твёрдые вещества, состоящие из молекул (полярных и неполярных), образуют молекулярные кристаллические решётки. Молекулы в таких решётках соединены сравнительно слабыми межмолекулярными силами, поэтому вещества с молекулярной решёткой имеют малую твёрдость, низкие температуры плавления, они плохо растворимы в воде, а их растворы почти не проводят электрический ток. Число неорганических веществ с молекулярной кристаллической решёткой невелико: лёд, твёрдый оксид углерода `("IV")` («сухой лёд»), твёрдые галогеноводороды и простые вещества, но зато большинство кристаллических органических соединений имеют молекулярную решётку.

    Если же в узлах решётки располагаются атомы, соединённые прочными ковалентными связями, то такие вещества имеют высокие температуры плавления, прочность и твёрдость, они практически нерастворимы в жидкостях.

    Характерный пример вещества с атомной кристаллической решёткой - алмаз; она характерна также для твёрдого бора, кремния, германия и соединений некоторых элементов с углеродом и кремнием.

    Особый тип решётки в твёрдом состоянии образуют металлы. В узлах такой металлической кристаллической решётки находятся катионы металлов, а между ними - отрицательно заряженный «электронный газ». Атомы металлов в решётке упакованы так тесно, что валентные орбитали соседних атомов перекрываются, и электроны получают возможность свободно перемещаться из орбиталей одного атома в орбитали других атомов, осуществляя связь между всеми атомами данного кристалла металла. Лишённые валентных электронов, атомы превращаются в катионы, а электроны, осуществляющие связь, перемещаются по всему кристаллу металла и становятся общими.

    Такой тип химической связи, которая осуществляется электронами, принадлежащими всем атомам одновременно, называется металлической связью. Металлическая связь характерна для металлов в твёрдом и жидком состоянии.

    Металлическая связь имеет некоторое сходство с ковалентной, поскольку и в ее основе лежит обобществление валентных электронов. Однако при ковалентной связи эти электроны находятся вблизи соединенных атомов и прочно с ними связаны, тогда как при металлической связи электроны свободно перемещаются по всему кристаллу и принадлежат всем его атомам. Именно поэтому кристаллы с ковалентной связью хрупки, а с металлической – пластичны, т. е. без разрушения изменяют форму, прокатываются в листы, вытягиваются в проволоку. Наличие свободных электронов придает кристаллам металлов непрозрачность, высокую электрическую проводимость, теплопроводность.

    Иногда в соединениях мы встречаемся с особой формой химической связи – так называемой водородной связью. Она менее прочна, чем уже рассмотренные виды, и может считаться дополнительной связью к уже существующим ковалентным.

    Водородная связь возникает между атомом водорода в соединении и сильно электроотрицательным элементом с малыми размерами - фтором, кислородом, азотом, реже хлором и серой.

    Водородную связь обозначают точками, подчёркивая тем самым её сравнительную слабость (примерно в $$ 15–20$$ раз слабее ковалентной).

    Водородная связь весьма распространена и играет важную роль при ассоциации молекул, в процессах кристаллизации, растворения, образования кристаллогидратов, электролитической диссоциации и других важных физико-химических процессах.

    Молекула воды может образовывать четыре водородные связи, так как имеет два атома водорода и две несвязывающие электронные пары:

    Эта способность обусловливает строение и свойства воды и льда.

    Вода является жидкостью, хотя более тяжелый сероводород - полный электронный аналог воды - газ. Молекулы воды образуют между собой водородные связи, что увеличивает плотность вещества в жидком состоянии и его температуру кипения. Между молекулами сероводорода подобных связей не возникает из-за большого радиуса и сравнительно малой электро-отрицательности атома серы.

    При замерзании количество водородных связей между молекулами воды становится максимальным. Строго ориентируясь относительно друг друга, они образуют правильные шестиугольники. Образованные ими канальцы заполнены воздухом, поэтому плотность льда меньше плотности воды (рис. 7).

    Водородная связь приводит к образованию димеров муравьиной и уксусной кислот, устойчивых в газообразном и жидком состоянии:

    Благодаря водородной связи фтороводород `"HF"` в обычных условиях суще-ствует в жидком состоянии (`"t"_"кип"=19,5^@"C"`), а плавиковая кислота диссоциирует с образованием как фторид-аниона `"F"^−`, так и гидродифторид-аниона $$ {\mathrm{HF}}_{2}^{-}$$.

    Важную роль играют водородные связи в химии процессов жизнедеятельности, поскольку они распространены в молекулах белков, нуклеиновых кислот и других биологически важных соединений.

  • 2.3 Пространственная структура молекул

    Одним из важнейших свойств ковалентной связи является её направленность. Она определяет пространственную структуру молекул. Если в молекуле имеется больше одной ковалентной связи, то двухэлектронные облака связей вступают во взаимодействие друг с другом. Представляя собой заряды одного знака, они отталкиваются друг от друга, стремясь занять такое положение в пространстве, когда их взаимное отталкивание будет минимальным. Если в первом приближении считать отталкивание всех облаков одинаковым, то в зависимости от числа взаимодействующих облаков (связей) наиболее выгодным расположением будет:

      для `2` облаков - линейное расположение,

      для `3` облаков - плоский треугольник,

      для `4` облаков - тетраэдр,

      для `5` облаков - тригональная бипирамида,

      для `6` облаков - октаэдр.

      Это наиболее распространенные геометрические формы многоатомных молекул (рис. 8).

    Часто в образовании связей участвуют различные электроны, например `s` и `p`-электроны. Казалось бы, образующиеся связи тоже должны быть неравноценными. Однако опыт показывает, что все связи одинаковы. Теоретическое обоснование этого факта было предложено Слейтером и Полингом, которые ввели понятие гибридизации атомных орбиталей. Они показали, что при участии в образовании связей нескольких различных орбиталей, незначительно отличающихся по энергии, можно заменить их тем же количеством одинаковых орбиталей, называемых гибридными. При этом орбитали смешиваются и выравниваются по энергии. Изменяется и первона-чальная форма электронных облаков: гибридные орбитали асимметричны и сильно вытянуты по одну сторону от ядра.

    Если гибридизуются две орбитали - `s`- и `p`- - тип гибридизации так и называется: `sp`-гибридизация. Он реализуется, например, в молекуле $$ {\mathrm{BeCl}}_{2}$$:

    В этом соединении атому бериллия нужно образовать две связи с атомами хлора. Он переходит в возбужденное состояние и его электронная пара, находящаяся на `2s`-орбитали, распаривается:

    Орбитали, занятые валентными электронами, гибридизуются по типу `sp`-гибридизации, в результате чего изменяется их первоначальная форма, они становятся одинаковыми как по форме, так и по энергии, и в таком состоянии способны образовывать более прочные связи за счёт наиболее полного перекрывания с `p`-орбиталями атомов хлора:

    Таким образом, геометрия этой молекулы - линейная, валентный угол связи `180^@`.

    Однако нужно отметить, что для данного соединения употреблять термин «молекула» можно только тогда, когда хлорид бериллия находится в газообразном состоянии.

    Рассмотрим пример `sp^2`-гибридизации. При образовании молекулы хлорида бора $$ {\mathrm{BCl}}_{3}$$ в результате возбуждения `2s`-электронов атома бора три орбитали смешиваются (гибридизируются) с образованием трёх одинаковых `sp^2`-гибридных орбиталей, которые и образуют три связи с валентными электронами трёх атомов хлора.

    `s+p+p->3sp^2`

    `3sp^2("B")+p("Cl")+p("Cl")+p("Cl")->3` ковалентные связи `"B"-"Cl"`.

    Поскольку три гибридные $$ s{p}^{2}$$-орбитали расположены под углом `120^@` друг к другу в одной плоскости, то образующаяся молекула $$ {\mathrm{BCl}}_{3}$$ имеет вид плоского равностороннего треугольника с атомом `"B"` в центре. Угол между связями составляет `120^@`, все атомы лежат в одной плоскости (рис. 9).

    Четыре $$ s{p}^{3}$$-гибридных облака определят тетраэдрическое строение молекулы с валентными углами `109,5^@`, например в молекуле метана $$ {\mathrm{CH}}_{4}$$ (рис.10).

    Существуют и другие виды гибридизации, в частности, с участием `d`-электронов. Например, $$ s{p}^{3}d$$-гибридизация приводит к структуре тригональной бипирамиды, а $$ s{p}^{3}{d}^{2}$$-гибридизация формирует октаэдрическую структуру молекулы.

  • 2.4 Строение электронных оболочек атомов, молекул и химические свойства веществ

    Для химической характеристики вещества наиболее важны его кислотно-основные и окислительно-восстановительные свойства. Они напрямую связаны со строением молекулы.

    Способность молекулы вступать в кислотно-основные реакции, т. е. проявлять свойства кислоты или основания, также зависит от полярности связи. Например, если рассматривать вещества, образующие связи $$ \mathrm{R} –\mathrm{O} –\mathrm{H}$$, можно проследить влияние заместителя `"R"` на свойства группы $$ \mathrm{O}–\mathrm{H}$$. По мере роста полярности связи $$ \mathrm{R}-\mathrm{O}$$ в ряду $$ \mathrm{N}–\mathrm{O}$$, $$ \mathrm{Zn}–\mathrm{O}$$, $$ \mathrm{Na}–\mathrm{O}$$ прочность её ослабевает, поэтому усиливаются основные свойства и снижаются кислотные свойства соединений: сравните $$ {\mathrm{O}}_{2}\mathrm{NOH}$$ (сильная азотная кислота, так как связь $$ \mathrm{N}-\mathrm{O}$$ менее полярна, чем $$ \mathrm{H}-\mathrm{O}$$) – $$ \mathrm{Zn}(\mathrm{OH}{)}_{2}$$ (это амфотерное соединение, поскольку связи $$ \mathrm{O}–\mathrm{H}$$ и $$ \mathrm{Zn}–\mathrm{O}$$ близки по полярности) - $$ \mathrm{NaOH}$$ (сильное основание, так как связь $$ \mathrm{Na}-\mathrm{O}$$ полярнее, чем связь $$ \mathrm{O}-\mathrm{H}$$).

    Наряду с полярностью связи реакционная способность зависит и от ее длины. Так, если рассмотреть однотипные соединения $$ \mathrm{R}-\mathrm{H}$$, где $$ \mathrm{R}$$ - атом галогена, то в ряду $$ \mathrm{HF}–\mathrm{HCl}–\mathrm{HBr}–\mathrm{HI}$$ растет размер атома галогена и ослабляется его связь с атомом водорода, что проявляется в усилении кислотных свойств, т. е. способности отщеплять катион водорода $$ {\mathrm{H}}^{+}$$ при диссоциации в водном растворе.

    Окислительно-восстановительная способность молекул, т. е. склонность их вступать в реакции, связанные с изменением степени окисления, также зависит от состояния атомов, образующих молекулы. Атомы, имеющие недостаток электронов (т. е. находящиеся в высшей положительной степени окисления), стремятся их приобрести, поэтому они будут проявлять окислительные свойства. Атомы, имеющие избыток электронов (т. е. находящиеся в низшей отрицательной степени окисления), стремятся их отдать, поэтому они будут проявлять восстановительные свойства.

    В зависимости от степени окисления входящих в соединение атомов будет изменяться заполнение их электронных оболочек. Поэтому в разных степенях окисления один и тот же атом может проявлять свойства окислителя или восстановителя. Например, марганец в степени окисления $$ +7$$ является сильным окислителем, а в степени окисления $$ +2$$ - восстановителем.

    Геометрия молекул также оказывает влияние на реакционную способность отдельных атомов или групп атомов. Ее учёт необходим при рассмотрении свойств сложных молекул, в которых определенные группы атомов могут затруднять приближение реагирующих молекул к атомам, расположенным ближе к центру молекулы.

    Таким образом, строение электронной оболочки атома предопределяет возможность образования им химических связей и свойства этих связей, т. е. химические свойства образовавшегося соединения. Но строение электронной оболочки зависит от положения атома в периодической таблице элементов. Поэтому между положением элемента в Периодической системе и химическими свойствами его соединений прослеживается четкая связь.

    Положение элемента в периодической системе (номер группы и периода) позволяет оценить число валентных электронов, способных принимать участие в образовании химических связей. Степень завершённости внешнего энергетического уровня позволяет предсказать склонность атома к присоединению или отдаче электронов. Таким образом, возможно предвидеть как максимальную валентность данного элемента, так и наиболее характерные степени окисления его в соединениях и, следовательно, характерные формулы соединений. Анализ степени ионности образующихся связей с другими элементами позволяет предсказывать химическое поведение этих соединений.

    Возьмём для примера элемент №`15` - фосфор и попытаемся предсказать свойства его соединений исходя из его положения в периодической системе. Этот элемент находится в главной подгруппе $$ \mathrm{V}$$ группы и в `3` периоде. Конфигурация внешнего электронного слоя $$ 3{s}^{2}3{p}^{3}$$, т. е. фосфор имеет `5` валентных электронов. Число недостающих до завершения внешнего уровня электронов $$ \left(3\right)$$ меньше, чем число электронов, которые необходимо отдать, чтобы освободить внешний уровень $$ \left(5\right)$$. Поэтому атом фосфора будет охотнее принимать недостающие электроны, т. е. проявлять окислительную способность (неметаллические свойства).

    Наиболее устойчивыми будут соединения со степенью окисления фосфора $$ –3$$, в которых атом фосфора, приняв `3` электрона от партнеров по связям, завершит свой внешний уровень. Отрицательные степени окисления будут иметь соединения фосфора с менее электроотрицательными элементами: водородом и металлами. В степени окисления $$ –3$$ фосфор образует летучее водородное соединение формулы $$ {\mathrm{PH}}_{3}$$, которая характерна для элементов главной подгруппы $$ \mathrm{V}$$ группы. Разница электроотрицательностей фосфора и водорода невелика, поэтому в этом соединении будут слабополярные ковалентные связи, для которых нехарактерен разрыв с отщеплением катиона $$ {\mathrm{H}}^{+}$$, т. е. водные растворы этого соединения не будут проявлять свойства кислоты.

    В то же время при взаимодействии фосфора с более электроотрицательными элементами (галогенами, кислородом) он будет отдавать свои валентные электроны, приобретая положительные степени окисления. Фосфор имеет возможность распарить свои `2s`-электроны, поскольку на `3` энергетическом уровне есть свободные орбитали `d`-подуровня. Возбужденный атом фосфора имеет `5` неспаренных электронов и может образовать `5` ковалентных связей с более электроотрицательными атомами, т. е. его максимальная валентность равна `5`. Наиболее устойчивыми будут соединения в степенях окисления $$ +3$$ и $$ +5$$; они образуются при отдаче `3p`-электронов или всех `5` валентных электронов. В положительных степенях окисления фосфор будет образовывать оксиды $$ {\mathrm{P}}_{2}{\mathrm{O}}_{3}$$ и $$ {\mathrm{P}}_{2}{\mathrm{O}}_{5}$$. С водой эти оксиды дают соединения $$ {\mathrm{H}}_{3}{\mathrm{PO}}_{3}$$ и $$ {\mathrm{H}}_{3}{\mathrm{PO}}_{4}$$. Поскольку разница относительных электроотрицательностей `"O"` и `"H"` чем `"O"` и `"P"`, то связь $$ \mathrm{O}-\mathrm{H}$$ более полярна, чем связь $$ \mathrm{O}-\mathrm{P}$$, поэтому она будет разрываться легче с образованием катиона $$ {\mathrm{H}}^{+}$$. Значит, эти соединения будут проявлять свойства кислот, а следовательно, и и сами оксиды будут кислотными оксидами.

    Ввиду того, что фосфор занимает промежуточное положение между ярко выраженными металлами и неметаллами в ряду значений относительной электроотрицательности, для него нехарактерно образование ионных связей; связи его в соединениях неполярные или слабополярные ковалентные. На основании рассмотрения конкретных молекул можно определить их пространственную структуру.

  • Контрольные задания. Часть II Химическая связь



    Контрольные задания. Часть II Химическая связь


    За каждый правильный ответ – 2 балла. Всего за задание 12 баллов.


    1. С учётом одного из важнейших свойств ковалентной связи – насыщаемо-сти – предложите доводы, согласно которым существуют молекулы H2H_2 и F2F_2 , но не образуются H3H_3 и F3F_3.

    2.Какова стереометрия следующих гибритизаций орбиталий центрального атома Каким геометрическим формам соответствуют частицы с sp-,sp2-,sp3-,sp2d-,sp3d-,sp3d2-sp-, sp^2-, sp^3-, sp^2d-, sp^3d- , sp^3d^2- гибридизацией орбиталей центрального атома? Дайте про-странственное изображение этих форм.

    3. Известно, что в атомах бериллия и бора 2р-орбитали расположены вдоль осей х, y, z с углами между ними по 9090°. Почему молекула BeF2BeF_2 1линейная (а не угловая), а BF3BF_3 плоская, а не пирамидальная?

    4. Дайте полный ответ на вопрос: почему лёд замерзает на поверхности реки, а не около дна? В чем причина уникальных физических свойств воды?

    5. Укажите, какая кристаллическая решётка (атомная, молекулярная, ион-ная, металлическая) реализуется у следующих веществ, находящихся в твёр-дом агрегатном состоянии?

      Fe,Si,AgBr,I2,Cu,S8,CO2,MgCl2,C,NaI,BN,KNO3,NeFe, Si, AgBr, I_2, Cu, S_8, CO_2, MgCl_2, C, NaI, BN, KNO_3, Ne

    6. Известно, что существуют молекулы SiF4SiF_4 и СF4СF_4, однако ион SiF6-2SiF_6^{-2} есть, а СF62-СF_6^{2-}- нет. Почему?


















  • 1.1 Протоны. Нейтроны. Электроны. Изотопы

    Из курса химии средней школы вы знаете, что атом состоит из ядра и электронной оболочки. Ядро состоит из нуклонов - протонов и нейтронов, электронная оболочка - из электронов. Эти частицы называются элементарными.

    В целом атом электронейтрален, так как заряды ядра и электронной оболочки компенсируют друг друга: число протонов в ядре равно числу электронов в электронной оболочке.

    Таблица 1. Основные характеристики элементарных частиц

    Частица

    Символ

    Масса

    Заряд*

    кг

    а. е. м.

    Электрон

    `e^-`

    `9,109*10^(-31)`

    `1//1837`

    `–1`

    Протон

    `p^+`

    `1,673*10^(-27)`

    `1`

    `+1`

    Нейтрон

    `n^0`

    `1,675*10^(-27)`

    `1`

    `0`


    *    Величина заряда электрона и протона равна `1,60*10^(-19)` Кл.

    Масса атома в основном сосредоточена в ядре и определяется суммой масс протонов и нейтронов, т. к. электроны из-за своей малой массы на эту величину практически не влияют.

    Сумма масс протонов и нейтронов называется массовым числом. При обозначении элемента она ставится как левый верхний индекс: $$ {}_{7}{}^{14}\mathrm{N}$$.

    Заряд ядра

    важнейшая характеристика атома, лежащая в основе его современного определения.

    В Периодической системе Д.И. Менделеева порядковый номер элемента определяется именно зарядом ядра.

    При обозначении элемента он ставится как левый нижний индекс.

    Изотопы

    Атомы с одинаковым зарядом ядра могут иметь разное количество нейтронов, то есть разные массы. Разновидности атомов одного и того же химического элемента, имеющие одинаковый заряд ядра, но разные массы, называют изотопами.

    Изотопы одного и того же элемента имеют одинаковые химические свойства, так как масса атома не играет существенной роли непосредственно в формировании этих свойств.

  • § 1. Наука геометрия

    Одна из замечательных теорем геометрии, доказательство которой вам уже известно по учебнику, гласит: «сумма углов треугольника равна `180^@`». Как вы думаете, можно ли было установить этот факт экспериментально?


    Рис. 1 Рис. 2

    Предположим, что мы будем измерять угол, равный сумме углов треугольника, транспортиром. Нарисуем некоторый треугольник, приложим транспортир к одному из углов – углу `1`, отметим его величину, затем приложим транспортир к другому углу (рис. 1), отметим величину суммы двух углов, затем приложим транспортир к третьему углу. Мы обнаружим, что третья отметка придётся на `180^@`. Следует ли из наших измерений, что сумма углов рассмотренного треугольника точно равна `180^@`? А может быть больше на `1//10` градуса или меньше на `2//15` градуса? Такую разницу, как бы тщательно мы ни проводили измерения с помощью транспортира, заметить невозможно.

    Кроме того, любой нарисованный треугольник, можно сказать, имеет «дефект»: как бы тонок ни был карандаш, которым его рисовали, стороны треугольника, если рассмотреть рисунок в увеличительное стекло, предстанут перед нами широкими неровными полосами. Какой же угол мы измеряли? Поэтому сомнения в точности наших измерений ещё более возрастут, и вывод может быть сделан только такой: сумма углов треугольника на рис. 1 близка к 180°180\textdegree.

    Предположим, что аналогичные измерения мы провели в каждом из треугольников, изображённых на рис. 2, и получили такие же результаты. Тогда мы можем предположить, выдвинуть гипотезу, что в любом нарисованном треугольнике сумма углов близка к `180^@`. Но даже такую гипотезу проверить экспериментально не представляется возможным, т. к.пришлось бы провести измерения во всех разнообразных треугольниках, т. е. в бесконечном числе случаев, что, конечно, неосуществимо.

    Мы привели эти рассуждения, чтобы обратить ваше внимание на следующие важные моменты. Попытки экспериментально установить свойства фигур неосуществимы по ряду причин: из-за бесконечного разнообразия видов фигур, из-за «дефектности» самих фигур и, наконец, из-за неизбежных ошибок измерения.

    В науке геометрии рассматриваются не реальные, конкретные фигуры, вырезанные из картона, нарисованные на листе бумаги и т.п., а идеальные, как говорят, абстрактные фигуры, которые целиком описываются только своими определениями. Реальные треугольники имеют не только форму и размер, они могут быть сделаны из картона или жести, бумаги или дерева и т. п. Отвлекаясь от всех их свойств, кроме формы и размера, т. е. выделяя общее для всех таких фигур, приходят к представлению о геометрическом треугольнике как фигуре, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки.

    Только для абстрактных геометрических фигур удается установить ряд простых и важных свойств. Именно для абстрактных геометрических треугольников справедливо утверждение, что сумма углов в каждом из них равна `180^@`. Истинность этого утверждения, как и других утверждений, называемых теоремами, устанавливается методом строгих рассуждений, основанных на логике и вытекающих из ранее доказанных утверждений. Как вы сами убедились, эти рассуждения столь убедительны, что с ними соглашается всякий, рассмотревший их.

    Метод строгих геометрических доказательств, основанных на логике, когда одно утверждение вытекает из ранее установленного, является основным методом в геометрии. В этом смысле геометрию называют дедуктивной наукой, от латинского слова deductio – выведение.

    Если разобрать вывод, т. е. доказательство какой-нибудь геометрической теоремы, то он логически следует из ранее доказанных теорем. Для этих ранее доказанных теорем, в свою очередь, можно выделить те факты, из которых они выводятся и которые были установлены ранее.

    Но ведь есть какое-то первое утверждение, которое не вытекает из ранее доказанного, так как вообще нет теорем, которые уже были доказаны до этого. Это означает, что некоторые факты должны быть приняты без доказательства. Их называют аксиомами, от греческого αξιωμα\alpha\xi\iota\omega\mu\alpha – удостоенное, принятое положение.

    Так же обстоит дело с определениями геометрических объектов. Вводя новое определение, пользуются определениями и понятиями, которые уже были введены раньше. Но как быть с первым определением? Через что его определить, если еще нет понятий, определенных ранее? Отсюда следует, что некоторые геометрические понятия должны быть введены без каких-либо определений. Такие неопределяемые понятия называются основными. В изучаемом курсе геометрии таковы понятия точки, прямой, плоскости.

    Итак, все здание геометрии строится, во-первых, на основных неопределяемых понятиях, и, во-вторых, на аксиомах, в которых устанавливаются связи и взаимоотношения между первоначальными понятиями; затем с помощью определений вводятся новые понятия, для которых, исходя из первоначальных фактов, содержащихся в аксиомах, доказываются, выводятся с помощью логики, дальнейшие факты – теоремы.

    Подобное строение какой-нибудь области математики называют аксиоматическим. Таким образом, геометрия – аксиоматическая наука.

    Из всего сказанного вывод такой: хотите освоить науку геометрию (хотя бы в рамках школьной программы) – разберите аксиомы, учите определения и формулировки теорем, с которыми вас постепенно знакомит учебник, наизусть, как стихи. А умение рассуждать, доказывать, умение применять теорию в решении задач приходят постепенно. Этому способствуют разбор доказательств теорем из учебника (за две с лишним тысячи лет математики отобрали самые лучшие и простые доказательства – именно их вам приводят в учебнике), разбор решений характерных задач, овладение методами решений.

    Гипотеза – от греческого νπο\nu\pi o – под, внизу и ϑεσις\vartheta\varepsilon\sigma\iota\varsigma – положение, утверждение – предположительное суждение о закономерной связи явлений.

    Абстракция – от латинского abstractio – отвлечение.

    Теорема – от греческого ϑεωρεω\vartheta\varepsilon\omega\rho\varepsilon\omega рассматриваю.

  • § 2. Признаки равенства треугольников. Равнобедренный треугольник. Прямоугольный треугольник. Теоремы об углах.

    Для повторения мы выбрали эти темы. Приводить доказательство теорем, содержащихся в учебнике, не будем, лишь напомним основные теоремы. Также обсудим некоторые важные вопросы, приведём примеры решения задач, докажем несколько дополнительных теорем (Всякое утверждение, сформулированное в общем виде и доказанное, есть теорема, но их так много и они часто столь просты, что наполнять ими учебник не имеет смысла, а вот учиться на них применению основных теорем, умению рассуждать, делать выводы, - очень полезно). Такие теоремы мы будем называть леммами.

    В учебнике доказаны три признака равенства треугольников.

    Первый признак: по двум сторонам и углу между ними.

    Второй признак: по стороне и прилежащим к ней углам.

    Третий признак: по трём сторонам.

    Мы напомнили их краткую формулировку.

    Отметим также важный момент. Запись равенства треугольников $$ △ABC=△KPM$$ означает: $$ \angle A=\angle K$$, $$ \angle B=\angle P$$, $$ \angle C=\angle M$$, $$ AB=KP$$, $$ AC=KM$$ и $$ BC=PM$$, т. е. соответствующие вершины стоят на соответствующих местах.

    Когда это удобно, будем использовать обозначения: в треугольнике $$ ABC$$ углы обозначать $$ A$$, $$ B$$ и $$ C$$,

    $$ a$$, $$ b$$ и $$ c$$ – стороны, противолежащие углам $$ A$$, $$ B$$ и $$ C$$,

    $$ {h}_{a}$$, $$ {h}_{b}$$, $$ {h}_{c}$$ – высоты к сторонам $$ a$$, $$ b$$ и $$ c$$,

    $$ {m}_{a}$$, $$ {m}_{b}$$, $$ {m}_{c}$$ – медианы к сторонам $$ a$$, $$ b$$ и $$ c$$.

    Покажем, как важно точно помнить формулировки теорем. Пусть треугольники $$ ABC$$ и `A^'B^'C^'` таковы, что `b^'=b`, `c^'=c` и `/_B^'=/_B`. Будут ли эти треугольники равны? Есть первый признак равенства «по двум сторонам и углу», но «углу между ними», а здесь какой угол? Нарисуем некоторый треугольник $$ ABC$$ (рис. 3) и отметим стороны и угол, о которых идёт речь: это не тот угол!


    Рис. 3 Рис. 4 Рис. 5


    Приведём пример треугольника `A^'B^'C^'` (рис. 5), который не равен треугольнику $$ ABC$$ `(B^'C^'!=BC)`, хотя `c=c^'`, `b=b^'` и `/_B=/_B^'`.

    Рисунок 4 поясняет, как треугольник `A^'B^'C^'` получается из треугольника $$ ABC$$.

    Приведём ещё пример (рис. 6), который показывает, что слова «прилежащим к стороне» чрезвычайно важны в формулировке второго признака равенства треугольников.

    Здесь $$ AB={A}_{1}{B}_{1}$$, $$ \angle C=\angle {A}_{1}=90°$$, $$ \angle B=\angle {B}_{1}=45°$$


    Рис. 6


    (Сторона одного треугольника равна стороне другого, два угла первого равны двум углам второго).

    Но равные углы не прилежат к равным сторонам и `DeltaABC!=DeltaA_1B_1C_1`. Как легко видеть, треугольник $$ ABC$$  равен треугольнику $$ {A}_{1}{B}_{1}D$$  который составляет часть треугольника $$ {A}_{1}{B}_{1}{C}_{1}$$.

    Пример 1

    Треугольники $$ ABC$$ и `A^'B^'C^'`  таковы, что равны их медианы, проведённые из вершин `B` и `B^'` и  равны углы, которые образуют эти медианы со сторонами $$ a$$ и $$ c$$ и со сторонами `a^'` и `c^'` соответственно. Доказать, что `DeltaABC=DeltaA^'B^'C^'`.

    Решение

    При доказательстве мы рисуем треугольники, о которых идёт речь, в наиболее удобном положении (см. рис. 7), что возможно по аксиоме «перемещения треугольника», иначе называемой   аксиомой  «существования треугольника,  равного данному».

    Рис. 7

    Итак, $$ AM=CM$$, `A^'M^'=C^'M^'`, `BM=B^'M^'` равные углы $$ ABM$$ и `A^'B^'M^'` обозначим $$ \alpha $$ вторую пару равных углов обозначим $$ \phi $$.

    1. В треугольнике $$ ABC$$ продолжим медиану $$ BM$$ за точку $$ M$$  и на прямой $$ BM$$  отложим отрезок $$ MD=BM$$.  Рассмотрим треугольники $$ ABM$$ и $$ CDM$$.

    Имеем:  $$ AM=CM$$ (т. к. `BM` – медиана),

                    $$ BM=DM$$ (по построению),

                    $$ \angle AMB=\angle CMD$$ (как вертикальные).

    По первому признаку равенства треугольников $$ △ABM= △CDM$$  В равных треугольниках против равных углов лежат равные стороны $$ (AB=CD)$$  и против равных сторон лежат равные углы (поэтому $$ \angle CDM=\alpha $$).

    Аналогичное построение осуществим с треугольником `A^'B^'C^'` получим, что `A^'B^'=C^'D^'` и `/_C^'D^'M^'=alpha`.

    2. Теперь рассмотрим треугольники $$ BCD$$ и `B^'C^'D^'`. Так как `BD=B^'D^'`  и прилежащие к отрезкам $$ BD$$ и `B^'D^'` углы соответственно равны $$ \phi $$ и $$ \alpha $$, то `Delta BCD=DeltaB^'C^'D^'` по второму признаку равенства. Из этого равенства следует `CD=C^'D^'` (т. е. `c=c^'`) и `BC=B^'C^'` (т. е. `a=a^'`).

    3. Вновь рассматриваем треугольники $$ ABC$$ и `A^'B^'C^'` Угол при вершине $$ B$$ равен углу при вершине `B^'` и равны стороны, образующие этот угол. По первому признаку равенства `Delta ABC=Delta A^'B^'C^'`.

    Пример 2

    На сторонах $$ AB$$  и $$ AD$$ квадрата $$ ABCD$$  во вне его построены равносторонние треугольники $$ AKB$$ и $$ AMD$$ (рис. 8). Доказать, что треугольник  $$ KCM$$ также равносторонний.

    Решение

    Обозначим сторону квадрата $$ a$$ очевидно, что стороны равносторонних треугольников тоже равны $$ a$$. Отметим равные стороны в треугольниках $$ KBC$$, $$ CDM$$ и $$ KAM$$.

    Рис. 8

     

    $$ △KBC=△CDM$$ по первому признаку, т. к. $$ \angle KBC=\angle CDM=90°+60°=150°$$.

    Пусть прямая $$ CA$$ пересекает отрезок $$ KM$$  в точке $$ F$$.  

    $$ \angle KAC=\angle MAC=60°+45°=105°$$ 

    Смежные с ними углы $$ KAF$$ и $$ MAF$$ равны $$ 180°-105°=75°$$ значит `/_RAM=150^@`, и $$ △KAM=△KBC$$   Делаем вывод:  $$ KC=CM=KM$$ т. е. треугольник $$ KCM$$ – равносторонний.

    (В решении использовано утверждение, что все углы равностороннего треугольника равны $$ 60°$$). 

    II. Равнобедренный треугольник.

    В учебнике доказаны теоремы:

    Теоремы

    Т1. В равнобедренном треугольнике углы при основании равны.

    Т2. В равнобедренном треугольнике медиана, проведённая к основанию, является высотой и биссектрисой.

    Т3. (Признак равнобедренного треугольника). Если два угла в треугольнике равны, то он равнобедренный.

    Обратим внимание, что признаком фигуры $$ A$$  называется теорема с формулировкой: «если имеет место … , то это фигура $$ A$$». Сформулируем следующие, часто применяемые в задачах, признаки равнобедренного треугольника:

    признаки равнобедренного треугольника

    а) если в треугольнике высота является медианой, то треугольник равнобедренный;

    б) если в треугольнике высота является биссектрисой, то треугольник равнобедренный;

    в) если в треугольнике медиана является биссектрисой, то треугольник равнобедренный.

    Доказательство

    Доказательство признака а) вполне простое. Если $$ BD\perp AC$$ и $$ AD=DC$$ (рис. 9), то $$ △ADB=△CDB$$ по двум сторонам ( $$ BD$$ – общая, $$ AD=DC$$) и углу между ними ($$ \angle ADB$$ смежный с $$ \angle BDC=90°$$  поэтому $$ \angle ADB=90°$$ ).

    Из равенства треугольников следует $$ AB=BC$$ и треугольник $$ ABC$$ по определению равнобедренный.

    Рис. 9 Рис. 10

    Доказательство признака  б) Столь же простое,  докажите  его  самостоятельно.

    Докажем признак  в) Пусть в треугольнике $$ ABC$$ биссектриса $$ BM$$ является медианой: $$ AM=MC$$ (рис. 10). На продолжении биссектрисы $$ BM$$ отложим отрезок $$ MD$$ равный $$ BM$$  Треугольники $$ ABM$$ и $$ CDM$$ равны по первому признаку: у них углы при вершине $$ M$$ равны, как вертикальные,  и $$ AM=CM$$, $$ BM=DM$$   Из равенства треугольников следует

    $$ CD=AB$$                                                                               (1) 

    и $$ \angle CDM=\angle ABM$$. Но $$ \angle ABM=\angle CBM$$ поэтому $$ \angle CDM=\angle CBM$$, т. е.  в  треугольнике $$ BCD$$ углы  при основании $$ BD$$  равны. По признаку Т3 этот треугольник равнобедренный: $$ BC=CD$$ Отсюда и из (1) заключаем: $$ BC=AB$$. Утверждение доказано.

    В следующем примере применяются признак параллельности прямых и две теоремы об углах треугольника (и следствия этих теорем):

    Теоремы

    Т. Сумма углов треугольника равна $$ 180°$$.

    Т. Внешний угол треугольника равен сумме двух внутренних углов, не
    смежных с ним.

    Пример 3

    Точка $$ K$$ лежит на основании $$ AC$$ равнобедренного треугольника $$ ABC$$ ($$ AB=BC$$). Через точку $$ K$$ проведена прямая, пересекающая прямую $$ AB$$ и отрезок $$ BC$$, при этом образовалось два равнобедренных треугольника (рис. 11).

    Найти углы треугольника $$ ABC$$.



    Решение

    Обозначим точки пересечения $$ M$$ и $$ D$$.

    1. Углы при основании равнобедренного треугольника равны и они острые, значит угол $$ MAK$$ – тупой.

    2. В треугольнике может быть только один тупой угол, значит, если треугольник $$ MAK$$ равнобедренный, то равными могут быть только углы при вершинах $$ M$$ и $$ K$$. Обозначим их $$ \alpha $$.

    3. $$ \angle BAK=2\alpha $$ (как внешний угол треугольника $$ MAK$$), $$ \angle BCA=2\alpha $$ (углы при основании равнобедренного треугольника равны) и $$ \angle DKC=\alpha $$ ($$ \angle DKC=\angle AKM$$ как вертикальные).

    Расставим углы.

    4. Треугольник $$ KDC$$ по условию равнобедренный. Возможны, вообще говоря, два случая: а) $$ \angle KDC=\alpha $$ и б) $$ \angle KDC=2\alpha $$.

    а) Если $$ \angle KDC=\alpha $$, то накрест лежащие углы при секущей $$ MD$$ равны $$ \alpha $$; это по теореме означало бы параллельность прямых $$ MB$$ и $$ CB$$, что противоречит их пересечению. Этот случай невозможен.

    б) Если $$ \angle KDC=2\alpha $$, то по теореме о сумме углов треугольника (для треугольника $$ KDC$$) $$ \alpha +2\alpha +2\alpha =180°$$ ,$$ \alpha =36°$$. Находим углы треугольника $$ ABC$$ :$$ \angle A=\angle C=2\alpha =72°$$ , $$ \angle B=180°-2·\angle A=36°$$. 

    III. Для прямоугольных треугольников справедливы признаки равенства (их надо уметь доказывать):

    1. по двум катетам;

    2. по гипотенузе и катету;

    3. по гипотенузе и острому углу;

    4. по катету и острому углу.

    Применяя признаки равенства прямоугольных треугольников, докажем ещё один признак равнобедренного треугольника:

    Пример 4

    Доказать, что если две высоты треугольника равны, то он равнобедренный.

    Решение

    Пусть высоты $$ A{A}_{1}$$ и $$ C{C}_{1}$$ треугольника $$ ABC$$ равны друг другу. 

    1. (Треугольник остроугольный. Обе высоты внутри треугольника, (рис. 12а). Прямоугольные треугольники $$ A{A}_{1}B$$ и $$ C{C}_{1}B$$ равны по катету ($$ A{A}_{1}=C{C}_{1}$$) и противолежащему острому углу (угол $$ B$$ – общий). Тогда
    равны их гипотенузы $$ AB=CB$$, а это и означает, что треугольник $$ ABC$$ равнобедренный.

    Рис. 12a Рис. 12б

    Рис. 12в

    2. (Треугольник тупоугольник, угол $$ В$$ тупой. Обе высоты вне треугольника, рис. 12б). Прямоугольные треугольники $$ A{A}_{1}B$$ и $$ C{C}_{1}B$$ имеют равные катеты $$ A{A}_{1}=C{C}_{1}$$ и равные противолежащие углы $$ \angle AB{A}_{1}=\angle CB{C}_{1}$$ как вертикальные . Треугольники равны, равны их гипотенузы $$ AB=CB$$. Треугольник $$ ABC$$ – равнобедренный.
    3. Случай равенства двух высот равнобедренного треугольника, одна из которых внутри треугольника, другая – вне треугольника, невозможен. Действительно, если $$ B{B}_{1}=A{A}_{1}=h$$ (рис. 12в), то $$ △A{A}_{1}B=△B{B}_{1}A$$ по гипотенузе (у них общая $$ AB$$) и катету $$ A{A}_{1}=B{B}_{1}$$. Тогда $$ \angle BA{A}_{1}=\angle AB{B}_{1}$$ (обозначен $$ \alpha $$ ), т. е. накрест лежащие углы при секущей $$ AB$$ равны и прямые $$ A{A}_{1}$$ и $$ {B}_{1}B$$ параллельны, что неверно.
    4. Если угол $$ B$$ – прямой, то высоты из вершин $$ A$$ и $$ C$$ совпадают с катетами $$ AB$$ и $$ CB$$. 
    При равных высотах равны и катеты, треугольник $$ ABC$$ – равнобедренный. 

    Пример 5. (Лемма о медиане прямоугольного треугольника)

    Доказать, что медиана прямоугольного треугольника, проведённая из вершины прямого угла, равна половине гипотенузы.

    Решение

    Рис. 13

    Точка $$ M$$ – середина гипотенузы $$ AB$$ прямоугольного треугольника $$ ABC$$ (рис. 13). Проведём через точку $$ M$$ прямую $$ MK\perp AC$$.

    Из $$ BC\perp AC$$ и $$ MK\perp AC$$ следует $$ BC\parallel MK$$.

    Из параллельности прямых $$ BC$$ и $$ MK$$ и равенства отрезков $$ BM$$ и $$ MA$$ по теореме Фалеса следует $$ CK=KA$$.

    В прямоугольных треугольниках $$ CMK$$ и $$ AMK$$ катет $$ MK$$ общий и, как установили, равны катеты $$ CK$$ и $$ AK$$. Эти треугольники равны, значит, равны и их гипотенузы, т. е. $$ CM=AM$$, или $$ CM={\displaystyle \frac{1}{2}}AB$$.

    Дополнение

    Дополнение. Для многих учащихся при решении задач возникает проблема: с чего начать? С рисунка! В геометрической задаче очень важен рисунок, он должен отвечать условиям задачи, быть наглядной формой их записи.

    Рис. 14a Рис. 14б

    Например, в задаче рассматривается равнобедренный треугольник. Его можно нарисовать по-разному (рис. 14а и 14б), поэтому сначала рисуют на черновике, от руки, и из других условий определяют вид треугольника.

    Если сказано, что один отрезок в два раза длиннее другого, – отразите это на рисунке; если какие-то прямые параллельны – так и рисуйте, т. е. после таких рассмотрений делаете чёткий хороший рисунок, отвечающий условиям задачи.

    Хороший рисунок – помощник в решении, особенно если на нём Вы отмечаете равные углы, перпендикулярность отрезков, отношение длин и т. п. и ставите данные задачи. Посмотрите, например, на рис. 7, 8, 11 и подумайте, как рисунок помогает в решении.

    Пример 6

    В треугольнике $$ ABC$$ медиана $$ BM$$ перпендикулярна биссектрисе $$ AD$$. Найти длину стороны $$ AB$$, если $$ AC=6$$.

    Решение

    △ 1. Подумаем, как построить рисунок. Возьмём луч $$ AK$$ (рис. 15) и отложим от точки $$ A$$ какие-то равные углы (т. е. считаем, что биссектриса $$ AD$$ лежит на этом луче).

    Рис. 15

    Выберем точку $$ B$$, проведём через точку $$ B$$ прямую, перпендикулярно $$ AK$$ и отметим точку $$ M$$, $$ BM$$ – медиана, поэтому отложим отрезок $$ MC=MA$$. Треугольник $$ ABC$$ – тот, что нужен: $$ AD$$ – биссектриса, $$ BM$$ – медиана, $$ AD\perp BM$$.

    2. Решение очевидно: $$ △ABO=△AMO$$ (по катету и острому углу), значит $$ AB=AM$$ и $$ AC=2AM=2AB$$. Зная, что $$ AC=6$$, находим $$ AB=3$$. 


  • § 3 Параллелограмм

    Параллелограммом называется четырёхугольник, противолежащие стороны которого попарно параллельны (рис. 16). Параллелограмм – выпуклый четырёхугольник. В разных учебниках различные определения выпуклого четырёхугольника, приведём два равносильных определения:

    1) Четырёхугольник называется выпуклым, если он лежит по одну сторону от любой прямой, содержащей его сторону.

    2) Четырёхугольник называется выпуклым, если его диагонали пересекаются.

    Равносильность доказывается на основе свойства полуплоскостей.

    Легко доказывается теорема, что сумма углов выпуклого четырёхугольника равна  `360^@` (повторите по учебнику). 

    Layer 1 A B C D  

    Рис. 16

    Свойства параллелограмма

    1. Сумма любых двух соседних углов параллелограмма равна `180^@`
    2. Противолежащие углы параллелограмма равны.
    3. Противолежащие стороны параллелограмма равны.
    4. Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.

    Признаки параллелограмма

    1. Если в четырёхугольнике две стороны параллельны и равны, то это параллелограмм.
    2. Если в четырёхугольнике противолежащие углы попарно равны, то это параллелограмм.
    3. Если в четырёхугольнике противолежащие стороны попарно равны, то это параллелограмм.
    4. Если диагонали четырёхугольника пересекаются и точкой пересечения делятся пополам, то это параллелограмм.
    Доказательство

    Докажем, например, признак 3.

    Пусть в четырёхугольнике `ABCD` стороны удовлетворяют условиям `AB=DC` и `BC=AD` (рис. 17). Отметим соответственно равные стороны и проведём диагональ  `AC`. `Delta ABC= Delta CDA` (`AB=CD`, `BC=AD`, `AC` - общая сторона). В равных треугольниках против равных сторон лежат равные углы: против `AB` - угол `1`, против `CD` - угол `2`, `/_ 1 = /_ 2` (накрест лежащие углы)  BCAD\Rightarrow BC\parallel AD.  Против  `BC` -  угол  `3`,  против `AD` -  угол    `4`, `/_ 3 = /_ 4 =>` ABCDAB\parallel CD.

    Противолежащие стороны попарно параллельны, значит  параллелограмм по определению.  

    Свойства параллелограмма используются для доказательства  замечательной теоремы о высотах треугольника.

    Теорема

    Три высоты или три прямые, на которых лежат высоты треугольника, пересекаются в одной точке.

    Доказательство

    Через каждую вершину треугольника `ABC` (рис. 18) проведём прямую, параллельную противолежащей вершине стороне.  Получаем треугольник `A_1 B_1 C_1`, к сторонам которого перпендикулярны высоты данного (например, если `AH _|_ BC`, то из BCB1C1BC\parallel B_1C_1, следует `AH_|_B_1 C_1`). 

    По построению ABCA1AB\parallel CA_1, ACBA1AC\parallel BA_1ABA1C\Rightarrow ABA_1C - параллелограмм. Также показывается, что `AC_1BC` - параллелограмм. По свойству параллелограмма `BA_1 = AC`, `C_1 B = AC => C_1 B = BA_1`, т. е. точка `B` - середина стороны `A_1 C_1`. Повторяя рассуждение, устанавливаем, что точка `A` - середина стороны `B_1 C_1` и точка `C` - середина стороны `A_1 B_1`. 

    Прямые, на которых лежат высоты `AH`, `BF` и `CK` треугольника `ABC`, перпендикулярны к сторонам треугольника `A_1 B_1 C_1` и проходят через их середины, а три серединных перпендикуляра к сторонам треугольника пересекаются в одной точке (определяют центр окружности, описанной около треугольника `A_1 B_1 C_1`). Значит три прямые, на которых лежат высоты, пересекаются в одной точке.

    Если треугольник остроугольный, то пересекаются сами высоты.

    Если в треугольнике  `ABC` углы `A` и `C` - острые (рис. 19), то вершина `B` лежит в полосе между двумя параллельными прямыми `l_1` и `l_2`, которые проходят через точки `A` и `C` и перпендикулярны `AC`. Отсюда следует, что основание `F` её высоты `BF` лежит на стороне `AC`. Если угол `B` - также острый (т. е. треугольник `ABC` - остроугольный), то основание `H` высоты `AH` тоже лежит на стороне `BC` (рассуждения те же самые). Точки `B` и `F` лежат в разных полуплоскостях, образованных прямой `AH`, значит отрезок `BF` пересекает прямую `AH`. Точка пересечения `O` лежит на `BF`,  т. е. лежит внутри треугольника, и, значит, на отрезке `AH`.  По теореме третья высота пройдёт через ту же точку `O`.  

                            

    Пример 7

    Биссектриса угла  `A` параллелограмма `ABCD` пересекает сторону  `CD` в точке `K`,  а продолжение стороны `BC` в точке `F` (рис. 20). Найти стороны параллелограмма, если  `BF = 16` и `CK =5`. 

     

    Решение

    `AF` - биссектриса угла  `BAD`, 1=2\underline{\angle1=\angle2}. Прямые `AD` и `BF` - параллельны,  поэтому  3=1\angle3=\angle1 (как  накрест  лежащие),  тогда  `/_2 = /_3`, треугольник `ABF` -равнобедренный, `AB=BF`. Значит `AB =16`. 

    По свойству параллелограмма `CD=AB`, значит `CD=16` и `DK=11`. Далее, из ABCDAB\parallel CD следует  `/_2 = /_4` (накрест лежащие), значит `/_4=/_1`, треугольник `ADK` - равнобедренный, `AD=DK=11`.

    Ответ

    `AD=BC=11`, `AB=CD=16`.

    Пример 8

    Дана окружность с диаметром `AB` и точка `M`, лежащая внутри окружности, но не на диаметре (рис. 21). С помощью односторонней линейки опустить из точки  `M` перпендикуляр на прямую  `AB`.

      – уменьшенная копия односторонней линейки).

    Решение

    Что мы можем делать с помощью односторонней линейки? Проводить прямые! Вот и проведём через точки `A` и `M` прямую до пересечения с окружностью в точке `A_1`, затем через точки `B` и `M` проведём прямую до пересечения с окружностью в точке `B_1` (рис. 21).

    Далее, проведём прямую через точки `A` и `B_1` и прямую через точки `B` и `A_1` - получим в их пересечении точку `C`. Прямая `CM` - искомая. В треугольнике `ACB` высоты `A A_1` и `B B_1`  (углы `A A_1 C` и `B B_1 C` - прямые, опираются на диаметр) пересекаются в точке `M`. Точка `M` - точка пересечение высот треугольника `ACB`, значит `C C_1 _|_ AB`.

    Если точка `M` лежит вне окружности и не на прямой `AB`, решение задачи усложняется, но немного (попробуйте сами).

    Параллелограмм, в котором все углы прямые, называется прямоугольником.

    Верна теорема: диагонали прямоугольника равны.

    Верна и обратная теорема - признак  прямоугольника: если диагонали параллелограмма равны, то этот параллелограмм - прямоугольник.

    Параллелограмм, у которого все стороны равны, называется ромбом. Сформулируйте сами две теоремы о диагоналях ромба и обратные к ним.

    Прямоугольник, у  которого все стороны равны, называется квадратом. Квадрат - правильный четырёхугольник.

    Пример 9

    Через середину диагонали `BD` прямоугольника `ABCD` проведена перпендикулярно этой диагонали прямая, пересекающая сторону `BC` в точке `F` и сторону `AD` в точке `E`. Известно, что `EF = ED = 8`.  Найти большую сторону прямоугольника.

    Решение

    Середина диагонали `BD` - точка `O`, - есть центр прямоугольника, `BO=OD` (рис. 22). Отрезок `EF` делится точкой `O` пополам, действительно, `Delta BOF = Delta DOE` (углы при точке `O` равны как вертикальные,  `/_DBF = /_BDE` (как накрест лежащие при параллельных прямых `BC` и `AD`) и `BO=OD`; треугольники равны по второму признаку равенства).

     Значит `FO=EO=1/2 EF=4` и `BF=ED=8`. 

    Треугольник `BOF` - прямоугольный, гипотенуза `BF=8`, катет `OF=4`, значит `/_OBF =30^@`.  

    Диагонали прямоугольника равны, равны и их половины,  `BO=OC`. Треугольник `BOC` - равнобедренный, `/_BCO=30^@`, `/_CFO=180^@ - /_OFB =180^@ - 60^@ = 120^@`,

    следовательно  `/_FOC = 30^@`. Треугольник `OFC` - равнобедренный, `FC=OF=4`, значит `BC=12`.  

    Ответ

    `12`.

    Пример 10

    Окружность, построенная как на диаметре, на стороне `AD` параллелограмма `ABCD` касается стороны `BC` и проходит через середину стороны `AB` (рис. 23). Найти углы параллелограмма. 

    Решение

    Пусть `O` - центр окружности и `R` - её радиус. Если `P` - точка касания стороны `BC`, то `OP_|_ BC`,  а из ADBCAD\parallel BC следует `OP_|_AD`. Это означает, что расстояние между параллельными прямыми `AD` и `BC` равно `R`. 

    Точка `M` лежит на окружности, `OM=R`. Точка `M` - середина стороны `AB`. Если `MF _|_ AD` и `MK _|_ BC`, то точки `K`, `M` и `F` лежат на одной прямой (т. к. ADBCAD\parallel BC) и поэтому `KF=PO=R`. Прямоугольные треугольники `AMF` и `BMK` равны (по гипотенузе и острому углу) и `MF=1/2 KF = 1/2 R`. 

    Из треугольника  `OMF`, в котором `MF_|_OF`, `OM=R` и `MF= R/2` следует, что `/_MOF = 30^@`.  

    Далее заметим, что треугольник `AOM` равнобедренный `(OA=OM=R)`,

    угол при вершине `O` равен `30^@`, следовательно `/_OAM = /_ AMO = 75^@`. 

    Итак, острый угол `A` параллелограмма равен `75^@`, а тупой угол `B` равен `105^@`.  

    Ответ

    `75^@` и `105^@`.



  • § 4. Задачи для досуга (этот пункт дополнительный)

    1. Как измерить с помощью одной мерной линейки, произведя одно измерение, диагональ кирпича (крпич имеет форму прямоугольного параллелепипеда, изображённого на рис. 24, его диагональ - это отрезок, соединяющий проивоположные вершины (например, `A` и `B`)). Дайте способ простой, практичный, пригодный для мастерской, стройки, без приминения вычислений по теореме Пифагора.

      

    2. Тяжёлая балка `AB` лежит на брёвнах (рис. 25), её правый конец отстоит от оси последнего бревна на `5` м (`BC=5` м). На сколько продвинется вперёд передняя часть балки (точка `A`), если точка `B` достигент оси последнего бравна? Считать брёвна одинаоковыми и круглыми; катятся брёвна без скольжения.

    3. Нетрудно показать, что у правильно пятиугольной звезды сумма углов равна `180^@`. Показать, что такая же сумма углов будет у произвольной пятиугольной звезды (рис. 26).

       

    4. Во времена частных междоусобных войн один правитель захотел построить крепость-замок из `10` башен, соединённых между собой стенами, причём стены должны тянуться прямыми линиями с четырьмя башнями в каждой из них. Приглашённый им известный строитель представил ему план крепости (см. рис. 27), но правитель нашёл его совершенно неудовлетворительным: при таком расположении к любой из десяти башен можно подойти извне. Правителю же хотелось, чтобы по крайней мере одна башня (а ещё лучше - две) была бы со всех сторон защищена стеной от вторжения извне. Долго строитель ломал голову над такой задачей, но решил её и с одной безопасной башней, и с двумя безопасными башнями.

    Попробуйте и вы найти решение.

    5. Можно ли покрыть костяшками домино (каждая костяшка – две клетки) доску `8` x `8` клеток с двумя вырезанными противоположными клетками (рис. 28)?

    6. Три одинаковых треугольника разрезали по медианам (рис. 29). Сложите из полученных  `6` кусков  один  треугольник.

    7. На рис. 30  изображена  фигура,  составленная из пяти квадратов. Требуется провести два разреза по прямым линиям так, чтобы из полученных частей можно было бы составить квадрат.

    8. Найти площадь треугольника, изображённого на клетчатой бумаге (см. рис. 31), считать площадь каждой клетки равной `1`.

    9. На окружности расположено `2000` чёрных точек и одна белая точка. Рассматриваются всевозможные выпуклые многоугольники с вершинами в этих точках. Каких многоугольников больше: тех, у которых все вершины чёрные, или тех, у которых одна вершина белая?

    10. Можно ли, начав движение в какой-то точке контура обойти все его звенья, проходя по каждому ровно `1` раз, и вернуться в исходную точку? (контуры `1`-`6` на рис. 32)

    11. Какое наибольшее число острых углов может иметь выпуклый `n` - угольник?

  • § 5. Задачи и вопросы для самостоятельного решения

    В контрольных вопросах и задачах проверяются Ваши знания основного курса и знакомство с материалом нашего задания.

    1. Контрольные вопросы и задачи могут быть не только по темам, повторенным в этом Задании (повторить весь учебник невозможно), но и по материалу, изученному Вами в школе. При ответе на некоторые вопросы придётся открыть учебник.

    2. Ответы на контрольные вопросы надо давать обоснованные. Приведём примеры.

    вопрос 1

    Точки `K` и `L` делят диагональ `AC` параллелограмма `ABCD` на три равные части: `AK=KL=LC` (рис. 33). Верно ли, что прямые `BK` и `LD` параллельны?

     

    ответ

    Да, верно. Докажем это.

    Доказательство

    а) Проведём диагональ  `BD`. По теореме диагонали параллелограмма пересекаются  и  точкой  пересечения  делятся пополам: `AO=OC` и `BO=OD`.

    б) Из  `AO = OC` и `AK=CL` следует `KO=OL`.

    в)  `Delta BOK = Delta DOL`, так как `KO=OL`, `BO=OD` и `/_BOK = /_ DOL`  (как вертикальные).

    Из равенства треугольников следует  `/_ 1 = /_ 2`. Накрест лежащие углы при секущей  `AC` равны, следовательно, BKLDBK\parallel LD.

    вопрос 2

    В четырёхугольнике `ABCD` стороны `AB` и `CD` равны друг другу, а стороны `AD` и `BC` параллельны. Является ли четырёхугольник `ABCD` параллелограммом?

    ответ

    Нет, например, четырёхугольник `ABCD` на рисунке 34 удовлетворяет этим условиям, но противоположные стороны `AB` и `CD` не параллельны (этот четырёхугольник - равнобокая трапеция). 

  • §1. Введение

    Вспомним некоторые понятия и определения, изученные вами в восьмом классе.

    Число $$ a$$ называется решением (или корнем) уравнения, если при его подстановке в уравнение вместо неизвестной уравнение превращается в верное равенство. Решить уравнение – значит найти все его корни или доказать, что корней нет.

    Точно так же определяется понятие решения неравенства, а именно: число $$ a$$ называется решением неравенства, если при подстановке числа $$ a$$ вместо переменной в неравенство получается верное неравенство. Решить неравенство – значит найти все его решения или доказать, что их нет.

    Совокупность всех решений уравнения (неравенства) называют множеством решений уравнения (неравенства). Если уравнение (неравенство) не имеет решений, то говорят, что его множество решений пусто (обозначается значком $$ \varnothing $$).

    Уравнения (неравенства) называются равносильными, если множества их решений совпадают. Заметим также, что уравнение и неравенство могут быть равносильны друг другу. (Обозначение: (1) $$ \iff $$ (2)).

    Пример 1

    Среди следующих пар уравнений и неравенств выберите равносильные:

    а) $$ \left|x\right|=2$$ и $$ {x}^{4}-{x}^{2}-12=0$$;  

    б) $$ \sqrt{x-12}=24-x$$  и  $$ x-12=(24-x{)}^{2}$$;

    в) $$ {x}^{2}\le x$$ и $$ x\le 1$$;  

    г) $$ x\ge 0$$ и $$ \left|x\right|=x$$;  

    д) x2<0x^2 < 0 и $$ {x}^{2}+3x+3=0$$.

    Решение

    a) По определению модуля $$ \left|x\right|=2\iff $$ $$ \left[\begin{array}{l}x=2,\\ x=-2.\end{array}\right.$$

    Решим уравнение $$ {x}^{4}-{x}^{2}-12=0$$. Сделаем замену $$ {x}^{2}=t$$. Тогда получаем $$ {t}^{2}-t-12=0$$, откуда $$ \left[\begin{array}{l}t=4,\\ t=-3.\end{array}\right.$$

    Поэтому $$ {x}^{4}-{x}^{2}-12=0\iff $$ $$ \left[\begin{array}{l}{x}^{2}=4,\\ {x}^{2}=-3\end{array}\right.$$ $$ \iff {x}^{2}=4\iff $$ $$ \left[\begin{array}{l}x=2,\\ x=-2.\end{array}\right.$$

    Значит, уравнения равносильны.

    б) $$ x-12=(24-x{)}^{2}\iff x-12={x}^{2}-48x+576\iff $$

    $$ \iff  {x}^{2}-49x+588=0\iff \left[\begin{array}{c}x=21,\\ x=28.\end{array}\right.$$

    Заметим, что $$ x=28$$ не является решением первого уравнения (при подстановке $$ x=28$$ получаем неверное равенство $$ 4=-4$$), поэтому уравнения не равносильны.

    в) Чисо $$ x=-1$$ является решением второго неравенства, но не является решением первого. Значит, их множества решений не совпадают, и неравенства равносильными не являются.

    г) По определению модуля, уравнению $$ \left|x\right|=x$$ удовлетворяет любое $$ x\ge 0$$. Отрицательных решений это уравнение не имеет, т. к. при x<0x < 0 левая часть положительна, а правая - отрицательна. Получаем, что данные уравнение и неравенство равносильны.

    д) И уравнение, и неравенство не имеют решений, поэтому они равносильны.

    При решении уравнений можно действовать двумя способами.

    1) Все выполняемые преобразования равносильны. Тогда мы сразу получаем ответ.

    2) Если мы делаем какие-то неравносильные преобразования, то ни одно из них не должно приводить к потере корней. (Действительно, если корень потерялся, то его никак не вернёшь). Значит, нам можно делать только такие неравносильные преобразования, в результате которых мы можем приобрести лишние корни. В таком случае в конце решения необходимо сделать отбор корней: подставляя все найденные значения переменной в исходное уравнение, отбираем те из них, которые являются его корнями. Естественно, этот способ не проходит, если уравнение имеет бесконечно много решений (так как при отборе корней нельзя подставить бесконечное количество значений в уравнение). Тогда приходится делать только равносильные преобразования.

    Некоторые преобразования всегда приводят нас к равносильным уравнениям, например, перенесение слагаемых из одной части уравнения в другую, умножение обеих частей уравнения на отличное от нуля число и др. Применяя другие преобразования (приведение подобных слагаемых, сокращение дробей, возведение обеих частей уравнения в квадрат и пр.), мы иногда получаем равносильные уравнения, а иногда нет. Когда мы решаем неравенства, почти всегда отбор корней сделать невозможно (так как неравенства обычно имеют бесконечно много реше-ний), поэтому необходимо делать только равносильные преобразования.

    Рассмотрим два уравнения

      $$ {f}_{1}\left(x\right)={g}_{1}\left(x\right)$$                                                                      (1)

     $$ {f}_{2}\left(x\right)={g}_{2}\left(x\right)$$                                                                      (2)

    Говорят, что уравнение (2) является следствием уравнения (1) (пишут (1)$$ \Rightarrow $$(2)), если каждый из корней уравнения (1) является также и корнем уравнения (2). Иначе говоря, множество решений уравнения (1) содержится в множестве решений уравнения (2).

    Несложно видеть, что если из (1) следует (2), а из (2) следует (1), то уравнения (1) и (2) равносильны.

    Например, $$ x=2\Rightarrow (x-2)(x-3)=0$$;   $$ {x}^{2}+1=0\Rightarrow x=5$$ (действительно, множество решений первого уравнения пусто, а пустое множество является подмножеством любого множества). Таким образом, если уравнение (неравенство) не имеет корней, то из него следует любое другое уравнение (неравенство).

  • § 2. Квадратный трёхчлен. Квадратные уравнения. Теорема Виета

    Квадратным называют уравнение

    $$ a{x}^{2}+bx+c=0$$,                                                                                     (3)

    где $$ a\ne 0$$.

    Если разделить обе части уравнения (3) на $$ a$$ (это можно сделать, так как $$ a\ne 0$$) и обозначить коэффициенты $$ p=b/a$$ и $$ q=c/a$$, то получим уравнение

    $$ {x}^{2}+px+q=0$$                                                                                           (4)

    называемое приведённым квадратным уравнением.

    Левую часть в (3) и (4) называют квадратным трёхчленом. Корни уравнения называют также корнями трёхчлена.

    Все вы, конечно же, знаете формулу корней квадратного уравнения. Ввиду особой важности метода выделения полного квадрата, напомним способ её получения. Преобразуем левую часть (3):

     $$ a{x}^{2}+bx+c=a\left({x}^{2}+\frac{b}{a}x+\frac{c}{a}\right)  =a\left({x}^{2}+2·\frac{b}{2a}·x+\frac{c}{a}\right)=$$

                   $$ =a\left({x}^{2}+2·\frac{b}{2a}x+{\left(\frac{b}{2a}\right)}^{2}-{\left(\frac{b}{2a}\right)}^{2}+\frac{c}{a}\right)=a\left({\left(x+\frac{b}{2a}\right)}^{2}-\frac{{b}^{2}-4ac}{4{a}^{2}}\right)$$.                                                           (5)

    Выражение $$ {b}^{2}-4ac$$ называется дискриминантом и обозначается буквой $$ D$$. С учётом этого обозначения уравнение (3) можно переписать в виде:

      $$ {\left(x+{\displaystyle \frac{b}{2a}}\right)}^{2}={\displaystyle \frac{D}{4{a}^{2}}}$$                                                                            (6)

    Из (6) при $$ D\ge 0$$ получаем $$ {x}_{1}=-{\displaystyle \frac{b}{2a}}+{\displaystyle \frac{\sqrt{D}}{2a}}$$;   $$ {x}_{2}=-{\displaystyle \frac{b}{2a}}-{\displaystyle \frac{\sqrt{D}}{2a}}$$.

    Эти формулы можно объединить одной записью

     $$ {x}_{\mathrm{1,2}}={\displaystyle \frac{-b\pm \sqrt{D}}{2a}}$$                                                                             (7)

    Обратим внимание, что при $$ D=0$$ выходит, что $$ {x}_{1}={x}_{2}$$. В этом случае говорят, что квадратное уравнение имеет один корень кратности `2`.

    Если в уравнении (3) коэффициент $$ b$$ имеет вид $$ b=2k$$ (например, если $$ b$$ - чётное число), то удобнее использовать формулы, получаемые из (7) сокращением на `2` числителя и знаменателя:

            

    $$ {x}_{\mathrm{1,2}}={\displaystyle \frac{-b\pm \sqrt{{b}^{2}-4ac}}{2a}}={\displaystyle \frac{-2k\pm \sqrt{4{k}^{2}-4ac}}{2a}}={\displaystyle \frac{-k\pm \sqrt{{k}^{2}-ac}}{a}}$$ 

    `(7^')`

    Например, корни уравнения $$ 81{x}^{2}-42x+5=0$$ проще найти по формулам (7'), чем (7). Здесь $$ b=-42=2(-21)$$, поэтому

    $$ {x}_{\mathrm{1,2}}={\displaystyle \frac{21\pm \sqrt{{21}^{2}-81·5}}{81}}={\displaystyle \frac{21\pm \sqrt{9({7}^{2}-9·5)}}{81}}= {\displaystyle \frac{21\pm 3\sqrt{4}}{81}}={\displaystyle \frac{7\pm 2}{27}}$$,

    $$ {x}_{1}={\displaystyle \frac{5}{27}},  {x}_{2}={\displaystyle \frac{1}{3}}$$.

    Если дискриминант квадратного трёхчлена неотрицателен, то выкладки (5) можно продолжить:

    `a((x+ b/(2a))^2 - D/(4a^2) ) = a((x+ b/(2a) )^2 - ((sqrtD)/(2a))^2)=a(x+b/(2a) - (sqrtD)/(2a))(x+b/(2a) + (sqrtD)/(2a))=`

    `=a(x-(-b+sqrtD)/(2a))(x-(-b-sqrtD)/(2a))=a(x-x_1)(x-x_2)`.

    Таким образом, если квадратный трёхчлен $$ a{x}^{2}+bx+c$$ имеет корни, то он раскладывается на множители $$ a{x}^{2}+bx+c=a(x-{x}_{1})(x-{x}_{2})$$. В случае $$ D=0$$  корни совпадают `(x_1 = x_2 = x_0)`, и тогда получаем $$ a{x}^{2}+bx+c=a(x-{x}_{0}{)}^{2}$$.

    Заметим, что квадратный трёхчлен $$ a{x}^{2}+bx+c$$  имеет корни, то `x_1 + x_2 = (- b + sqrtD)/(2a) + (- b - sqrtD)/(2a) = - b/a`;

    `x_1 * x_2 = (-b+ sqrtD)/(2a) * (-b-sqrtD)/(2a) = (b^2 - D)/(4a^2) = (b^2 - (b^2 - 4ac))/(4a^2) = c/a`.

    Полученный результат называют теоремой Виета. Для приведённого квадратного трёхчлена $$ {x}^{2}+px+q$$ теорема Виета выглядит так: если есть корни `x_1` и `x_2`, то `x_1 + x_2 = - p`, `x_1 x_2 =q`.

    Имеет место и теорема, обратная теореме Виета:

    если числа $$ {x}_{1}$$ и $$ {x}_{2}$$ удоветворяют условиям $$ {x}_{1}+{x}_{2}=p$$, $$ {x}_{1}·{x}_{2}=q$$, то эти числа являются корнями уравнения $$ {x}^{2}-px+q=0$$. 

    Доказательство этой теоремы - это один из контрольных вопросов Задания. Иногда для краткости обе теоремы Виета (прямую и обратную) называют просто теорема Виета.

    Пример 2

    Решите уравнение:

    a) $$ {x}^{2}+(\sqrt{3}+\sqrt{17})x+\sqrt{51}=0$$;  

    б) $$ 2016{x}^{2}+2017x+1=0$$;

    в) $$ \sqrt{3}{x}^{2}+(5-2\sqrt{3})x+(\sqrt{3}-5)=0$$.

    Решение

    a) По теореме, обатной теореме Виета, $$ {x}_{1}=-\sqrt{3}$$  и $$ {x}_{2}=-\sqrt{17}$$ - корни данного уравнения.

    Ответ

    $$ x=-\sqrt{3};x=-\sqrt{17}$$.

    б) Заметим, что $$ {x}_{1}=-1$$ является корнем данного уравнения.  Значит, уравнение имеет корни, и по теореме Виета, их произведение $$ {x}_{1} · {x}_{2} = {\displaystyle \frac{1}{2016}}$$, откуда $$ {x}_{2 }= {\displaystyle \frac{-1}{2016}}$$.

    Ответ

    $$ x=-1;x={\displaystyle \frac{-1}{2016}}$$.

    в) Заметим, что $$ {x}_{1}=1$$ является корнем (это легко видеть, т. к. сумма всех коэффициентов в уравнении равна нулю).  Из условия $$ {x}_{1}·{x}_{2}={\displaystyle \frac{\sqrt{3}-5}{\sqrt{3}}}$$ получаем, что $$ {x}_{2}=1-{\displaystyle \frac{5}{\sqrt{3}}}$$.

    Ответ

    $$ x=1;x=1-{\displaystyle \frac{5}{\sqrt{3}}}$$.


    Пример 3

    Найти наибольшее значение выражения $$ 4+7x-3{x}^{2}$$.


    Решение

    Будем осуществлять методом выделения полного квадрата.

    $$ 4+7x-3{x}^{2}=-3\left({x}^{2}-{\displaystyle \frac{7}{3}}x\right)+4=-3\left({x}^{2}-2·{\displaystyle \frac{7}{6}}x +{\displaystyle \frac{49}{36}}-{\displaystyle \frac{49}{36}}\right)+4=$$ $$ -3\left({\left(x-{\displaystyle \frac{7}{6}}\right)}^{2}-{\displaystyle \frac{49}{36}}\right)+4=-3{\left(x-{\displaystyle \frac{7}{6}}\right)}^{2}+{\displaystyle \frac{49}{12}}  +4=-3{\left(x-{\displaystyle \frac{7}{6}}\right)}^{2}+{\displaystyle \frac{97}{12}}$$.

    $$ -3{\left(x-{\displaystyle \frac{7}{6}}\right)}^{2}\le 0$$ при всех $$ x$$, поэтому максимальное значение выражения достигается, если $$ -3{\left(x-{\displaystyle \frac{7}{6}}\right)}^{2}=0$$. Значит, это максимальное значение равно $$ {\displaystyle \frac{97}{12}}$$ (достигается при $$ x={\displaystyle \frac{7}{6}}$$).

    Ответ

    $$ {\displaystyle \frac{97}{12}}$$.


    Пример 4

    Пусть $$ {x}_{1}$$ и $$ {x}_{2}$$ - корни квадратного уравнения $$ a{x}^{2}+bx+c=0$$. выразите $$ {x}_{1}^{2}+{x}_{2}^{2}$$ через коэффициенты уравнения.

    Решение

    По теореме Виета $$ {x}_{1}+{x}_{2}=-{\displaystyle \frac{b}{a}},{x}_{1}{x}_{2}={\displaystyle \frac{c}{a}}$$. Преобразуем $$ {x}_{1}^{2}+{x}_{2}^{2}$$, выделяя полный квадрат:

                $$ {x}_{1}^{2}+{x}_{2}^{2}={x}_{1}^{2}+{x}_{2}^{2}+2{x}_{1}·{x}_{2}-2{x}_{1}·{x}_{2}=({x}_{1}+{x}_{2}{)}^{2}-2{x}_{1}·{x}_{2}$$.

    Отсюда: $$ {x}_{1}^{2}+{x}_{2}^{2}={\left(-{\displaystyle \frac{b}{a}}\right)}^{2}-2{\displaystyle \frac{c}{a}}={\displaystyle \frac{{b}^{2}-2ac}{{a}^{2}}}$$.

    Ответ

    $$ {\displaystyle \frac{{b}^{2}-2ac}{{a}^{2}}}$$.


  • §3. Многочлены

    Многочленом с одной переменной называется выражение вида

     `P(x) = a_n x^n + a_(n-1)  x^(n-1) +a_(n-2)  x^(n-2) + ... + a_2 x^2 + a_1 x + a_0 (a_n != 0)`.                         (8)

    Числа `a_0`, `a_1`, `...`, `a_n` - это коэффициенты многочлена; `a_n` называют старшим коэффициентом,  `a_0` - свободным членом.

    Степенью многочлена называют наибольшую степень переменной, входящую в многочлен.

    Например, степень многочлена `P = x^4 - x^3 - x^2 + 2x + 1` равна `4`; степень  многочлена `25 + x^5 - 3x` равна  `5`;  степень  многочлена `17` равна `0`, т. к. переменная в это выражение не входит; наконец, выражение `3x^2 + x +5+ 2/x` многочленом не является, поэтому о его степени говорить бессмысленно. Многочлен `P(x) = 0` называют нулевым многочленом.  Степень нулевого многочлена не определена.

    Два многочлена называются равными, если равны все их коэффициенты. Многочлен равен нулю, если все его коэффициенты равны нулю.  

    Число `a`  называется корнем многочлена  `F(x)`, если `F(alpha) = 0`.

     Приведём основные сведения о многочленах.

    Теорема 1.(Деление многочленов с остатком) (без доказательства).

    Для любых двух многочленов `F(x)` и `G(x)` существует единственная пара многочленов `P(x)` (частное) и `Q(x)` (остаток) такая, что `F(x) = G(x) * P(x) + Q(x)`, причём степень остатка `Q(x)` меньше степени делителя `G(x)`, или `Q(x)` есть нулевой многочлен. Покажем, как на практике находят частное и остаток от деления многочленов.

    Пример 5

    Разделите с остатком многочлен `F(x) = 18x^5 + 27x^4 -37x^3 - 14x + 20`                                

    на многочлен `G(x) = 2x^2 + 3x -5`.

    Решение

    Процедура деления многочленов очень похожа на деление целых чисел. Если степень делимого не меньше степени делителя, то делаем следующее: делим старший член многочлена `F(x)`  на старший член многочлена `G(x)`, получившийся результат записываем в частное. Умножаем результат на весь делитель `G(x)` и вычитаем полученное из исходного многочлена `F(x)`. После этих действий член со старшей степенью `x` сокращается. Если в результате вычитания у оставшегося многочлена степень не меньше, чем степень  делителя, то можно сделать ещё один шаг деления и т. д.

    Деление закончится тогда, когда степень делимого  будет меньше степени делителя. В случае, когда в делимом отсутствуют некоторые степени переменных, для удобства записи лучше оставить пустые места для соответствующих членов (хотя это не обязательно).

    Вернёмся к нашему примеру. Первый член частного равен `(18x^5)/(2x^2) = 9x^3`. При умножении на делитель `2x^2 +3x-5` получаем `18x^5 + 27x^4 - 45x^3`. После вычитания из исходного многочлена от него остаётся `8x^3 -14x +20`. Степень многочлена, оставшегося после вычитания, равна `3`. Это больше степени делителя, поэтому можно сделать следующий шаг деления. Делим `8x^3` на `2x^2` и получаем `4x`, умножаем `4x` на `2x^2 +3x-5`, получаем `8x^3 +12x^2 -20`; вычитаем этот многочлен из `8x^3 -14x +20` и т. д. 

    Ответ

    Частное равно `9x^3 +4x -6`; остаток  равен `24x-10`.

    ЗАМЕЧАНИЕ

    Таким  образом,   `18x^5 + 27x^4 - 37x^3 -14x + 20 = (2x^2 + 3x - 5)(9x^3 + 4x - 6) + (24x - 10)`.     

    Теорема 2. (Теорема Безу и следствия из неё).

    1) Теорема Безу. Остаток от деления многочлена `F(x)` на многочлен `(x-alpha)` равен `F(alpha)`.

    2) Число `alpha`  является корнем многочлена `F(x)` тогда и только тогда, когда многочлен `F(x)` делится на многочлен `(x-alpha)`.

    3) Если `alpha` и `beta` - различные корни многочлена  `F(x)`, то он делится на многочлен `(x- alpha)(x- beta)`.

    4) Многочлен степени `n`  не может иметь более `n`  корней.


    Доказательство

    1) Разделим с остатком многочлен `F(x)` на многочлен `(x-alpha)`. Тогда остаток либо равен нулю, либо является многочленом нулевой степени (т. к. степень остатка меньше степени делителя, а степень делителя равна `1`). Поэтому можно записать, что

    `F(x) = (x-alpha) G(x) +C`                                                                           (9)

     Через `G(x)` здесь обозначено частное от деления, вид которого нас не интересует.

    Равенство (9) верно при всех значениях `x`. Подставим в него `x=alpha`.

    Тогда  `F(alpha) = (alpha - alpha)G(alpha) + C`, или `F(alpha) = C`.

     Подставим `C=F(alpha)` в (9) и получим            

     `F(x) = (x - alpha) G (x) + F(alpha)`.                                                                (10)

    Первая часть доказана.

    2) Из (10) следует, что `F(x)` делится на `(x - alpha)` тогда и только тогда, когда `F(alpha) = 0`, т. е. тогда и только тогда, когда  `alpha` есть корень многочлена `F(x)`.

    3) `alpha` - корень  `F(x) => F(x)` делится на `(x- alpha) => F(x) = (x- alpha) G(x)`. Подставим в последнее равенство (которое верно для  всех  значений  переменной `x`) `x= beta`. Тогда   `F(beta) = (beta - alpha) G(beta)`.

    `F(beta) = 0`  (т. к. `beta` -корень `F(x)`), поэтому `(beta - alpha)G(beta) = 0 =>G(beta) = 0`    (т. к. `beta != alpha`); отсюда `G(x)` делится  на `(x- beta)`, т. е. `G(x) = H(x) * (x- beta)`. Подведём итог: `F(x) = (x- alpha) G(x) = (x -alpha)(x- beta) H(x)`,  т. е. `F(x)` делится   на `(x- alpha)(x- beta)`.

    4) Теперь становится понятным, что многочлен степени `n` не может иметь больше, чем `n` корней.


    Пример 6

    Остатки от деления многочлена `F(x)` на многочлены `(x-3)` и `(x+5)` равны  `2` и `(-9)` соответственно. Найдите остаток  от деления многочлена `F(x)` на многочлен `x^2 + 2x -15`.

    Решение

    Заметим, что `x^2 + 2x -15 = (x-3)(x+5)`.

    По теореме Безу `F(3) = 2`; `F(-5) =-9`.  

    Поделим `F(x)` с остатком на `x^2 + 2x -15`:

     `F(x) = (x^2 + 2x - 15)G(x) + r(x)`.                             

    Степень  остатка  не  превосходит степени делителя, поэтому остаток – это либо многочлен первой степени, либо нулевой степени, либо равен нулю. В любом случае, остаток представим в виде `r(x) = ax +b` (если `a!= 0`, то получим многочлен первой степени; если `a=0`, `b!=0`, то будет многочлен нулевой степени; если `a=b=0`, то получим нулевой многочлен). Итак,

    `F(x) = (x^2 + 2x-15)G(x) + ax+b`.                                                                    (11)

      Подставим в равенство  (11) `x=3` и `x=-5`: 

    `F(3) = 0 * G(3) + 3a + b`; `F(-5)=0 * G(-5) -5a+b`, откуда $$ \left\{\begin{array}{l}3a+b=2,\\ -5a+b=-9.\end{array}\right.$$

    Решая эту систему, нахоим, что  `a=(11)/8`,  `b=- (17)/8`.    

    Ответ
    Остаток равен `(11)/8 x - (17)/8`.


    Пример 7

    Докажите, что

     $$ \sqrt[3]{26-15\sqrt{3}}+\sqrt[3]{26+15\sqrt{3}}=4$$.                                       (12)

    Решение

    Пусть  $$ \sqrt[3]{26-15\sqrt{3}}+\sqrt[3]{26+15\sqrt{3}}=x$$. Возведём обе части этого равенства в куб и преобразуем:  

    $$ 26-15\sqrt{3}+3\sqrt[3]{{\left(26-15\sqrt{3}\right)}^{2}}\sqrt[3]{26+15\sqrt{3}}+3\sqrt[3]{26-15\sqrt{3}}\sqrt[3]{{\left(26+15\sqrt{3}\right)}^{2}}+26+15\sqrt{3}={x}^{3}$$;

    $$ 52+3\sqrt[3]{26-15\sqrt{3}}\sqrt[3]{26+15\sqrt{3}}\left(\sqrt[3]{26-15\sqrt{3}}+\sqrt[3]{26+15\sqrt{3}}\right)={x}^{3}$$;

    $$ 52+3\sqrt[3]{{26}^{2}-{\left(15\sqrt{3}\right)}^{2}}\left(\sqrt[3]{26-15\sqrt{3}}+\sqrt[3]{26+15\sqrt{3}}\right)={x}^{3}$$;

    $$ 52+3\left(\sqrt[3]{26-15\sqrt{3}}+\sqrt[3]{26+15\sqrt{3}}\right)={x}^{3}$$;

    `52+3x=x^3`;

    `x^3-3x-52=0`.                                                                              (13)

    Число `x=4` является корнем этого уравнения. Докажем, что других корней нет (и тем самым будет доказана справедливость равенства (12)).  Поскольку `x=4` является корнем,  многочлен `x^3 - 3x-52` делится  на `x-4` без остатка. Выполняя деление, получаем:

    $$ {x}^{3}-3x-52=0\iff \left(x-4\right)\left({x}^{2}+4x+13\right)=0\iff \left[\begin{array}{l}x-4=0,\\ {x}^{2}+4x+13=0.\end{array}\right.$$      

    У квадратного трёхчлена `x^2 +4x+13` отрицательный дискриминант, поэтому уравнение (13)  имеет ровно один корень `x=4`.

    Пример 8

    При каких  `a` и `b` многочлен `F(x)=x^4 +ax^3 - 2x^2 +19x+b` делится на многочлен `x^2 -3x+2`?

    Решение

    1-й способ. Выполним деление с остатком:

    Приравниваем коэффициенты остатка к нулю

    $$ \left\{\begin{array}{l}7a+28=0,\\ b-6a-10=0,\end{array}\right.\iff \left\{\begin{array}{l}a=-4,\\ b=-14.\end{array}\right.$$

    2-й способ. `x^2 -3x+2=(x-1)(x-2)`.

    Многочлен делится на `(x-1)(x-2)` тогда и только тогда, когда `x=1` и `x=2` являются корнями  многочлена. То есть, 

    $$ \begin{array}{c}F\left(1\right)=1+a-2+19+b=0,    \\ F\left(2\right)=16+8a-8+38+b=0,\end{array}\iff \left\{\begin{array}{l}18+a+b=0,\\ 46+8a+b=0,\end{array}\right.\iff \left\{\begin{array}{l}a=-4,\\ b=-14.\end{array}\right.\phantom{\rule{0ex}{0ex}}$$

    Ответ

    `a=-4`, `b=-14`.


  • § 4. Некоторые приёмы решения алгебраических уравнений

    Нам уже известны формулы для решения квадратных уравнений. А что делать, если встретится уравнение более высокой степени? Оказывается, что для уравнений третьей и четвёртой степени есть формулы, позволяющие найти корни (но они редко используются на практике ввиду их громоздкости), а для уравнений пятой степени и выше доказано, что таких формул не существует. Таким образом, у нас не выйдет в общем случае решить уравнение третьей или более высокой степени. Но существует ряд приёмов, позволяющих решить некоторые специальные виды уравнений. К их рассмотрению мы сейчас и перейдём.

    Пример 9

    Решите уравнение: `x^3 +4x^2 - 2x-3=0`.

    Решение

    Заметим, что `x=1` является корнем уравнения (значение многочлена при `x=1` равно сумме коэффициентов многочлена). Тогда по теореме Безу многочлен `x^3 +4x^2 -2x -3` делится на многочлен `x-1`. Выполнив деление, получаем:

     `x^3 +4x^2 -2x -3=0 hArr (x-1)(x^2 + 5x +3) =0 hArr` 

    $$ \iff \left[\begin{array}{l}x-1=0,\\ {x}^{2}+5x+3=0,\end{array}\right.\iff \left[\begin{array}{l}x=1,\\ x={\displaystyle \frac{-5\pm \sqrt{13}}{2}}.\end{array}\right.$$

    Ответ

    `x=1`; `x=(-5+- sqrt13)/2`.

    Обычно кубические уравнения решают именно так: подбирают один корень, выполняют деление уголком, после чего остаётся решить только квадратное уравнение. А что делать, если у нас уравнение четвёртой степени? Тогда придётся подбирать корень два раза. После подбора первого корня и деления останется кубическое уравнение, у которого надо будет подобрать ещё один корень. Возникает вопрос. Что делать, если такие «простые» числа как `+-1`, `+-2` не являются корнями уравнения? Неужели тогда надо перебирать всевозможные числа? Ответ на этот вопрос даёт следующее утверждение.

    Теорема 3

    Если несократимая дробь `p//q` (`p` - целое, `q` - натуральное) является корнем многочлена с целыми коэффициентами, то свободный член делится на `p`, а старший коэффициент делится на `q`.

    *Доказательство

    Пусть несократимая дробь `p//q` - корень многочлена (8). Это означает, что

    `a_n (p/q)^n +a_(n-1)(p/q)^(n-1) + a_(n-2) (p/q)^(n-2)+ ...``+a_2 (p/q)^2 +a_1(p/q)+0=0`.

    Умножим обе части на `q^n`, получаем:

    `a_n p^n + a_(n-1) p^(n-1) q+a_(n-2) p^(n-2) q^2 + ... + a_2 p^2 q^(n-2) +a_1 pq^(n-1)+a_0q^n=0`.

    Перенесём  в правую часть, а из оставшихся слагаемых вынесем `p` за скобки:

    `p(a_np^(n-1)+a_(n-1)p^(n-2)q+a_(n-2)p^(n-3)q^2+...+a_2pq^(n-2)+a_1q^(n-1))=-a_0q^n`.           (14)

    Справа и слева в (14) записаны целые числа. Левая часть делится на `p=>` правая  часть  также  делится  на  `p`.  Числа `p` и `q` взаимно  просты (т. к. дробь `p//q` несократимая), откуда следует, что `a_0 vdotsp`.

    Аналогично доказывается, что `a_n vdotsq`. Теорема доказана.

    Замечание

    Как правило, предлагаемые вам уравнения имеют целые корни, поэтому в большинстве задач используется следующее: если у многочлена с целыми коэффициентами есть целые корни, то они являются делителями свободного члена.

    Пример 10

    Решите уравнение

    а) `x^4+4x^3-102x^2-644x-539=0`;                                                                               (15)

    б)  `6x^4-35x^3+28x^2+51x+10=0`.                                                                                (16)

    Решение

    а) Попробуем найти целые корни уравнения. Пусть `p` - корень. Тогда  `539vdotsp`; чтобы найти возможные значения `p`, разложим число `539` на простые множители: 

    `539=7^2*11`.

    Поэтому `p` может принимать значения:

     `+-1,+-7,+-11,+-49,+-77,+-539`. 

    Подстановкой убеждаемся, что `x=-1` является корнем уравнения. Разделим многочлен в левой части (15) уголком на `x+1` и получим:

    `(x+1)(x^3+3x^2-105x-539)=0`.

    Далее подбираем корни у получившегося многочлена третьей степени. Получаем `x=-7`, а после деления на `(x+7)` остаётся `(x+1)(x+7)(x^2-4x-77)=0`. Решая квадратное уравнение, находим окончательное разложение левой части на множители:

    `(x+1)(x+7)(x+7)(x-11)=0`.

                                 

    Ответ

    `x=-7`; `x=-1`; `x=11`.

    ЗамечаниЯ

    1) После того, как найден первый корень, лучше сначала выполнить деление уголком, и только потом приступать к поиску последующих корней. Тогда вычислений будет меньше.

    2) В разложении многочлена на множители множитель `(x+7)` встретился дважды. Тогда говорят, что `(–7)` является корнем кратности два. Аналогично говорят о корнях кратности три, четыре и т. д.

    б) Если уравнение имеет рациональный корень `x_0=p/q`, то `10vdotsp`, `6vdotsq`, т. е. `p in{+-1;+-2;+-5;+-10}`; `qin{1;2;3;6}`.Возможные варианты для `x_0`:

    `+-1,+-2,+-5,+-10,+-1/2,+-5/2,+-1/3,+-2/3,+-5/3,+-10/3,+-1/6,``+-5/6`.

    Начинаем перебирать числа из этого списка. Первым подходит число `x=5/2`. Делим многочлен в левой части (16) на `(2x-5)` и получаем

    `(2x-5)(3x^2-10x^2-11x-2)=0`.

    Заметим, что для получившегося кубического уравнения выбор рациональных корней заметно сузился, а именно, следующие числа могут быть корнями: `x_0=+-1,+-2,+-1/3,+-2/3`, причём мы уже знаем, что числа `+-1` и `+-2` корнями не являются (так как мы их подставляли раньше, и они не подошли). Находим, что `x=-2/3` - корень; делим `3x^3-10x^2-11x-2` на `3x+2` и получаем:

    `(2x-5)(3x+2)(x^2-4x-1)=0`.

    Решаем квадратное уравнение: `x^2-4x-1=0 iff x=2+-sqrt5`.       

    Ответ

    `x=5/2`; `x=-2/3`; `x=2+-sqrt5`.

    К сожалению, уравнения не всегда имеют рациональные корни.     Тогда приходится прибегать к другим методам.      

    Пример 11

    Разложите на множители:

    а)  `x^4+4`;

    б)* `x^3-3x^2-3x-1`;

    в) `x^4-x^3+2x^2-2x+4`;  

    г)* `x^4-4x^3-20x^2+13x-2`.

    Решение

    а) `x^4+4=x^4+4x^2+4-4x^2=(x^2+2)^2-(2x)^2=`

    `=(x^2+2-2x)(x^2+2+2x)`.

    Замечание

    Таким образом, сумму четвёртых степеней, в отличие от суммы квадратов, можно разложить на множители:

    `a^4+b^4=(a^2+b^2)^2-2a^2b^2=`

    `=(a^2-sqrt2ab+b^2)(a^2+sqrt2ab+b^2)`.

     б)* `x^3-3x^2-3x-1=2x^3-(x^3+3x^2+3x+1)`$$ ={\left(\sqrt[3]{2}x\right)}^{3}-{\left(x+1\right)}^{3}=$$

    $$ =\left(\sqrt[3]{2}x-x-1\right)\left(\sqrt[3]{4}{x}^{2}+\sqrt[3]{2}x\left(x+1\right)+{\left(x+1\right)}^{2}\right)$$.


    в) Вынесем `x^2` за скобки и сгруппируем:

    `x^4-x^3+2x^2-2x+4=x^2(x^2-x+2-2/x+4/x^2)=``x^2((x^2+4/x^2)-(x+2/x)+2)`.

    Обозначим   `x+2/x=t`. Тогда `x^2+4+4/x^2=t^2`, `x^2+4/x^2=t^2-4`, выражение в скобках  принимает вид:

    `t^2-4-t+2=t^2-t-2=(t+1)(t-2)=(x+2/x+1)(x+2/x-2)`.    

    В итоге получаем:

    `x^2(x+2/x+1)(x+2/x-2)=(x^2+2+x)(x^2+2-2x)=(x^2+x+2)(x^2-2x+2)`.

    Замечание

    Этот приём иногда используется для решения уравнений четвёртой степени; в частности, с его помощью решают возвратные уравнения (см. пример 12 е).

    г)* Можно убедиться, что никакой из рассмотренных выше методов не помогает решить задачу, а именно: рациональных корней уравнение не имеет (числа `+-1` и `+-2` – не корни); вынесение числа `x^2` за скобки и группировка слагаемых приводит к выражению

    `x^2(x^2-2/x^2_(4x-13/x)-20)`.

    Если здесь обозначить `4x-13/x=t`, то `x^2-2/x^2` через `t` рационально не выражается.

    Прибегнем к методу неопределённых коэффициентов. Пусть

    `x^4-4x^3-20x^2+13x-2=(x^2+ax+b)(x^2+cx+d)`.                     (17)

    Попробуем подобрать коэффициенты `a`, `b`, `c`, `d` так, чтобы (17) обратилось в верное равенство. Для этого раскроем скобки в правой части и приведём подобные слагаемые:

    `x^4-4x^3-20x^2+13x-2=`

    `=x^4+(a+c)x^3+(b+ac+d)x^2+(ad+bc)x+bd`.                          (18)

    Приравняем в (18) коэффициенты при одинаковых степенях в обеих частях уравнения. Получим систему уравнений:

                                   $$ \left\{\begin{array}{l}a+c=-4,\\ b+ac+d=-20,\\ ad+bc=13,\\ bd=-2.\end{array}\right.$$                                          (19)

    Мы будем пытаться найти целочисленные решения системы (19). Найти все решения системы (19) не проще, чем решить исходную задачу, однако нахождение целочисленных решений – разумеется, если они есть – нам по силам.

    Рассмотрим четвёртое уравнение. Возможны только два принципиально различных случая:

    1) `b=1` и `d=-2`;   

    2) `b=2` и `d=-1`. Рассмотрим каждый из них. Подставляем значения `b` и `d` в первые три уравнения:

    1) $$ \left\{\begin{array}{l}a+c=-4,\\ ac=-19,\\ -2a+c=13.\end{array}\right.$$

    Из первого и третьего уравнений системы получаем `c=5/3`; `a=-17/3`, что не удовлетворяет второму уравнению, поэтому система решений не имеет; пара чисел `b=1` и `d=-2` не подходит.

    2) $$ \left\{\begin{array}{l}a+c=-4,\\ ac=-21,\\ -a+2c=13.\end{array}\right.$$

    Эта система имеет одно решение `a=-7`, `c=3`. Значит, числа `a=-7`, `b=2`, `c=3`, `d=-1` являются решением системы (19), поэтому

    `x^4-4x^3-20+13x-2=(x^2-7x+2)(x^2+3x-1)`.

    Далее каждый из квадратных трёхчленов можно разложить на множители.

    Во многих ситуациях степень уравнения можно понизить с помощью замены переменных.

    Пример 12

    Решите уравнение:

    а) `(x-4)^2+|x-4|-2=0`;    

    б) `(x-7)^4+(x+1)^4=706`;

    в)  `1/(x^2+2x-3)+18/(x^2+2x+2)=18/((x+1)^2)`;

    г) `(x-2)(x-4)(x+5)(x+7)=360`;

    д) `(4x)/(4x^2-8x+7)+(3x)/(4x^2-10x+7)=1`;

    е) `25x^4-150x^3+94x^2+150x+25=0`.

    Решение

    а) Обозначим `|x-4|=t`. Тогда `(x-4)^2=t^2` и получаем `t^2+t-2=0`, откуда $$ \left[\begin{array}{l}t=1,\\ t=-2.\end{array}\right.$$

    Если `t=-2`, то решений нет.

    Если `t=1`, то `|x-4|=1 iff`$$ \left[\begin{array}{l}x=3,\\ x=5.\end{array}\right.$$

    Ответ

    `x=3`; `x=5`.

    б) Обозначим `x-3=t`. Тогда получим

    `(t-4)^4+(t+4)^4=706 iff(t^4-16t^3+96t^2-256t+256)+`

    `+(t^4+16t^3+96t^2+256+256)=706 iff2t^4+192t^2-194=0iff`

    `ifft^4+96t^2-97=0 iff(t^2-1)(t^2+97)=0 ifft=+-1`.

    Значит, `x_1=4`, `x_2=2`.        

    Ответ

    `x=2`, `x=4`.

    Замечание

    Уравнения вида `(x-a)^4+(x-b)^4=c` с помощью замены `x-((a+b))/2=t` сводятся к биквадратным.

    в) Обозначим `x^2+2x+1=t`. Тогда `1/(t-4)+18/(t+1)=18/tiff` 

    $$ \iff \left\{\begin{array}{l}{t}^{2}+t+18\left({t}^{2}-4t\right)=18\left({t}^{2}-3t-4\right)\\ t\left(t+1\right)\left(t-4\right)\ne 0\end{array}\right.\iff $$

    $$ \iff \left\{\begin{array}{l}{t}^{2}-17t+72=0,\\ t\left(t+1\right)\left(t-4\right)\ne 0\end{array}\right.\iff \left[\begin{array}{l}t=8,\\ t=9.\end{array}\right.$$ 

    Теперь найдём `x:`

    $$ \left[\begin{array}{l}{\left(x+1\right)}^{2}=8,\\ {\left(x+1\right)}^{2}=9\end{array}\right.\iff \left[\begin{array}{l}x+1=\pm 2\sqrt{2},\\ x+1=\pm 3\end{array}\right.\iff $$

    $$ \iff \left[\begin{array}{l}x=-1-2\sqrt{2},\\ x=-1+2\sqrt{2},\\ x=2,\\ x=-4.\end{array}\right.$$

    Ответ

    `x=-1+-2sqrt2`;  `x=2`;  `x=-4`.

    г) Перемножим первую скобку с третьей, а вторую с четвёртой (убедитесь сами, что только такая группировка сомножителей помогает свести уравнение к квадратному).

    `((x-2)(x+5))*((x-4)(x+7))=360iff`

    `iff(x^2+3x-10)(x^2+3x-28)=360`.

    Обозначим `x^2+3x-19=t`. Тогда уравнение принимает вид:

    `(t+9)(t-9)=360ifft^2=441ifft=+-21`,

    откуда

    $$ \left[\begin{array}{l}{x}^{2}+3x-19=21,\\ {x}^{2}+3x-19=-21\end{array}\right.\iff \left[\begin{array}{l}{x}^{2}+3x-40=0,\\ {x}^{2}+3x+2=0\end{array}\right.\iff \left[\begin{array}{l}x=5,\\ x=-8,\\ x=-1,\\ x=-2.\end{array}\right.$$

    Ответ

    `x=-8`; `x=-2`; `x=-1`; `x=5`.

    д) Разделим числитель и знаменатель каждой дроби на `x` (`x=0` не является решением уравнения):

    `4/(4x-8+7/x)+3/(4x-10+7/x)=1`.  Обозначим `4x+7/x-8=t`. Тогда

    $$ {\displaystyle \frac{4}{t}}+{\displaystyle \frac{3}{t-2}}=1\iff \left\{\begin{array}{l}4\left(t-2\right)+3t={t}^{2}-2t,\\ t\left(t-2\right)\ne 0\end{array}\right.\iff $$

    $$ \iff \left\{\begin{array}{l}{t}^{2}-9t+8=0,\\ t\left(t-2\right)\ne 0\end{array}\right.\iff \left[\begin{array}{l}t=1,\\ t=8.\end{array}\right.$$

    Теперь найдём `x:`   $$ \left[\begin{array}{l}4x+{\displaystyle \frac{7}{x}}-8=1,\\ 4x+{\displaystyle \frac{7}{x}}-8=8\end{array}\right.\iff \left[\begin{array}{l}4{x}^{2}-9x+7=0,\\ 4{x}^{2}-16x+7=0.\end{array}\right.$$

    Уравнение `4x^2-9x+7=0` не имеет решений, а у уравнения `4x^2-16x+7=0` корнями являются числа  `x=7/2` и `x=1/2`.

    Ответ

    `x=1/2`; `x=7/2`.

    е) `x!=0` (убеждаемся подстановкой), поэтому при делении обеих частей уравнения на `x^2` получим уравнение, равносильное исходному:

    `25x^2-150x+94+150*1/x+25*1/x^2=0iff`

    `iff(25x^2+25*1/x^2)-(150x-150*1/x)+94=0iff`

    `iff25(x^2+1/x^2)-150(x-1/x)+94=0`.

    Обозначим `x-1/x=t`. Тогда `t^2=(x-1/x)^2=x^2-2+1/x^2`, откуда `x^2+1/x^2=t^2+2`. Подставляем и решаем уравнение относительно `t:`

    `25(t^2+2)-150t+94=0iff25t^2-150t+144=0iff5t^2-30t+144/5=0`.

    Коэффициент при `t` чётный; по формуле четверти дискриминанта:

    `D/4=15^2-5*(144)/5=225-144=81`; `t_1=(15+9)/5=24/5`; `t_2+(15-9)/5=6/5`. 

    Теперь найдём `x:`

    $$ \left[\begin{array}{l}x-{\displaystyle \frac{1}{x}}={\displaystyle \frac{24}{5}},\\ x-{\displaystyle \frac{1}{x}}={\displaystyle \frac{6}{5}}\end{array}\right.\iff \left[\begin{array}{l}5{x}^{2}-24x-5=0,\\ 5{x}^{2}-6x-5=0\end{array}\right.\iff \left[\begin{array}{l}x=-{\displaystyle \frac{1}{5}};\\ x=5;\\ x={\displaystyle \frac{3\pm \sqrt{34}}{5}}.\end{array}\right.$$

     

    Ответ

    `5`; `-1/5`; `(3+-sqrt(34))/5`.

    Замечания

    1) Уравнения вида `ax^4+bx^3+cx^2+bx+a=0` называются возвратными. Для их решения делят обе части уравнения на `x^2` и вводят замену  `x+-1/x=t`.

    2) Некоторые другие уравнения четвёртой степени решаются с помощью замены `ax+b/x=t`. (См. пример 11в).


  • Введение

    В каждом параграфе сгруппированы теоремы, которые в учебнике рассыпаны по разным главам. Здесь мы компактно напоминаем теорию, приводим примеры решения характерных задач, доказываем некоторые дополнительные утверждения, показываем определённые приёмы решений.

    Прежде чем приступать к выполнению домашнего задания, рекомендуем проработать предложенный материал «с карандашом», параграф за параграфом: вспомнить одни и узнать другие теоремы, выписать и выучить формулы, прорешать приведённые примеры.

    Контрольные вопросы составлены так, чтобы проверить, как Вы усвоили темы Задания, есть ли пробелы в знаниях, умеете ли Вы решать несложные задачи на доказательство, делать выводы из разобранных теорем, а также видеть «подводные камни» в вопросах и задачах.

    Приступая к ответам на контрольные вопросы, сделайте рисунок (если надо) на черновике, уясните вопрос, подберите нужный пример или продумайте доказательство. Окончательные ответы должны быть достаточно подробные. В случае отрицательного ответа должен быть приведён опровергающий пример. Примеры ответов приведены в конце задания.

    Задачи могут Вам показаться сложнее решаемых в школе. Если задача не получается, найдите в тексте подобную ей задачу и разберите её решение. Либо подумайте, на какую тему – и повторите соответствующий параграф, а затем сделайте ещё одну попытку.

    Может случиться, что не все задачи удалось решить. Печально, но не следует приходить в отчаяние. Ведь и не предполагается, что все поступившие в ЗФТШ уже все знают и умеют. Школа как раз и хочет научить Вас, поэтому высылайте то, что получилось. Обратно Вы по­лучите проверенную Вашу тетрадь и, кроме того, подробные решения всех задач и ответы на все вопросы. Это даст Вам возможность разобрать «не поддавшиеся» задачи, узнать, как они решаются, и в другой раз, в следующем задании, в работе в школе, на олимпиаде, выступить успешнее.

    Каждый ответ и решение каждой задачи оцениваются в очках. За пол­ное  правильное  решение  или  верный ответ выставляется то число очков, которое указано в скобках после номера вопроса или задачи. За ошибки, недочёты снимается некоторое число очков. За неверный ответ на вопрос или  неправильное  решение задачи ставится ноль очков.

    В решениях и доказательствах иногда делаем по 2 - 3 рисунка для того, чтобы легче было следить за ходом рассуждений.

  • §1. Прямоугольный треугольник. Метрические соотношения.

    Пусть `ABC` прямоугольный треугольник с прямым углом `C` и острым углом при вершине `A`, равным `alpha` (рис. 1).

    Используем обычные обозначения:

    `c` - гипотенуза `AB`;

    `a`  и `b` – катеты `BC` и `AC` (по-гречески "kathetos - катет" означает отвес, поэтому такое изображение прямоугольного треугольника нам представляется естественным);

    `a_c` и `b_c` – проекции `BD`  и `AD`  катетов на гипотенузу;

    `h` – высота `CD`, опущенная на гипотенузу;

    `m_c` – медиана `CM`, проведённая к гипотенузе;

    `R` – радиус описанной окружности;

    `r` – радиус вписанной окружности.

    Напомним, что если `alpha` - величина острого угла `A` прямоугольного треугольника `ABC` (см. рис. 1), то

    `sin alpha = a/c`,  `cos alpha = b/c`   и    `"tg"alpha = a/b`.

    Утверждение

    Значения синуса, косинуса и тангенса острого угла прямоугольного треугольника зависят только от меры угла и не зависят от размеров и расположения треугольника.

    Теорема Пифагора

    В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов:

    `c^2 = a^2 + b^2`

    Доказательство теоремы повторите по учебнику.

    Выведем ряд соотношений между элементами прямоугольного треугольника.

    свойство 1

    Квадрат катета равен произведению гипотенузы и его проекции на гипотенузу

    `a^2 = c * a_c`

    `b^2 = c * b_c` 

    Доказательство


    Если `/_ A = alpha`   (см. рис. 1), то `/_ CBD = 90^@ - alpha`   и `/_ BCD = alpha`.  Из треугольника `ABC` `sin alpha = (BC)/(AB)`,  а из треугольника `BCD` `sin alpha = (BD)/(BC)`.

    Значит, `(BC)/(AB) = (BD)/(BC)`, откуда  `BC^2 = AB * BD`, т. е. `a^2 = c * a_c` Аналогично доказывается второе равенство. 

    свойство 2

    Квадрат высоты, опущенной на гипотенузу, равен произведению проекции катетов на гипотенузу

    `h^2 = a_c * b_c`

    Доказательство


    Из треугольника `ACD`  (рис. 1) имеем `"tg"alpha = (CD)/(AD)`, а из треугольника `BCD` `"tg"alpha = (BD)/(CD)`.

    Значит `(BD)/(CD) = (CD)/(AD)`,  откуда `CD^2 = AD * BD`,  т.  е.  `h^2 = a_c * b_c`.


    свойство 3

    Произведение катетов равно произведению гипотенузы и высоты, опущенной на гипотенузу

    `a * b = c * h`

    Доказательство


    Из треугольника `ABC` имеем `sin alpha = (BC)/(AB)`, а из треуольника `ACD`  `sin alpha = (CD)/(AC)`.

    Таким образом, `(BC)/(AB) = (CD)/(AC)`,  откуда `BC * AC = AB * CD`, т. е.  `a * b = c * h`.


    свойство 4

    Медиана, проведённая к гипотенузе, равна половине гипотенузы, т. е.

    `m_c = 1/2 c`

    Доказательство


    Пусть `AM = BM`. Проведём $$ MK\Vert BC$$ (рис. 2), тогда по теореме Фалеса  `AK = CK`

    .

    Кроме того, из того, что `BC _|_ AC`  и  $$ MK\Vert BC$$  следует `MK _|_ AC`. В прямоугольных треугольниках `CMK` и `AMK` катет `MK` общий, катеты `CK` и `AK` равны.  Эти треугольники равны и `CM = AM`,  т. е.  `CM = 1/2 AB`.


    Полезно также запомнить, что медиана к гипотенузе разбивает треугольник на два равнобедренных треугольника.

    свойство 5

    Радиус окружности, описанной около прямоугольного треугольника, равен половине гипотенузы

    `R = m_c = 1/2 c` 

    Доказательство


    Это следует из Свойства 4, действительно, `MA = MB = MC`,  следовательно, окружность с центром в точке  `M` и  радиуса `c/2` проходит через три вершины.

    свойство 6

    Сумма катетов равна удвоенной сумме радиусов описанной и вписанной окружностей

    `a + b = 2(R + r)`    или    `a + b = c + 2r`

    Доказательство


    Пусть `O` - центр вписанной окружности и `F`, `N`  и `S` - точки касания сторон треугольника `ABC` (рис. 3), тогда `OF_|_ BC`, `ON _|_ AC`, `OS _|_ AB`   и   `OF = ON = OS = r`. Далее, `OFCN` - квадрат со стороной `r`, поэтому `BF = BC - FC`,  `AN = AC - CN`,  т. е.  `BF = a - r`  и `AN = b - r`.

    Прямоугольные треугольники `AON` и `AOS` равны (гипотенуза `AO` - общая, катеты `ON` и `OS`  равны), следовательно,  `AS = AN`,  т.  е.  `AS = b - r`.

    Аналогично доказывается, что  `BS = a - r`, поэтому из `AB = AS + BS`  следует   `c = (b - r) + (a - r)`,  т. е. `a + b = c + 2r`. Зная, что  `c = 2R`, окончательно получаем  `a + b = 2(R + r)`.

    ЗАМЕЧАНИЕ

    Равенства, доказанные в Свойствах 1 и 2, записываются также как:

    `a = sqrt(c * a_c)`
    `b = sqrt(c * b_c)`
    `h = sqrt(a_c * b_c)`
    и, соответственно, формулируются утверждения
    Утверждения

    Катет есть среднее пропорциональное между гипотенузой и его проекцией на гипотенузу.

    Высота, опущенная на гипотенузу, есть среднее пропорциональное между проекциями катетов на гипотенузу.

    Приведём примеры применения доказанных метрических соотношений в прямоугольном треугольнике. 

    Пример 1

    Проекции катетов прямоугольного треугольника на гипотенузу равны `9` и `16` . Найти радиус вписанной окружности.


    Решение

    1. Пусть  `a_c = 9`, `b_c = 16` (рис. 4),  тогда  `c = a_c + b_c = 25`.

    2. По Свойству 1:  `a = sqrt(c * a_c) = 15`,   `b = sqrt(c * b_c) = 20`.

    3. По Свойству 6:  находим радиус   `r = 1/2 (a + b - c) = 5`.

    Пример 2

    В прямоугольном треугольнике из вершины прямого угла проведены медиана и высота (рис. 5), расстояние между их основаниями равно `1`. Найти катеты, если известно, что один из них в два раза больше другого.


    Решение

    1. Заметим, что `a_c = c/2 - 1`, a `b_c = c/2 + 1`  (рис. 5), откуда  `a^2 = c * a_c = c(c/2 - 1)`  и  `b^2 = c * b_c = c(c/2 + 1)`.

    2. По условию  `b = 2a`,  значит  `b^2 = 4a^2`,  т. е.  `c(c/2 + 1) = 4c(c/2 - 1)`.
       Находим  `c = (10)/3`,  и  `a = sqrt(c(c/2 - 1)) = 2/3 sqrt5`  и  `b = 2a = 4/3 sqrt5`.





  • §2. Замечательные точки треугольника

    Первые две теоремы Вам хорошо известны, две другие – докажем.


    Теорема 1

    Три биссектрисы треугольника пересекаются в одной точке, которая есть центр вписанной окружности.


    Доказательство

    основано на том факте, что биссектриса угла есть геометрическое место точек, равноудалённых от сторон угла.

    Теорема 2

    Три серединных перпендикуляра к сторонам треугольника пересекаются в одной точке, которая есть центр описанной окружности.


    Доказательство

    основано на том, что серединный перпендикуляр отрезка есть геометрическое место точек, равноудалённых от концов этого отрезка.

    Теорема 3

    Три высоты или три прямые, на которых лежат высоты треугольника, пересекаются в одной точке. Эта точка называется ортоцентром треугольника.


    Доказательство

    Через вершины треугольника `ABC` проведём прямые, параллельные противолежащим сторонам (рис. 6).

    В пересечении образуется треугольник `A_1 B_1 C_1`.

    По построению `ABA_1C` - параллелограмм, поэтому `BA_1 = AC`. Аналогично устанавливается, что  `C_1B = AC`, следовательно  `C_1B = AC`, точка `B` - середина отрезка `C_1A_1`.

    Совершенно так же показывается, что `C` - середина `B_1A_1` и `A` - середина `B_1 C_1`.  

    Пусть `BN` - высота треугольника `ABC`, тогда для отрезка `A_1 C_1` прямая `BN` - серединный перпендикуляр. Откуда следует, что три прямые, на которых лежат высоты треугольника `ABC`, являются серединными перпендикулярами трёх сторон треугольника  `A_1B_1C_1`; а такие перпендикуляры пересекаются в одной точке (теорема 2).

    Если треугольник остроугольный, то каждая из высот есть отрезок, соединяющий вершину и некоторую точку противолежащей стороны. В этом случае (см. рис. 6) точки `B` и `N` лежат в разных полуплоскостях, образуемых прямой `AM`, значит отрезок `BN` , пересекает прямую `AM`, точка пересечения лежит на высоте `BN`, т. е. лежит внутри треугольника.

    В прямоугольном треугольнике точка пересечения высот есть вершина прямого угла.

    Теорема 4

    Три медианы треугольника пересекаются в одной точке и каждая медиана делится точкой пересечении в отношении `2:1`, считая от вершины. Эта точка называется центром тяжести (или центром масс) треугольника.
    Есть различные доказательства этой теоремы. Приведём то, которое основано на теореме Фалеса.


    Доказательство

    Пусть  `E`, `D` и `F` - середины сторон `AB`, `BC` и `AC` треугольника `ABC` (рис. 7а).

    Проведём медиану `AD` и через точки `E` и `F`  параллельные ей прямые `EK` и `FL`. По теореме Фалеса  `BK = KD` `(/_ABC`, $$ EK\Vert AD)$$ и  `DL = LC` `(/_ACB`,  $$ AD\Vert FL)$$. Но `BD = DC = a//2`,  поэтому `BK = KD = DL = LC = a//4`. По тойже теореме `BN = NM = MF` `(/_ FBC`, $$ NK\Vert MD\Vert FL)$$, поэтому `BM = 2MF`.

    Это означает, что медиана `BF` в точке `M` пересечения с медианой `AD` разделились в отношении `2:1` считая от вершины.

    Докажем, что и медиана `AD` в точке `M` разделилась в том же отношении. Рассуждения аналогичны, иллюстрация на рисунке 7б.

    Если рассмотреть медианы `BF` и `CE` то также можно показать, что они пересекаются в той точке, в которой медиана `BF` делится в отношении `2:1` т. е. в той же точке `M`. И этой точкой медиана `CE` также разделится в отношении `2:1`, считая от вершины.

    Пример 3

    Две стороны треугольника равны соответственно `6` и `8`. Медианы, проведённые к этим сторонам, пересекаются под прямым углом. Найти третью сторону треугольника.


    Решение

    1. Пусть `AC = 6`, `BC = 8` и медианы `AN` и `BM` пересекаются в точке `O` и перпендикулярны (рис. 8).

    Положим `AN = n` и `BM = m`. Из доказанной теоремы следует, что `AO = 2/3 n`    и    `BO = 2/3 m`.
    2. Медианы перпендикулярны, поэтому треугольники `AOM` и `BON` прямоугольные.
    Применим теорему Пифагора (ещё учтём, что `AM = 1/2 AC = 3` и `BN = 1/2 BC = 4`),  

    получим: $$
    \left\{
    \begin{aligned}
    16=\frac49 m^2+\frac19 n^2,\\
    9=\frac19 m^2 + \frac49 n^2.\\
    \end{aligned}
    \right.
    $$
    Сложив эти равенства, найдём, что `m^2 + n^2 = 45`.
    3. Длина стороны `AB`  находится из прямоугольного треугольника `AOB:` 

    `x^2 = 4/9m^2 + 4/9n^2 = 4/9(m^2 + n^2) = 20`.

      Итак, `AB = 2 sqrt5`.

       Свойства высот и биссектрис будут далее рассмотрены в §3.

  • §3. Подобие треугольников

    Две фигуры `F` и `F'` называются подобными, если они переводятся друг в друга преобразованием подобия, т. е. таким преобразованием, при котором расстояния между точками изменяются (увеличиваются или уменьшаются) в одно и то же число раз. Если фигуры `F` и `F'` подобны, то пишется `F ~ F'`. Напомним, что запись подобия треугольников `Delta ABC ~ Delta A_1 B_1 C_1` означает, что вершины, совмещаемые преобразованием подобия, стоят на соответствующих местах, т. е. `A` переходит в `A_1`, `B` - в `B_1`, `C` - в `C_1`.

    Из свойств преобразования подобия следует, что у подобных фигур соответствующие углы равны, а соответствующие отрезки пропорциональны. В частности, если `Delta ABC ~ Delta A_1B_1C_1`, то `/_ A = /_ A_1`, `/_ B = /_ B_1`, `/_ C = /_ C_1`,

    `A_1B_1 : AB = B_1C_1 : BC = C_1A_1 : CA`.  

    Признаки подобия треугольников

    Два треугольника подобны, если:

    1. два угла одного соответственно равны двум углам другого;

    2. две стороны одного пропорциональны двум сторонам другого и углы, образованные этими сторонами, равны;

    3. три стороны одного треугольника пропорциональны трём сторонам другого.

    В решении задач и доказательстве теорем часто используется утверждение, которое, чтобы не повторять каждый раз, докажем сейчас отдельно.

    Лемма

    Если две стороны треугольника пересекает прямая, параллельная третьей стороне (рис. 9), то она отсекает треугольник, подобный данному.


    Доказательство

    Действительно, из параллельности `MN` и `AC` следует, что углы `1` и `2` равны. Треугольники `ABC` и `MBN` имеют два равных угла: общий угол при вершине `B`  и равные углы `1` и `2`. По первому признаку эти треугольники подобны.

    И сразу применим это утверждение в следующем примере, в котором устанавливается важное свойство трапеции.

    Пример 4 (важное свойство трапеции)

    Прямая, проходящая через точку пересечения диагоналей трапеции параллельно её основаниям, пересекает боковые стороны трапеции в точках `M` и `N`. Найти длину отрезка `MN`, если основания трапеции равны `a` и `b`. 

    Решение

    1. Пусть `O` - точка пересечения диагоналей, `AD = a`, `BC = b`. Прямая `MN` параллельна основанию `AD` (рис. 10а), следовательно, $$ MO\parallel AD$$,  треугольники `BMO` и `BAD` подобны, поэтому

     `(MO)/(AD) = (BO)/(BD)`                                                                        (1)

    2.  $$ AD\parallel BC$$, `Delta AOD ~ Delta COB` по двум углам (рис. 10б):

    `(OD)/(OB) = (AD)/(BC)`,  то есть `(OD)/(OB) = a/b`. 

    3. Учитывая, что `BD = BO + OD`  находим отношение 

      `(BO)/(BD) = (BO)/(BO + OD) = 1/(1 + OD//BO) = b/(a + b)`.               

    Подставляя это в (1), получаем `MO = (ab)/(a + b)`; аналогично устанавливаем, что `ON = (ab)/(a + b)`, таким образом `MN = (2ab)/(a + b)`.

    Пример 5 (полезный метод решения)

    Точки `M` и `N` лежат на боковых сторонах `AB` и `CD` трапеции `ABCD` и  $$ MN\parallel AD$$ (рис. 11а). Найти длину `MN`, если `BC = a`, `AD = 5a`, `AM : MB = 1:3`.

    Решение

    1. Пусть  $$ BF\Vert CD$$  и  $$ ME\Vert CD$$ (рис. 11б), тогда `/_ 1 = /_ 2`, `/_ 3 = /_ 4` (как соответствующие углы при пересечении двух параллельных прямых третьей) и  `Delta AME ~ Delta MBF`. Из подобия следует `(AE)/(MF) = (AM)/(MB) = 1/3`. 

    2. Обозначим `MN = x`. По построению `BCNF` и `MNDE` - параллелограммы,  `FN = a`, `ED = x` и, значит, `MF = x - a`; `AE = 5a - x`. Итак, имеем `(5a - x)/(x - a) = 1/3`, откуда находим `x = 4a`. 

    Напомним, что отношение периметров подобных треугольников равно отношению их сходственных сторон. Верно также следующее утверждение: отношение медиан, биссектрис и высот, проведённых к сходственным сторонам в подобных треугольниках, равно отношению сходственных сторон.

    Отношение радиусов вписанных окружностей, как и отношение радиусов описанных окружностей, в подобных треугольниках также равно отношению сходственных сторон.

    Попытайтесь доказать это самостоятельно.

    Признаки подобия прямоугольных треугольников

    Прямоугольные треугольники подобны, если:

    1. они имеют по равному острому углу;

    2. катеты одного треугольника пропорциональны катетам другого;

    3. гипотенуза и катет одного треугольника пропорциональны гипотенузе и катету другого.

    Два первых признака следуют из первого и второго признаков подобия треугольников, поскольку прямые углы равны. Третий признак следует, например, из второго признака подобия и теоремы Пифагора.

    Заметим, что высота прямоугольного треугольника, опущенная на гипотенузу, разбивает его на два прямоугольных треугольника, подобных между собой и подобных данному. Доказанные в § 1 метрические соотношения Свойств 1, 2, 3 можно доказать, используя подобие указанных треугольников.

    СВОЙСТВА ВЫСОТ И БИССЕКТРИС

    Пример 6 (Первая лемма о высотах)

    Если в треугольнике `ABC` нет прямого угла, `A A_1` и `BB_1` - его высоты, то  `Delta A_1B_1C ~ Delta ABC` (этот факт можно сформулировать так: если соединить основания двух высот, то образуется треугольник, подобный данному).

    Доказательство

    Как всегда, полагаем `AB = c`, `BC = a`, `AC = b`.
    а) Треугольник `ABC` остроугольный (рис. 12а).


    В треугольнике `A A_1C` угол `A_1` - прямой,  `A_1C = AC cos C = ul (b cos C)`.

    В треугольнике `B B_1C`  угол `B_1`  - прямой, `B_1C = BC cos C = ul (a cos C)`. 

    В треугольниках `A_1 B_1C` и `ABC` угол `C` общий, прилежащие стороны пропорциональны: `(A_1C)/(AC) = (B_1C)/(BC) = cos C`. 

    Таким образом, `Delta A_1 B_1 C ~ Delta ABC` с коэффициентом подобия  `ul (cos C)`. (Заметим, что `/_ A_1 B_1 C = /_B`).
    б) Треугольник `ABC` - тупоугольный (рис. 12б), угол `C` - острый, высота `A A_1` проведена из вершины тупого угла.

    Рассуждения аналогичны:

    $$\left.\begin{array}{rcl}
    \Delta AA_1C, \angle A_1 =90^\circ \Rightarrow A_1C=AC\cdot \cos C =b \cos C;\\
    \Delta BB_1C, \angle B_1 =90^\circ \Rightarrow B_1C=BC\cdot \cos C =a \cos C,
    \end{array}
    \right\}\Rightarrow \Delta A_1B_1C\sim \Delta ABC,$$

    коэффициент подобия `ul (cos C)`,  `/_ A_1 B_1 C = /_B`.

    Случай, когда угол `B` тупой, рассматривается аналогично.
    в) Треугольник `ABC` - тупоугольный (рис. 12в), угол `C` - тупой, высоты `A A_1` и `B B_1`  проведены из вершин острых углов.

    `varphi = /_ BCB_1 = /_ ACA_1 = 180^@ - /_ C`, `cos varphi = - cos C = |cos C|`.

    $$\left.\begin{array}{rcl}
    \Delta AA_1C, \angle A_1 =90^\circ \Rightarrow A_1C=AC\cdot \cos\varphi =b |\cos C|;\\
    \Delta BB_1C, \angle B_1 =90^\circ \Rightarrow B_1C=BC\cdot \cos\varphi =b |\cos C|,
    \end{array}
    \right\}\Rightarrow \Delta A_1B_1C\sim \Delta ABC$$

    с коэффициентом подобия `ul (k = |cos C|`, `(/_A_1B_1C=/_B)`. 

    Пример 7

    В остроугольном треугольнике `ABC` проведены высоты `A A_1`, `B B_1`, `C C_1` (рис. 13).

    Треугольник, вершинами которого служат основания высот, называется «высотным» треугольником (или ортотреугольником).

    Доказать, что лучи `A_1 A`, `B_1 B` и `C_1 C` являются биссектрисами углов высотного треугольника `A_1 B_1 C_1` (т. е. высоты остроугольного треугольника являются биссектрисами ортотреугольника).

    Решение

    По первой лемме о высотах `Delta A_1 B_1 C ~ Delta ABC`, `/_ A_1 B_1 C = /_ B`.

    Аналогично `Delta AB_1C_1 ~ Delta ABC`, `/_ AB_1 C_1 = /_ B`, т. е.  `/_A_1 B_1C = /_ AB_1 C_1`.

    Так как `BB_1` - высота, то `/_AB_1B = /_CB_1B = 90^@`. 

    Поэтому `/_C_1B_1B = /_A_1B_1B = 90^@ - /_B`,  т. е. луч `B_1B` - биссектриса угла `A_1B_1C_1`. 

     Аналогично доказывается, что `A A_1` - биссектриса угла `B_1 A_1 C_1` и `C_1C` - биссектриса угла `B_1 C_1 A_1`.

    Пример 8 (Вторая лемма о высотах)

    Высоты `A A_1`, `B B_1` треугольника `ABC` пересекаются в точке `H` (рис. 14). Доказать, что имеет место равенство `AH * H A_1 = BH * HB_1`, т. е. произведение отрезков одной высоты равно произведению отрезков другой высоты.


    Решение

    `Delta AHB_1 ~ Delta BHA_1`, имеют по равному острому углу при вершине `H`  (заметим, что  этот  угол  равен углу `C`). Из подобия следует `(AH)/(BH) = (HB_1)/(HA_1)`,  откуда  `AH * HA_1 = BH * HB_1`. Для тупоугольного треугольника утверждение также верно. Попробуйте доказать самостоятельно.

    Пример 9

    Высоты `A A_1` и `B B_1` треугольника `ABC` пересекаются в точке `H`, при этом  `BH = HB_1` и `AH = 2 HA_1` (рис. 15). Найти величину угла `C`.


    Решение

    1. По условию пересекаются высоты, поэтому треугольник остроугольный. Положим  `BH = HB_1 = x` и `HA_1 = y`, тогда  `AH = 2y`. По второй лемме о высотах  `AH * HA_1 = BH * HB_1`,   т. е.  `x^2 = 2y^2`,  `x = y sqrt 2`. 
    2. В треугольнике `AHB_1` угол `AHB_1` равен углу `C` (т. к. угол `A_1 AC` равен `90^@ - C`), поэтому `cos C = cos (/_ AHB_1) = x/(2y) = sqrt 2/ 2`. Угол `C` - острый,  `/_ C = 45^@`.

    Ответ:

    `/_ C = 45^@`. 

    Установим ещё одно свойство биссектрисы угла треугольника.

    Теорема 5

    Биссектриса внутреннего угла треугольника делит противолежащую этому углу сторону на отрезки, пропорциональные прилежащим сторонам, т. е. если `AD` -  биссектриса треугольника `ABC`, то  `(BD)/(DC) = (AB)/(AC)`.

    Доказательство

    Проведём через точку `B` прямую параллельно биссектрисе `DA`, пусть `K` - её точка пересечения с прямой `AC` (рис. 16).

    Параллельные прямые `AD` и `KB` пересечены прямой `KC`, образуются равные углы `1` и    `3`. Те же прямые пересечены и прямой `AB`, здесь равные накрест лежащие  углы  `2` и `4`.   Но `AD` - биссектриса, `/_1 = /_2`,  следовательно  `/_3 = /_4`. Отсюда следует, что  треугольник  `KAB`  равнобедренный, `KA = AB`.
    По теореме о пересечении сторон угла параллельными прямыми  из  $$ AD\Vert KB$$  следует  `(BD)/(DC) = (KA)/(AC)`.   Подставляя сюда вместо  `KA` равный ему отрезок `AB`,  получим `(BD)/(DC) = (AB)/(AC)`.  Теорема доказана.

    Пример 10

    Биссектриса треугольника делит одну из сторон треугольника на отрезки длиной `3` и `5`.  Найти в каких пределах может изменяться периметр треугольника.

    Решение

    Пусть `AD` - биссектриса и `BD = 3`, `DC = 5` (рис. 17).

    По свойству биссектрисы `AB : AC = 3:5`. Положим `AB = 3x`, тогда `AC = 5x`.  Каждая сторона треугольника должна быть меньше суммы двух других сторон, т. е. `ul (5x < 3x + 8)`,   `3x < 5x + 8`  и  `ul (8 < 3x + 5x)`.  Получаем ограничения `x<4` и `x > 1`.

    Периметр треугольника  `P = 8 + 8x = 8(1 + x)`,  поэтому `ul (16 < P < 40)`. 

  • §4. Задачи о делении отрезка

    Рассмотрим задачи, решения которых основаны на теореме о пресечении угла параллельными прямыми и подобии треугольников. Напомним теорему:
     

    Теорема 6

    Параллельные прямые, пересекая стороны угла, отсекают на них пропорциональные отрезки, т. е. если $$ {l}_{1}\parallel {l}_{2}$$, то `(AC)/(AB) = (AC_1)/(AB_1) = (C C_1)/(BB_1)`  или `m/x = (m + n)/(x + y) = n/y`. 

    Пример 11

    Точка `N` лежит на стороне `AC` треугольника `ABC` причём `AN:NC = 2:3`. Найти, в каком отношении медиана  `AM` делит отрезок `BN`. 

    Решение

    1. Пусть `O` - точка пересечения медианы `AM` и отрезка `BN`. Требуется найти отношение `BO:ON`.   Обозначим `AN = 2x`, тогда `NC = 3x`. Отметим, что  `BM = MC` (рис. 18а).


    Проведём прямую `NK` параллельно медиане `AM` (рис. 18б).

    Параллельные прямые `AM` и `NK` пересекают стороны угла `MCA`, следовательно, `(MK)/(KC) = 2/3`.   Полагаем `ul (MK = 2y)`, тогда  `KC = 3y`,    а т. к.  `BM = MC`,  то `ul (BM = 5y)`. 
    2. Те же прямые пересекают стороны угла `NBC` (см. рис. 18в), поэтому  `(BO)/(ON) = (BM)/(MK) = (5y)/(2y)`,  т. е.  `(BO)/(ON) = 5/2`. 

    Пример 12

    Точки `D` и `F` лежат на сторонах `AB` и `BC` треугольника `ABC` (рис. 19), при этом `AD:DB = 1:2`  и  `BF:FC = 2:3`.  Прямая `DF` пересекает прямую `AC` в точке `K`.  Найти отношение `AK:AC`. 
       

    Решение

    1. Пусть  `AD = x`, `BF = 2y`, `KA = z`. Тогда  `DB = 2x` и `FC = 3y`.

    Проводим прямую  `AE`,  параллельную стороне  `CB`.

    `Delta ADE ~ Delta BDF| => AE:BF = AD:BD => ul(AE = y)`.

    2. `Delta KAE ~ Delta KCF | => (KA)/(KC) = (AE)/(CF)`,   т. е. `z/(a + z) = y/(3y)`.    Находим `a = 2z`. 

    Ответ:

    `AK:AC = 1:2`. 

    Пример 13

    В треугольнике `ABC` точки `D` и `K` лежат соответственно на сторонах `AB` и `AC`, отрезки `BK` и `CD` пересекаются в точке `O` (рис. 20), при этом  `BO:OK = 3:2` и  `CO:OD = 2:1`. Найти в каком отношении точка `K` делит сторону `AC`,  т. е. `AK:KC`.


    Решение

    1. Полагаем `OD = x`, `OK = 2y`,  тогда `OC = 2x` и `BO = 3y`. 
    Проводим прямую  $$ KF\parallel CD$$ (рис. 20б).


    Из $$ KF\parallel OD$$ `(/_ ABK)` следует `BD:DF = 3:2`. Обозначаем `DF = 2p`,  тогда `BD = 3p`.

    2.  `Delta FBK ~ Delta DBO`, `FK:DO = FB:DB`, откуда  `FK = (5p)/(3p) * x = 5/3 x`.

    3. `Delta AFK ~ Delta ADC`, `AF:AD = FK:DC`. Обозначаем `AF = z`, имеем  `z/(z + 2p) = (5/3 x)/(3x)`,
    откуда `z = 5/2 p`, т. е.  `AF = 5/2 p`. 

    4. Рассматриваем `/_ BAC`, $$ FK\parallel DC$$, по теореме  `AK:KC = AF:FP`,  т. е.   `AK:KC = 5:4`. 

    Все три рассмотренные задачи могут быть решены с применением теоремы Менелая.

    Теорема Менелая (о треугольнике и секущей)

    Пусть в треугольнике `ABC` точка `A_1` лежит на стороне `BC`, точка `C_1` - на  стороне `AB`, а точка `B_1` - на продолжении стороны `AC` за точку `C`.

    Если точки `A_1`, `B_1` и `C_1` лежат на одной прямой (рис. 21), то выполняется равенство

                       `(AC_1)/(C_1 B) * (BA_1)/(A_1C) * (CB_1)/(B_1A) = 1`.                                               `(**)`

    Обратно, если выполняется равенство `(**)`, то точки `A_1`, `B_1`  и `C_1` лежат на одной прямой. (Заметим, что можно считать `B_1C_1` секущей треугольника `ABC`,  а можно считать `BC` секущей треугольника `AB_1C_1`).


    Доказательство

    а) Предположим, что точки `A_1`, `B_1` и `C_1` лежат на одной прямой. Проведём  $$ CK\parallel AB$$ (рис. 21).  `Delta CKB_1 ~ Delta AC_1B_1`, поэтому  `(CK)/(AC_1) = (CB_1)/(AB_1)`,  откуда `CK = (CB_1)/(AB_1) * AC_1`.
    Далее: `Delta CKA_1 ~ Delta BC_1A_1`,  значит

                                                                         `(CK)/(BC_1) = (CA_1)/(BA_1)`.

    Подставляя сюда выражение для `CK`, получим `(CB_1)/(AB_1) * (AC_1)/(BC_1) = (CA_1)/(BA_1)`,  т. е.  `(AC_1)/(C_1B) * (BA_1)/(A_1C) * (CB_1)/(B_1A) = 1`,  ч. т. д.

    б) Пусть выполнено равенство `(**)` для точек `A_1`, `B_1` и `C_1` (рис. 22), докажем, что эти точки лежат на одной прямой.

    Через две точки `A_1` и  `B_1` проведём прямую, пусть `C_2` - её точка пересечения с прямой  `AB`  (точка пересечения будет лежать на отрезке `AB`).

    Три точки  `A_1`, `B_1` и `C_2` лежат на одной прямой и по доказанному в пункте а) выполняется равенство
                                                                  `(AC_2)/(C_2B) * (BA_1)/(A_1C) * (CB_1)/(B_1A) = 1`.
    Сравнив это равенство с равенством `(**)`, придём к выводу, что `(AC_2)/(C_2B) = (AC_1)/(C_1B)`. Точки  `C_2` и `C_1` лежат на отрезке  `AB`  и делят его в одном отношении, считая от конца  `A`.  Следовательно, точка  `C_2`  совпадает с точкой `C_1`,  т. е. точки `A_1`, `B_1` и `C_1`  лежат на одной прямой.

    Стрелки на рисунке 21 (от точки `A`) показывают, как легко запомнить последовательность отрезков в пропорции  `(**)`.

    Например, применим теорему Менелая к задаче из примера 12. Полагаем `BO = m`, `ON = n` (см. рис. 23) и рассматриваем треугольник `CBN` и секущую `AM`.

    Имеем:

    `(CM)/(BM) * (BO)/(ON) * (NA)/(AC) = 1`, т.  е.  `1/1 * m/n * (2x)/(5x) = 1`,  откуда  `m/n = 5/2`.