16 статей
Такие характеристики атомов, как их радиус, энергия ионизации, сродство к электрону, электроотрицательность, степень окисления, связаны с электронным строением атома.
За радиус свободного атома принимают положение главного максимума плотности внешних электронных оболочек. Это так называемый орбитальный радиус.
Элементы одного и того же периода имеют одинаковое количество электронных слоев. Поэтому в одном периоде по мере увеличения заряда ядра увеличивается сила притяжения электронов к ядру, что вызывает уменьшение радиуса атома. Например, при переходе от лития к фтору заряд ядра атома растет от `3` до `9`, а радиус атома постепенно уменьшается - от `0,152` до `0,064` нм. Согласно закону Кулона, притя-жение электронов ядром в пределах периода слева направо увеличивается, а, следовательно, уменьшается способность атомов элементов отдавать электроны, то есть проявлять восстановительные (металлические) свойства. Окислительные (неметаллические) свойства, напротив, становятся все более выраженными и достигают максимального проявления у фтора.
Если атом лития легко теряет свой единственный `2s^1`-электрон, то у последующих элементов второго периода тенденция к потере электронов ослабевает по мере увеличения числа электронов. Так, у атома углерода `(1s^2 2s^2 2p^2)` способность отдавать электроны или присоединять их до полного заполнения электронного слоя примерно одинакова. У атома кислорода преобладает стремление к присоединению электронов, а фтор вообще не проявляет восстановительных свойств и является единственным элементом, который в химических реакциях не проявляет положительных степеней окисления.
В главных подгруппах с увеличением заряда ядра атома элемента увеличивается радиус атома элемента, так как в этом направлении возрастает число электронных слоев в атоме элемента. Поэтому в главной подгруппе сверху вниз нарастают металлические (восстановительные) свойства элементов.
В побочных подгруппах при переходе от первого элемента ко второму происходит увеличение радиуса атома элемента за счет добавления еще одного электронного слоя, а при переходе от второго элемента к третьему - даже некоторое уменьшение. Это объясняется `f`-(лантаноидным) сжатием.
Поэтому в побочных подгруппах с увеличением заряда ядра уменьшаются металлические свойства (за исключение побочной подгруппы третьей группы).
Радиус катиона меньше радиуса соответствующего ему атома, причём с увеличением положительного заряда катиона его радиус уменьшается. Наоборот, радиус аниона всегда больше радиуса соответствующего ему атома. Изоэлектронными называют частицы (атомы и ионы), имеющие одинаковое число электронов. В ряду изоэлектронных ионов радиус снижается с уменьшением отрицательного и возрастанием положительного радиуса иона. Такое уменьшение имеет место, например в ряду: `"O"^(2-)`, `"F"^-`, `"Na"^+`, `"Mg"^(2+)`, `"Al"^(3+)`.
энергия, необходимая для отрыва электрона от атома, находящегося в основном состоянии. Она характеризует восстановительные (металлические) свойства атомов и обычно выражается в электронвольтах `(1 "эВ"=96,485 "кДж"//"моль")`. В периоде слева направо энергия ионизации возрастает с увеличением заряда ядра и уменьшением радиуса атомов. В главных подгруппах сверху вниз она уменьшается, т. к. увеличивается расстояние электрона до ядра и возрастает экранирующее действие внутренних электронных слоев.
Наименьшее значение энергии ионизации имеют щелочные металлы, поэтому они обладают ярко выраженными металлическими свойствами, наибольшая величина энергии ионизации у инертных газов.
энергия, выделяющаяся при присоединении электрона к нейтральному атому. Характеризует окисли-тельные (неметаллические) свойства атомов. Как и энергия ионизации, обычно выражается в электронвольтах. Наибольшее сродство к электрону - у галогенов, наименьшее - у щелочных металлов.
Самый сильный окислитель из всех элементарных окислителей - фтор (он обладает и самым малым атомным радиусом из всех элементов `"VII"` группы).
Следует отметить, что в отличие от ионизации присоединение двух и более электронов к атому энергетически затруднено, и многозарядные одноатомные отрицательные ионы, такие как `"N"^(3-)`, или `"O"^(2-)`, в свободном состоянии не существуют.
Окислительной способностью не обладают нейтральные атомы с устойчивыми конфигурациями `s^2` и `s^2p^6`. У остальных элементов в таблице Менделеева окислительная способность нейтральных атомов повышается слева направо и снизу вверх.
понятие, позволяющее оценить способность атома оттягивать на себя электронную плотность при образовании химического соединения. Согласно одному из определений (Малликен), электроотрицательность можно определить как полусумму энергии ионизации и сродства к электрону:
`X=(I+E)/2`, эВ.
Относительная ЭО (OЭO) фтора по Полингу принята равной четырём. Наименьшими ОЭО обладают элементы `"IА"` подгруппы `(0,7 – 1,0)`, большими азот и хлор `(3)`, кислород `3,5`) и фтор. ОЭО `d` -элементов лежит в пределах `1,2 – 2,2`, а `f` -элементов `1,1 – 1,2`.
В периодах ЭО растёт, а в группах уменьшается с ростом `"Z"`, то есть растёт от `"Cs"` к `"F"` по диагонали периодической системы. Это обстоятельство до некоторой степени определяет диагональное сродство элементов.
Для характеристики состояния элементов в соединениях введено понятие степени окисления.
Под степенью окисления понимают условный заряд атома элемента в соединении, вычисленный из предположения, что соединение состоит из ионов и валентные электроны оттянуты к наиболее электроотрицательному атому. Иначе говоря, степень окисления показывает, сколько своих электронов атом отдал (положительная), либо притянул к себе чужих (отрицательная).
Напишите электронную конфигурацию атома фосфора и составьте орбитальную диаграмму его валентного уровня. Определите все его возможные степени окисления. Напишите электронные конфигурации всех его заряженных частиц. Расположите данные частицы в порядке увеличения радиуса.
Фосфор находится в третьем периоде, пятой группе, главной подгруппе. Следовательно, его электронная оболочка состоит из трёх уровней. Валентный уровень состоит из внешних `s`- и `p`-подуровней (на это указывает главная группа). Всего валентных электронов у фосфора пять (номер группы `5`). Конфигурация атома $$ {}_{31}\mathrm{P}1{s}^{2}2{s}^{2}2{p}^{6}3{s}^{2}3{p}^{3}$$
Орбитальная диаграмма валентного уровня:
Для того, чтобы принять конфигурацию благородного газа, фосфор может либо принять `3` электрона (тогда он примет конфигурацию аргона), либо отдать все свои валентные пять электронов (тогда он примет конфигурацию неона). Таким образом, низшая степень окисления фосфора равна `(–3)`, а высшая – `(+5)`.
Для проявления степени окисления `(+5)` фосфор поглощает квант энергии и распаривает свои `3s`-электроны в пределах энергетического уровня на `3d`-подуровень:
Однако кроме этих крайних степеней окисления фосфор может проявлять ещё и промежуточную степень окисления `(+3)` за счёт отдачи своих непарных валентных электронов с `p`-подуровня.
Конфигурации заряженных частиц фосфора:
$$ \stackrel{-3}{\mathrm{P}} 1{s}^{2}2{s}^{2}2{p}^{6}3{s}^{2}3{p}^{6}$$ или `["Ar"]`;
$$ \stackrel{+3}{\mathrm{P}} 1{s}^{2}2{s}^{2}2{p}^{6}3{s}^{2}3{p}^{0}$$;
$$ \stackrel{+5}{\mathrm{P}} 1{s}^{2}2{s}^{2}2{p}^{6}3{s}^{0}3{p}^{0}$$ или `["Ne"]`.
Расположим данные заряженные частицы в порядке возрастания радиуса. Следует помнить, что число протонов в ядре не изменилось, а, значит, отрицательно заряженная частица, у которой электронов больше, чем протонов, будет иметь бóльший радиус, и чем ниже заряд частицы, тем больше её радиус. И наоборот, чем выше заряд частицы, тем меньше её радиус, так как силы притяжения электронов к ядру у такой частицы преобладают над силами межэлектронного отталкивания:
`R("P"^(+5))<R("P"^(+3))<R("P"^(-3))`.
Для того, чтобы уметь определять степени окисления атомов в соединениях, нужно знать следующие правила:
1) Степень окисления атомов в простом веществе равна `0`.
2) Есть элементы, атомы которых проявляют постоянные степени окисления (вы поймете почему, если вспомните строение их валентного уровня и учтёте размер их атомов):
фтор: `–1`;
кислород: `–2` (есть исключения: `"O"^(+2)"F"_2`, пероксиды и надпероксиды);
все щелочные металлы (`"IA"`-подгруппа): `+1`;
все элементы `"II"` группы (кроме `"Hg"`): `+2`;
алюминий: `+3`;
водород с металлами: `–1`, с неметаллами: `+1`.
3) Все остальные элементы проявляют переменные степени окисления. Например, сера может принять `2` электрона и проявить отрицательную степень окисления `(–2)`, или отдать `2`, `4` или все `6` электронов со своего внешнего уровня и проявить, соответственно, степень окисления `+2`, `+4` или `+6`.
$$ {}_{16}\mathrm{S} 1{s}^{2}2{s}^{2}2{p}^{6}\underline{)3{s}^{3}3{p}^{4}}$$ или `["Ne"]` $$ \underline{)3{s}^{2}3{p}^{4}}\to +2{e}^{-}\to {}_{16}\mathrm{S}^{2-}1{s}^{2}2{s}^{2}2{p}^{6}\underline{)3{s}^{2}3{p}^{6}}$$ или `["Ar"]`
$$ {}_{16}\mathrm{S}\left[\mathrm{Ne}\right]\underline{)3{s}^{2}3{p}^{4}}\to -2{e}^{-}\to {}_{16}\mathrm{S}^{2+}1{s}^{2}2{s}^{2}2{p}^{6}\underline{)3{s}^{2}3{p}^{2}}$$ или `["Ne"]ul(3s^2 3p^2)`
$$ {}_{16}\mathrm{S}\left[\mathrm{Ne}\right]\underline{)3{s}^{2}3{p}^{4}}\to -4{e}^{-}\to {}_{16}\mathrm{S}^{4+}1{s}^{2}2{s}^{2}2{p}^{6}\underline{)3{s}^{2}}$$ или `["Ne"]ul(3s^2)`
$$ {}_{16}\mathrm{S}\left[\mathrm{Ne}\right]\underline{)3{s}^{2}3{p}^{4}}\to -6{e}^{-}\to {}_{16}\mathrm{S}^{6+}1{s}^{2}2{s}^{2}2{p}^{6}$$ или `["Ne"]`.
4) Для элементов главных подгрупп работает правило «чётности-нечётности»: элементы главных подгрупп чётных групп проявляют, как правило, чётные степени окисления, нечётных групп - нечётные.
5) Высшее значение степени окисления элемента (высшая степень окисления) обычно равно номеру группы. Например,
$$ {}_{6}\mathrm{C}$$ - в `"IV"` группе - высшая степень окисления `+4`;
$$ {}_{15}\mathrm{P}$$ - в `"V"` группе - высшая степень `+5`;
$$ {}_{17}\mathrm{Cl}$$ - в `"VII"` группе - высшая степень `+7`.
Исключения:
кислород - хоть и в `"VI"` группе, но степень окисления `+6` никогда не проявляет;
фтор - как уже говорилось, кроме нулевой, проявляет единственную степень окисления `(–1)`;
благородные газы;
элементы `"VIIIB"` подгруппы - только для `"Os"` и `"Ru"` характерна степень окисления `+8`.
6) Низшее значение степени окисления для металлов равно `0`, для неметаллов `"V"`, `"VI"`, `"VII"` групп и углерода: № группы минус `8`.
Например, для $$ {}_{15}\mathrm{P}:\mathrm{V}-8=-3$$,
для $$ {}_{35}\mathrm{Br}:\mathrm{VII}-8=-1$$,
для $$ {}_{34}\mathrm{Se}:\mathrm{VI}-8=-2$$,
для $$ {}_{56}\mathrm{Ba}=0$$.
Исключения: бор, водород и благородные газы.
7) Сумма степеней окисления всех атомов в соединении равна `0`, в ионе - заряду этого иона.
В бинарных соединениях (то есть в соединениях, состоящих из атомов двух разных элементов) степень окисления у атомов с большей электроотрицательностью отрицательна, а с меньшей - положительна.
Так, в молекуле аммиака `"NH"_3` ОЭО `("N")` равна `3,04`, а водорода равна `2,20`. Следовательно, азот проявляет отрицательную степень `(–3)`, а водород - положительную `(+1)`.
Металлы в соединениях с неметаллами никогда не проявляют отрицательных степеней окисления - они все более электроположительнее неметаллов!
Между атомами элементов в составе вещества, а также между исходными, вступающими в реакцию веществами и продуктами этой реакции, существуют строгие стехиометрические соотношения. Эти соотношения подчиняются четырём важнейшим стехиометрическим* законам.
Из закона Авогадро вытекает важное следствие: при одинаковых условиях `1` моль любого газа занимает одинаковый объём. Чаще всего используют так называемые нормальные условия (сокращённо н. у.), т. е. давление `101325` Па и температуру `273` К (иными словами, давление `1` атм. и температуру `0^@"C"`).
При н. у. `1` моль любого газа занимает объём, равный `22,4` л. Этот объём называется молярным объёмом газа `V_M`.
Молярный объём газа - величина, подобная молярной массе вещества, т. е. это объём или масса, отнесённые к количеству вещества. Их размерности также похожи: л/моль и г/моль.
`V_M=V/nu`, `M=m/nu`.
Для веществ, находящихся в газовой (паровой) фазе, количество вещества можно найти по обеим формулам:
`nu=m/M=V/(V_M)`.
Это соотношение связывает массу и объём газа:
`m=(M*V)/V_M` `V=(m*V_M)/M`.
В равных объёмах различных газов при одинаковых условиях содержится одинаковое число молекул, а значит, и одинаковое количество газообразных веществ. Объёмы различных газов относятся друг к другу, как их количества:
`V_1/V_2=nu_1/nu_2`.
Отношение масс равных объёмов газов равно отношению их молярных масс:
`m_1/m_2=M_1/M_2`.
Отношение массы определённого объёма одного газа к массе такого же объёма другого газа называется плотностью первого газа по второму:
`m_1/m_2=M_1/M_2=D_(1//2)`.
Зная плотность неизвестного газа по известному газу, можно найти молярную массу:
`M_1=M_2*D_(1//2)`.
Обычно определяют плотность газа по отношению к самому лёгкому газу - водороду или самому распространённому газу - воздуху. С учётом того, что `M(H"_2)=2` г/моль, а средняя молярная масса газов, составляющих воздух,
`M`(воздуха)`=0,7809*M("N"_2)+0,2095*M("O"_2)+`
`+0,00932*M("Ar")+0,00032*M("CO"_2)=29` г/моль,
получаем часто используемые формулы:
`M=2*D_("H"_2) `
`M=29*D_("воздуха")`.
Определение по этим формулам молярных масс показало, что молекулы простых газов состоят из двух атомов `("H"_2, "F"_2, "Cl"_2, "O"_2, "N"_2)`, а молекулы благородных газов - из одного атома `("He", "Ne", "Ar", "Kr", "Xe", "Rn")`. Однако есть молекулы некоторых простых веществ, которые состоят из большого количества атомов: озона `"O"_3`, фосфора `"Р"_4`, высоких паров серы при невысоких температурах `"S"_8`.
Знание стехиометрических законов позволяет решать задачи с использованием уравнений химических процессов. Рассмотрим некоторые из них.
Смесь карбоната кальция и карбоната магния массой `46,8` г подвергли термическому разложению. При этом выделилось `11,2` л (н. у.) углекислого газа. Найти массовую долю карбоната кальция в исходной смеси.
Записываем реакции термического разложения каждого из компонентов:
`x` моль `x` моль
`"CaCO"_3 → "CaO" + "CO"_2`
`y` моль `y` моль
`"MgCO"_3 → "MgO" + "CO"_2`
Примем количество разложившегося `"CaCO"_3` за `x` моль, тогда по стехиометрии реакции количество выделившегося `"CO"_2-nu^'("CO"_2)` – тоже будет `x` моль. Примем количество разложившегося `"MgCO"_3` за `y` моль, тогда $$ \nu \text{'}\text{'}$$ `("CO"_2) = y` моль.
Выразим массы обеих солей: `m=nu*M`
`m ("CaCO"_3) = 100x` г
`m ("MgCO"_3) = 84y` г
Находим общее количество вещества, выделившегося в обеих реакциях `"CO"_2`:
`nu("CO"_2)=(V("CO"_2))/V_M=(11,2 "л")/(22,4 "л"//"моль")=0,5` моль.
Составляем систему уравнений:
$$ \left\{\begin{array}{l}100x+84y=\mathrm{46,8}\\ x+y=\mathrm{0,5}.\end{array}\right.$$
Получаем: `x=0,3`; `y=0,2`.
То есть `nu^' ("CO"_2)=0,3` моль, `ν("CaCO"_3)=0,3` моль;
$$ \nu \text{'}\text{'}$$ `("CO"_2)=0,2` моль, `ν("MgCO"_3)=0,2` моль.
Тогда `m("CaCO"_3)=0,3` моль`*100` г/моль `=30` г
`omega("CaCO"_3)=(m("CaCO"_3))/(m_("смеси"))=0,641`.
`ω("CaCO"_3)=64,1%`.
При термическом разложении `12,6` г карбоната двухвалентного металла выделилось `3,36` л углекислого газа. Определите формулу карбоната.
`12,6` г | `3,36` л |
`"MеCO"_3 → "MеO" +` | `"CO"_2` |
`nu("CO"_2)=(V("CO"_2))/V_M=(3,36 "л")/(22,4"л"//"моль")=0,15` моль
`nu("MeCO"_3)=nu("CO"_2)=0,15` моль
`M("MeCO"_3)=(m("MeCO"_3))/(nu("MeCO"_3))=(12,6"г")/(0,15"моль")=84` г/моль
`M("Me")=M("MeCO"_3)-M("CO"_3^(2-))=84`г/моль`-60`г/моль`=24`г/моль.
Данной молярной массе соответствует металл магний `"Mg"`.
Следовательно, формула карбоната – `"MgCO"_3`.
`"MgCO"_3`.
При сгорании органического вещества массой `26,4` г образовалось `33,6` л (н. у.) углекислого газа и `32,4` г воды. Пары этого вещества в `2` раза тяжелее пропана. При окислении этого вещества сернокислым раствором дихромата калия образуется альдегид. Найдите молекулярную формулу органического вещества и напишите структурные формулы трёх возможных изомеров.
Запишем формулу органического вещества как `"C"_x"H"_y"O"_z` и составим уравнение реакции его сгорания:
`26,4` г | `33,6` г | `32,4` г |
`"C"_x"H"_y"O"_x+m"O"_2 ->` | `x"CO"_2+` | `y//2 "H"_2"O"` |
Используя значение относительной плотности паров вещества по пропану, находим значение молярной массы вещества:
`M("C"_x"H"_y"O"_z)=M("C"_3"H"_8)*D_("C"_3"H"_8)=44` г/моль`*2=88` г/моль
Находим количества вещества углерода и водорода в соединении через количества вещества углекислого газа и воды:
`nu("CO"_2)=(V("CO"_2))/V_M=(33,6 "л")/(22,4 "л"//"моль")=1,5` моль
`nu("C")=nu("CO"_2)=1,5` моль
`nu("H"_2"O")=(m("H"_2"O"))/(M("H"_2"O"))=(32,4 "г")/(18"г"//"моль")=1,8` моль
`nu("H")=2nu("H"_2"O")=3,6` моль
Определяем, имеется ли в данном веществе кислород:
`m("O")=m("C"_x"H"_y"O"_z)-(m("C")+m("H"))=26,4-(1,5*12+3,6*1)=4,8` г
`nu("O")=0,3` моль.
Находим соотношения количеств веществ в соединении:
`nu("C"):nu("H"):nu("O")`
`1,5 : 3,6 : 0,3`
Чтобы получить целочисленные значения, разделим каждое из них на наименьшее из них:
`(1,5)/(0,3):(3,6)/(0,3):(0,3)/(0,3)`,
тогда `5 : 12 : 1` следовательно, формула соединения `"C"_5"H"_12"O"`.
Рассчитываем молярную массу соединения и убеждаемся в том, что она совпадает с вычисленной по относительной плотности паров вещества по пропану:
`M("C"_5"H"_12"O")=88` г/моль.
Таким образом, мы вывели истинную формулу соединения, которая в данном случае совпала с простейшей. Следовательно, данное вещество является первичным спиртом - `"C"_5"H"_11"OH"`:
`"CH"_3 - "CH"_2 - "CH"_2 - "CH"_2 - "CH"_2 - "OH"`
пентанол - 1
В условии задачи сказано, что при окислении данного веществ дихроматом калия получается альдегид. Следовательно, данное вещество является первичным спиртом - `"C"_5"H"_11"OH"`.
Возможные изомеры:
Возможны написания формул других изомеров, например, структурных.
Для решения некоторых задач требуется введение нескольких неизвестных и составление системы уравнений. Обычно это требуется в тех случаях, когда числовые данные касаются компонентов одной и той же смеси, либо раствора, либо одних и тех же уравнений реакции. В таких задачах через `х` и `y` можно обозначать массы либо количества веществ, для газовых смесей – объёмы. Но следует помнить, что если компоненты смеси вступают в химические реакции, то через переменные следует обозначать именно количества вещества. Если и исходные компоненты смеси, и продукты представляют собой газы, то через переменные можно выражать их объёмы, но объёмы непременно должны быть приведены к одинаковым условиям.
Смесь пропена и бутена-`2` объёмом `200` мл смешали с порцией кислорода объёмом `1` л и взорвали. После конденсации воды и приведения смеси к сходным условиям её объём составил `675` мл. Вычислите объёмные доли углеводородов в исходной смеси и её плотность по азоту. Определите объёмные доли компонентов в газовой смеси после реакции.
Запишем уравнения реакций сгорания каждого из газов и выразим через переменные `x` и `y` объёмы газов:
Из условия задачи ясно, что кислород для сгорания взят в избытке, следовательно, общий объём кислорода `V_("общ")("O"_2)` складывается из кислорода, пошедшего на сгорание `V_("сг")("O"_2)`, и избыточного `V_("изб")("O"_2)`:
`V_("общ")("O"_2)=V_("сг")("O"_2)+V_("изб")("O"_2)=1` л.
При этом `V_("изб")("O"_2)=V_("ост")("O"_2)`.
Тогда,
`V_("изб")("O"_2)=1` л `– 4,5x – 6y`
`V_("ост")("O"_2)=0,675` л `– 3x – 4y`
`1` л `– 4,5x – 6y = 0,675` л `– 3x – 4y`
Упрощаем: `1,5x + 2y = 0,325`
Составляем систему:
$$ \left\{\begin{array}{l}\mathrm{1,5}x+2y=\mathrm{0,325}\\ x+y=\mathrm{0,2}.\end{array}\right.$$
Находим, `x = 0,15; y = 0,05`.
То есть, `V("C"_3"H"_6)=0,15` л; `V("C"_4"H"_8)=0,05` л.
Таким образом, состав исходной смеси:
`varphi("C"_3"H"_6)=(0,15)/(0,2)=0,75`; `varphi("C"_4"H"_8)=0,25`.
Рассчитаем плотность исходной газовой смеси по азоту:
`D_("N"_2)`(исх.смеси)`=(m_("смеси"))/(m_(N_2))`, если `V` (смеси) `= V("N"_2)`.
`m("C"_3"H"_6)=nu*M=(0,15"л")/(22,4 "л"//"моль")*42 "г"//"моль"=0,2813` г
`m("C"_4"H"_8)=nu*M=(0,05"л")/(22,4 "л"//"моль")*56 "г"//"моль"=0,1250` г
`m` (исх.смеси)`=0,2813+0,1250=0,4063` г
Найдём массу азота такого же объёма (`0,2` л):
`m("N"_2)=nu*M=(0,2 "л")/(22,4 "л"//"моль")*28 "г"//"моль"=0,2500` г
`D_(N_2)` (исх.смеси)`=(0,2813)/(0,2500)=1,12`.
Определяем состав газовой смеси после реакции:
`V_("общ")("CO"_2)=3x+4y=3*0,15+4*0,05=0,65` л
`V_("ост")("O"_2)=0,675` л `-0,65` л `=0,025`л
`varphi("CO"_2)=0,963`; `varphi("O"_2)=0,037`.
1) состав исходной смеси: `varphi("C"_3"H"_6)=0,75`; `varphi("C"_4"H"_8)=0,25`;
2) `D_(N_2)` (исх.смеси)`=1,12`;
3) состав газовой смеси после реакции: `varphi("CO"_2)=0,963`; `varphi("O"_2)=0,037`.
Смесь серы и фосфора сожгли в избытке кислорода, и продукты сгорания растворили в `100` г воды. На полную нейтрализацию полученного раствора пошло `97,9` мл раствора гидроксида натрия с массовой долей щёлочи `40%` и плотностью `1,43` г/мл. Определите массовые доли серы и фосфора в исходной смеси, если известно, что массовая доля воды в растворе после нейтрализации составила `70%`.
1) Рассчитаем массу раствора и количество вещества гидроксида натрия, обозначим за `x` и `y` количества вещества серы и фосфора, и запишем уравнения происходящих процессов с указанием количеств реагирующих и образующихся веществ:
`m(`р-ра `"NaOH")=97,9*1,43=140` г
`nu("NaOH")=(140*0,4)/40=1,4` моль
`x` моль | `x` моль | |||
`"S"` ` +` | `"O"_2->` | `"SO"_2` |
(1) |
`y` моль | `0,5y` моль | |||
`4"P"` `+` | `5"O"_2->` | `2"P"_2"O"_5` | (2) |
`x` моль | `x` моль | `x` моль | ||
`"SO"_2` `+` | `"H"_2"O"->` | `"H"_2"SO"_3` | (3) |
`0,5y` моль | `1,5y` моль | `y` моль | ||
`"P"_2"O"_5` `+` | `3"H"_2"O"->` | `2"H"_3"PO"_4` | (4) |
`x` моль | `2x` моль | `x` моль | ||
`"H"_2"SO"_3` `+` | `2"NaOH"->"Na"_2"SO"_3` `+` | `2"H"_2"O"` | (5) |
`y` моль | `3y` моль | `3y` моль | ||
`"H"_3"PO"_4` `+` | `3"NaOH"->"Na"_3"PO"_4` `+` | `3"H"_2"O"` | (6) |
2) Выразим через `x` и `y` массу конечного раствора и массу воды в нём. Составим систему уравнений и найдём `x` и `y`:
`m`(конечного растовра)`=m("SO"_2)+m("P"_2"O"_5)+m`(воды)`+m(`р-ра`"NaOH")=`
`=64x+142*0,5y+100+140=64x+71y+240`г.
`m` (воды в конечном растворе) `=100–m` (воды, израсходованной в реакциях 3 и 4) `+m` (воды в растворе щёлочи) `+ m` (воды, выделившейся в реакциях `5` и `6`) `=`
`=100-(x+1,5y)*18+140*0,6+(2x+3y)*18=18x+27y+184` г.
`m` (воды в конечном растворе) `= ω*m` (конечного раствора)
`18x+27y+184=0,709*(64x+71y+240)`
`18x+27y+184=45,376x+50,339y+170,16`
`27,376x+23,339y=13,84`.
Второе уравнение составляем на количество вещества прореагировавшей щёлочи:
`2x+3y=1,4`;
$$ \left\{\begin{array}{l}2x+3y=\mathrm{1,4},\\ \mathrm{27,376}x+\mathrm{23,339}y=\mathrm{13,84}.\end{array}\right.$$
Решаем систему уравнений и получаем: `x=0,25`; `y=0,3`.
Находим массы и массовые доли веществ в исходной смеси:
`m("S")=0,25*32=8` г
`m("P")=0,3*31=9,3` г
`m` (смеси) `= 17,3` г
`ω("S") = 46,24%`; `ω("P") = 53,76%`
`ω("S") = 46,24%`; `ω("P") = 53,76%`
Изучение природы химической связи между частицами вещества в соединении - одна из основных задач химии. Не зная природу взаимодействия атомов в веществе, нельзя понять причины многообразия химических соединений, представить механизм их образования, состав, строение и реакционную способность.
Совокупность химически связанных атомов (например, молекула, кристалл) представляет собой сложную систему атомных ядер и электронов. Химическая связь осуществляется за счёт электростатического взаимодействия электронов и ядер атомов.
Современные методы исследования позволяют экспериментально определить пространственное расположение в веществе атомных ядер. Данному пространственному размещению атомных ядер отвечает определённое распределение электронной плотности. Выяснить, как распределяется электронная плотность, по сути дела, и означает описать химическую связь в веществе.
В зависимости от характера распределения электронной плотности в веществе различают три основных типа химической связи: ковалентную, ионную и металлическую. В «чистом» виде перечисленные типы связи проявляются редко. В большинстве соединений имеет место наложение разных типов связи.
Важнейшей характеристикой химической связи является энергия, определяющая её прочность. Мерой прочности связи может служить количество энергии, затрачиваемое на её разрыв. Для двухатомных молекул энергия связи равна энергии диссоциации молекул на атомы. Так, энергия диссоциации `E_"дис"`, а следовательно, и энергия связи `E_"св"` в молекуле `"H"_2` составляют `435` кДж/моль. В молекуле фтора `F_2` она равна `159` кДж/моль, а в молекуле азота `"N"_2 - 940` кДж/моль.
Энергия связи напрямую коррелирует с длиной связи. Длина связи - это межъядерное расстояние между химически связанными атомами. Она зависит от радиуса образующих связь атомов и от кратности самой связи.
Угол между воображаемыми линиями, проходящими через ядра химически связанных атомов, называют валентным.
Длины и энергии связи, валентные углы, а также экспериментально определяемые магнитные, оптические, электрические и другие свойства веществ непосредственно зависят от характера распределения электронной плотности.
Химическая связь в основном осуществляется так называемыми валентными электронами. У `s`- и `p`-элементов валентными являются электроны `s`- и `p`-орбиталей внешнего слоя, у `d`-элементов - электроны `s`-орбиталей внешнего слоя и `d`-орбиталей предвнешнего слоя, а у `f`-элементов электроны `s`-орбиталей внешнего слоя и `f`-орбиталей предпредвнешнего слоя.
Взаимодействие валентных (наименее прочно связанных с ядром) электронов атомов приводит к образованию химических связей, т. е. к объединению атомов в молекулу. Образование молекулы из атомов возможно лишь тогда, когда оно приводит к выигрышу энергии; молекулярное состояние должно обладать меньшей энергией, чем атомное состояние, и, следовательно, быть устойчивее. Таким наиболее устойчивым является состояние атома, когда число электронов на внешнем электронном уровне максимальное, которое он может вместить; такой уровень называется завершённым и характеризуется наибольшей прочностью. Таковы электронные конфигурации атомов благородных газов. Значит, образование химической связи должно приводить к завершению внешнего электронного уровня атомов.
Это взаимодействие валентных электронов, приводящее к образованию химической связи, может осуществляться по-разному. Различают три основных вида химических связей: ковалентную, ионную и металлическую.
Рассмотрим механизм возникновения ковалентной связи на примере образования молекулы водорода:
`"H"+"H"="H"_2`; `Delta"H"=-436` кДж/моль
Реакция сопровождается высвобождением большого количества тепла, значит, она энергетически выгодна.
Ядро свободного атома водорода окружено сферически симметричным электронным облаком, образованным `1s`-электроном. При сближении атомов до определённого расстояния происходит частичное перекрывание их электронных облаков (орбиталей).
Обычно наибольшее перекрывание электронных облаков осуществляется вдоль линии, соединяющей ядра двух атомов.
Ковалентная связь, которая образуется при перекрывании орбиталей вдоль линии, связывающей центры соединяющихся атомов, называется `sigma`-связью.
Химическую связь можно изобразить:
1) в виде точек, обозначающих электроны и поставленных у химического знака элемента:
`"H"* + *"H"="H":"H"` где `:` означает `sigma`-связь
2) с помощью квантовых ячеек (орбиталей), как размещение двух электронов с противоположными спинами в одной молекулярной квантовой ячейке:
3) часто, особенно в органической химии, ковалентную связь изображают чёрточкой, которая символизирует пару электронов: `"H" - "H"`.
Ковалентная связь в молекуле хлора также осуществляется с помощью двух общих электронов или электронной пары:
В каждом атоме хлора `7` валентных электронов, из них `6` в виде неподелённых пар, а `1` - неспаренный электрон. Образование химической связи происходит именно за счёт неспаренных электронов каждого атома хлора. Они связываются в общую пару (или неподелённую пару) электронов. Если считать, что общая пара принадлежит обоим атомам, то каждый из них становится обладателем `8` электронов, т. е. приобретает устойчивую конфигурацию благородного газа. Поэтому ясно, что молекула хлора энергетически выгоднее, чем отдельные атомы.
Это также `sigma`-связь, но она образована перекрыванием `p`-электронных орбиталей по оси `x`.
Если в реагирующих атомах имеется `2` или `3` неспаренных электрона, то могут образоваться не `1`, а `2` или `3` связи, т. е. общих электронных пары. Если между атомами возникла одна ковалентная связь, то она называется одинарной, если две - двойной, если три - тройной. Они обозначаются соответственно = или `-=` штрихами.
Но хотя обозначение их одинаково, они отличаются по своим свойствам от одинарной `sigma`-связи. Чтобы пояснить разницу, рассмотрим образование тройной связи в молекуле азота `"N"_2`. В ней атомы имеют три общие пары электронов:
Они образованы неспаренными `p`-электронами двух атомов азота:
Орбитали `2p`-электронов расположены взаимно перпендикулярно, т. е. по осям `x`, `y` и `z`. Если перекрывание по оси `x` ведёт к образованию `sigma`-связи (перекрывание вдоль линии, связывающей центры атомов), то перекрывание по осям `y` и `z` происходит по обе стороны линии, связывающей центры соединяющихся атомов. Такая
ковалентная связь, возникающая при перекрывании орбиталей по обе стороны линии, связывающей центры соединяющихся атомов, называется `pi`-связью.
Очевидно, что взаимное перекрывание орбиталей в случае `pi`-связи меньше, чем в случае `sigma`-связи, поэтому `pi`-связь всегда менее прочная, чем `sigma`-связь. Но в сумме три связи `(sigma_x+pi_y+pi_z)` придают молекуле `"N"_2` большую прочность, поэтому молекула азота при нормальных условиях нереакционноспособна.
Таким образом, если имеется одинарная связь, то это обязательно `sigma`-связь; если имеется двойная или тройная связь, то одна из составляющих её связей обязательно `sigma`-связь (как более прочная она формируется первая и разрушается последняя), а остальные - `pi`-связи. И `sigma`-, и `pi`-связи - это разновидности ковалентной связи.
В общем случае
называется химическая связь, осуществляемая электронными парами.
Различают неполярную и полярную ковалентную связь.
Все рассмотренные выше молекулы образованы атомами одного и того же элемента, при этом двухэлектронное облако связи распределяется в пространстве симметрично относительно ядер обоих атомов, и электронная пара в одинаковой мере принадлежит обоим атомам. Такая связь называется неполярной ковалентной связью.
Иной случай реализуется, если связь образуют два атома различных элементов с отличающимися величинами относительной электроотрицательности, например, `"HCl"`, `"H"_2"O"`, `"H"_2"S"`, `"NH"_3` и др. В этом случае электронное облако связи смещено к атому с большей относительной электроотрицательностью. Такой вид связи называется полярной ковалентной связью.
Например, полярная ковалентная связь образуется при взаимодействии атомов водорода и хлора.
Электронная пара смещена к атому хлора, так как относительная электроотрицательность хлора `(x=3)` больше, чем у водорода `(x=2,1)`.
У молекул, содержащих неполярную связь, связующее облако распределяется симметрично между ядрами обоих атомов, и ядра в равной степени тянут его к себе. Электрический момент диполя таких молекул (`"H"_2`, `"F"_2`, `"Cl"_2` и др.) равен нулю. Молекулы, содержащие полярную связь, образованы связующим электронным облаком, смещённым в сторону атома с большей относительной электроотрицательностью.
Описанные выше примеры образования ковалентной связи относятся к обменному механизму, когда каждый из соединяющихся в молекулу атомов предоставляет по электрону. Однако образование ковалентной связи может происходить и по донорно-акцепторному механизму. В этом случае химическая связь возникает за счёт двухэлектронного облака одного атома (спаренных электронов) и свободной орбитали другого атома. Атом, предоставляющий неподелённую пару, называется донором, а атом, принимающий её (т. е. предоставляющий свободную орбиталь) -акцептором.
Механизм образования ковалентной связи за счёт двухэлектронного облака одного атома (донора) и свободной орбитали другого атома (акцептора) называется донорно-акцепторным; образованная таким путём ковалентная связь называется донорно-акцепторной или координационной связью.
Рассмотрим в качестве примера механизм образования иона `"NH"_4^+`. В молекуле аммиака атом азота имеет неподелённую пару электронов; у иона водорода свободна `1s`-орбиталь. При образовании катиона аммония двухэлектронное облако азота становится общим для атомов `"N"` и `"Н"`, т. е. оно превращается в молекулярное электронное облако. Таким образом, возникает четвёртая ковалентная связь:
Положительный заряд иона водорода становится общим (он рассредоточен между всеми атомами), а двухэлектронное облако (неподелённая электронная пара), принадлежавшее азоту, становится общим с водородом. По своим свойствам четвертая `"N" - "H"` связь в ионе `"NH"_4^+` ничем не отличается от остальных трёх. Поэтому донорно-акцепторная связь - это не особый вид связи, а лишь особый механизм (способ) образования ковалентной связи.
Еще один тип связи - ионная связь - возникает, когда взаимодействуют электронные облака атомов, чьи относительные электроотрицательности резко отличаются. В этом случае общая электронная пара настолько смещена к одному из атомов, что практически переходит в его владение
При этом он образует отрицательно заряженный анион, а атом, отдавший электрон - катион. Например, атомы натрия и хлора резко отличаются по электроотрицательности (`x=0,9` и `x=3` соответственно), поэтому атом хлора очень сильно притягивает электрон, стремясь завершить свой внешний электронный уровень, а атом натрия охотно его отдаёт, поскольку ему для получения устойчивой конфигурации внешнего слоя удобнее отдать единственный валентный электрон:
`"Na"(1s^2 2s^2 2p^6 3s^1)-e="Na"^+(1s^2 2s^2 2p^6)`
`"Cl"(1s^2 2s^2 2p^6 3s^2 3p^5)+e="Cl"^- (1s^2 2s^2 2p^6 3s^2 3p^6)`
Электронная оболочка атома натрия превратилась в устойчивую оболочку атома неона, а оболочка хлора – в устойчивую оболочку другого инертного газа – аргона. Между ионами `"Na"^+` и `"Cl"^-`, несущими разноимённые заряды, возникают силы электростатического притяжения, в результате чего образуется соединение `"NaCl"`.
называется химическая связь между ионами, возникающая в результате их электростатического притяжения.
Ионные соединения образуют атомы элементов, резко отличающихся по электроотрицательности, например, атомы элементов главных подгрупп I и II групп с элементами главных подгрупп VI и VII групп.
Таким образом, между механизмами возникновения ковалентной и ионной связей нет принципиального различия. Они различаются лишь степенью поляризации (смещения) общих электронных пар. Поэтому можно рассматривать ионную связь как предельный случай полярной ковалентной связи.
Вместе с тем надо помнить о важных отличиях ионной связи от ковалентной. Ионная связь характеризуется ненаправленностью в пространстве (каждый ион может притягивать ион противоположного знака по любому направлению) и ненасыщаемостью (взаимодействие ионов не устраняет способность притягивать или отталкивать другие ионы). Вследствие ненаправленности и ненасыщаемости ионные соединения в твёрдом состоянии представляют собой ионную кристаллическую решётку, в которой каждый ион взаимодействует не с одним, а со многими ионами противоположного знака; например, в решётке хлорида натрия катион натрия окружён шестью хлорид-анионами и наоборот. Связи между ионами многочисленны и прочны, поэтому вещества с ионной решёткой тугоплавки, малолетучи и обладают сравнительно высокой твёрдостью. При плавлении ионных кристаллов прочность связи между ионами уменьшается, и расплавы их проводят электрический ток. Ионные соединения, как правило, хорошо растворяются в воде и других полярных растворителях.
В то же время ковалентная связь отличается насыщаемостью (т. е. способностью атомов образовывать ограниченное количество ковалентных связей, определяемое числом неспаренных электронов) и направленностью (определённой пространственной структурой молекул, которой мы коснёмся ниже).
Твёрдые вещества, состоящие из молекул (полярных и неполярных), образуют молекулярные кристаллические решётки. Молекулы в таких решётках соединены сравнительно слабыми межмолекулярными силами, поэтому вещества с молекулярной решёткой имеют малую твёрдость, низкие температуры плавления, они плохо растворимы в воде, а их растворы почти не проводят электрический ток. Число неорганических веществ с молекулярной кристаллической решёткой невелико: лёд, твёрдый оксид углерода (IV) («сухой лёд»), твёрдые галогеноводороды и простые вещества, но зато большинство кристаллических органических соединений имеют молекулярную решётку.
Если же в узлах решётки располагаются атомы, соединённые прочными ковалентными связями, то такие вещества имеют высокие температуры плавления, прочность и твёрдость, они практически нерастворимы в жидкостях.
Характерный пример вещества с атомной кристаллической решёткой - алмаз; она характерна также для твёрдого бора, кремния, германия и соединений некоторых элементов с углеродом и кремнием.
Особый тип решётки в твёрдом состоянии образуют металлы. В узлах такой металлической кристаллической решётки находятся катионы металлов, а между ними - отрицательно заряженный «электронный газ». Атомы металлов в решётке упакованы так тесно, что валентные орбитали соседних атомов перекрываются, и электроны получают возможность свободно перемещаться из орбиталей одного атома в орбитали других атомов, осуществляя связь между всеми атомами данного кристалла металла. Лишённые валентных электронов, атомы превращаются в катионы, а электроны, осуществляющие связь, перемещаются по всему кристаллу металла и становятся общими.
Такой тип химической связи, которая осуществляется электронами, принадлежащими всем атомам одновременно, называется металлической связью. Металлическая связь характерна для металлов в твёрдом и жидком состоянии.
Металлическая связь имеет некоторое сходство с ковалентной, поскольку и в её основе лежит обобществление валентных электронов. Однако при ковалентной связи эти электроны находятся вблизи соединённых атомов и прочно с ними связаны, тогда как при металлической связи электроны свободно перемещаются по всему кристаллу и принадлежат всем его атомам. Именно поэтому кристаллы с ковалентной связью хрупки, а с металлической - пластичны, т. е. без разрушения изменяют форму, прокатываются в листы, вытягиваются в проволоку. Наличие свободных электронов придаёт кристаллам металлов непрозрачность, высокую электрическую проводимость, теплопроводность.
Иногда в соединениях мы встречаемся с особой формой химической связи – так называемой водородной связью. Она менее прочна, чем уже рассмотренные виды, и может считаться дополнительной связью к уже существующим ковалентным. Водородная связь возникает между атомом водорода в соединении и сильно электроотрицательным элементом с малыми размерами – фтором, кислородом, азотом, реже хлором и серой. Водородную связь обозначают точками `*``*``*`, подчёркивая тем самым её сравнительную слабость (примерно в `15` - `20` раз слабее ковалентной).
Водородная связь весьма распространена и играет важную роль при ассоциации молекул, в процессах кристаллизации, растворения, образования кристаллогидратов, электролитической диссоциации и других важных физико-химических процессах.
Молекула воды может образовывать четыре водородные связи, так как имеет два атома водорода и две несвязывающие электронные пары:
Эта способность обусловливает строение и свойства воды и льда.
Вода является жидкостью, хотя более тяжелый сероводород – полный электронный аналог воды – газ. Молекулы воды образуют между собой водородные связи, что увеличивает плотность вещества в жидком состоянии и его температуру кипения. Между молекулами сероводорода подобных связей не возникает из-за большого радиуса и сравнительно малой электроотрицательности атома серы.
При замерзании количество водородных связей между молекулами воды становится максимальным. Строго ориентируясь относительно друг друга, они образуют правильные шестиугольники. Образованные ими канальцы заполнены воздухом, поэтому плотность льда меньше плотности воды.
Водородная связь приводит к образованию димеров муравьиной и уксусной кислот, устойчивых в газообразном и жидком состоянии:
Благодаря водородной связи фтороводород `"HF"` в обычных условиях существует в жидком состоянии (`"t"_"кип"=19,5^@"C"`), а плавиковая кислота диссоциирует с образованием как фторид-аниона `"F"^-`, так и гидродифторид-аниона `"HF"_2^-`.
Важную роль играют водородные связи в химии процессов жизнедеятельности, поскольку они распространены в молекулах белков, нуклеиновых кислот и других биологически важных соединений.
Одним из важнейших свойств ковалентной связи является её направленность. Она определяет пространственную структуру молекул. Если в молекуле имеется больше одной ковалентной связи, то двухэлектронные облака связей вступают во взаимодействие друг с другом. Представляя собой заряды одного знака, они отталкиваются друг от друга, стремясь занять такое положение в пространстве, когда их взаимное отталкивание будет минимальным. Если в первом приближении считать отталкивание всех облаков одинаковым, то в зависимости от числа взаимодействующих облаков (связей) наиболее выгодным расположением будет:
для `2` облаков – линейное расположение,
для `3` облаков – плоский треугольник,
для `4` облаков – тетраэдр,
для `5` облаков – тригональная бипирамида,
для `6` облаков – октаэдр.
Это наиболее распространённые геометрические формы многоатомных молекул.
Углы, образованные линиями связей в многоатомной молекуле, называются валентными углами.
Часто в образовании связей участвуют различные электроны, например, `s` и `p`-электроны. Казалось бы, образующиеся связи тоже должны быть неравноценными. Однако опыт показывает, что все связи одинаковы. Теоретическое обоснование этого факта было предложено Слейтером и Полингом, которые ввели понятие гибридизации атомных орбиталей. Они показали, что при участии в образовании связей нескольких различных орбиталей, незначительно отличающихся по энергии, можно заменить их тем же количеством одинаковых орбиталей, называемых гибридными. При этом орбитали смешиваются и выравниваются по энергии. Изменяется и первоначальная форма электронных облаков: гибридные орбитали асимметричны и сильно вытянуты по одну сторону от ядра.
Если гибридизуются две орбитали – одна `s` и одна `p` – тип гибридизации так и называется: `sp`-гибридизация. Он реализуется, например, в молекуле `"BeCl"_2`.
В этом соединении атому бериллия нужно образовать две связи с атомами хлора. Он переходит в возбужденное состояние и его электронная пара, находящаяся на `2s` орбитали, распаривается:
Орбитали, занятые валентными электронами, гибридизуются по типу `sp`-гибридизации, в результате чего изменяется их первоначальная форма, они становятся одинаковыми как по форме, так и по энергии, и в таком состоянии способны образовывать более прочные связи за счет наиболее полного перекрывания с `p`-орбиталями атомов хлора:
Таким образом, геометрия этой молекулы – линейная, валентный угол связи `180^@`.
Однако нужно отметить, что для данного соединения употреблять термин «молекула» можно только тогда, когда хлорид бериллия находится в газообразном состоянии.
Рассмотрим пример `sp^2`-гибридизации. При образовании молекулы хлорида бора `"BCl"_3` в результате возбуждения `2s`-электронов атома бора три орбитали смешиваются (гибридизируются) с образованием трёх одинаковых `sp^2`-гибридных орбиталей, которые и образуют три связи с валентными электронами трёх атомов хлора.
`s+p+p -> 3sp^2`
`3sp^2("B")+p("Cl")+p("Cl")+p("Cl") -> 3` ковалентные связи `"B" - "Cl"`.
Поскольку три гибридные `sp^2`-орбитали расположены под углом `120^@` друг к другу в одной плоскости, то образующаяся молекула `"BCl"_3` имеет вид плоского равностороннего треугольника с атомом В в центре. Угол между связями составляет `120^@`, все атомы лежат в одной плоскости
Четыре `sp^3`-гибридных облака определят тетраэдрическое строение молекулы с валентными углами `109,5^@`. Например, в молекуле метана `"CH"_4`.
Существуют и другие виды гибридизации, в частности, с участием `d`-электронов. Например, `sp^3d`-гибридизация приводит к структуре тригональной бипирамиды, а `sp^3d^2`-гибридизация формирует октаэдрическую структуру молекулы.
Для химической характеристики вещества наиболее важны его кислотно-основные и окислительно-восстановительные свойства. Они напрямую связаны со строением молекулы.
Способность молекулы вступать в кислотно-основные реакции, т. е. проявлять свойства кислоты или основания, также зависит от полярности связи. Например, если рассматривать вещества, образующие связи `"R" - "O" - "H"`, можно проследить влияние заместителя `"R"` на свойства группы `"O" - "H"`. По мере роста полярности связи `"R" - "O"` в ряду `"N" - "O"`, `"Zn" - "O"`, `"Na" - "O"` прочность её ослабевает, поэтому усиливаются основные свойства и снижаются кислотные свойства соединений; сравните: `"O"_2"NOH"` (сильная азотная кислота, так как связь `"N" - "O"` менее полярна, чем `"H" - "O"`) – `"Zn"("OH")_2` (это амфотерное соединение, поскольку связи `"O" - "H"` и `"Zn" - "O"` близки по полярности) – `"NaOH"` (сильное основание, так как связь `"Na" - "O"` полярнее, чем связь `"O" - "H"`).
Наряду с полярностью связи реакционная способность зависит и от её длины. Так, если рассмотреть однотипные соединения `"R" - "H"`, где `"R"` – атом галогена, то в ряду `"HF" - "HCl" - "HBr" - "HI"` растёт размер атома галогена и ослабляется его связь с атомом водорода, что проявляется в усилении кислотных свойств, т. е. способности отщеплять катион водорода `"H"^+` при диссоциации в водном растворе.
Окислительно-восстановительная способность молекул, т. е. склонность их вступать в реакции, связанные с изменением степени окисления, также зависит от состояния атомов, образующих молекулы. Атомы, имеющие недостаток электронов (т. е. находящиеся в высшей положительной степени окисления), стремятся их приобрести, поэтому они будут проявлять окислительные свойства. Атомы, имеющие избыток электронов (т. е. находящиеся в низшей отрицательной степени окисления), стремятся их отдать, поэтому они будут проявлять восстановительные свойства.
В зависимости от степени окисления входящих в соединение атомов будет изменяться заполнение их электронных оболочек. Поэтому в разных степенях окисления один и тот же атом может проявлять свойства окислителя или восстановителя. Например, марганец в степени окисления `+7` является сильным окислителем, а в степени окисления `0` – восстановителем.
Геометрия молекул также оказывает влияние на реакционную способность отдельных атомов или групп атомов. Её учёт необходим при рассмотрении свойств сложных молекул, в которых определённые группы атомов могут затруднять приближение реагирующих молекул к атомам, расположенным ближе к центру молекулы.
Таким образом, строение электронной оболочки атома предопределяет возможность образования им химических связей и свойства этих связей, т. е. химические свойства образовавшегося соединения. Но строение электронной оболочки зависит от положения атома в периодической таблице элементов. Поэтому между положением элемента в периодической системе и химическими свойствами его соединений прослеживается чёткая связь.
Положение элемента в периодической системе (номер группы и периода) позволяет оценить число валентных электронов, способных принимать участие в образовании химических связей. Степень завершённости внешнего энергетического уровня позволяет предсказать склонность атома к присоединению или отдаче электронов. Таким образом, возможно предвидеть как максимальную валентность данного элемента, так и наиболее характерные степени окисления его в соединениях и, следовательно, характерные формулы соединений. Анализ степени ионности образующихся связей с другими элементами позволяет предсказывать химическое поведение этих соединений.
Возьмём для примера элемент №15 – фосфор и попытаемся предсказать свойства его соединений исходя из его положения в периодической системе. Этот элемент находится в главной подгруппе V группы и в `3` периоде. Конфигурация внешнего электронного слоя `3s^2 3p^3`, т. е. фосфор имеет `5` валентных электронов. Число недостающих до завершения внешнего уровня электронов `(3)` меньше, чем число электронов, которые необходимо отдать, чтобы освободить внешний уровень `(5)`. Поэтому атом фосфора будет охотнее принимать недостающие электроны, т. е. проявлять окислительную способность (неметаллические свойства).
Наиболее устойчивыми будут соединения со степенью окисления фосфора `-3`, в которых атом фосфора, приняв `3` электрона от партнёров по связям, завершит свой внешний уровень. Отрицательные степени окисления будут иметь соединения фосфора с менее электроотрицательными элементами: водородом и металлами. В степени окисления `(-3)` фосфор образует летучее водородное соединение формулы `"PH"_3`, которая характерна для элементов главной подгруппы V группы. Разница электроотрицательностей фосфора и водорода невелика, поэтому в этом соединении будут слабополярные ковалентные связи, для которых нехарактерен разрыв с отщеплением катиона `"H"^+`, т. е. водные растворы этого соединения не будут проявлять свойства кислоты.
В то же время при взаимодействии фосфора с более электроотрицательными элементами (галогенами, кислородом) он будет отдавать свои валентные электроны, приобретая положительные степени окисления. Фосфор имеет возможность распарить свои `2` `s`-электрона, поскольку на `3` энергетическом уровне есть свободные орбитали `d`-подуровня. Возбуждённый атом фосфора имеет `5` неспаренных электронов и может образовать `5` ковалентных связей с более электроотрицательными атомами, т. е. его максимальная валентность равна `5`. Наиболее устойчивыми будут соединения в степенях окисления `+3` и `+5`; они образуются при отдаче `3` `p`-электронов или всех `5` валентных электронов. В положительных степенях окисления фосфор будет образовывать оксиды `"P"_2"O"_3` и `"P"_2"O"_5`. С водой эти оксиды дают соединения `"H"_3"PO"_3` и `"H"_3"PO"_4`. Поскольку разница относительных электроотрицательностей `"O"` и `"H"` больше, чем `"O"` и `"P"`, то связь `"O" - "H"` более полярна, чем связь `"O" - "P"`, поэтому она будет разрываться легче с образованием катиона `"H"^+`. Значит, эти соединения будут проявлять свойства кислот, а следовательно, и сами оксиды будут кислотными оксидами.
Ввиду того, что фосфор занимает промежуточное положение между ярко выраженными металлами и неметаллами в ряду значений относительной электроотрицательности, для него нехарактерно образование ионных связей; связи его в соединениях неполярные или слабополярные ковалентные. На основании рассмотрения конкретных молекул можно определить их пространственную структуру.
Вещества состоят из молекул, которые непрерывно и хаотично движутся и взаимодействуют друг с другом. Вследствие движения молекулы обладают кинетической энергией, а вследствие наличия взаимодействия они обладают потенциальной энергией.
называют сумму всех кинетических и сумму всех потенциальных энергий молекул, из которых оно состоит.
— внутренняя энергия тела. |
(1) |
Уже из определения можно увидеть, что при увеличении скоростей молекул внутренняя энергия тела увеличится. Скорости теплового движения молекул могут измениться, например, при нагревании тела (повышении температуры) или в результате неупругого столкновения (удара). Если состояние тела претерпевает изменения, но при этом конечная температура тела равна его первоначальной температуре, то средние скорости молекул и их кинетические энергии также примут первоначальные значения (независимо от потенциальной энергии).
При растяжении (или сжатии) изменяется расстояние между молекулами, и, как следствие, изменяется потенциальная энергия взаимодействия молекул. Если газ в некотором состоянии занимает некоторый объём, то молекулы удалены друг от друга на определённое среднее расстояние. Если теперь газ расширить, а потом нагреть и сжать до начального объёма, то расстояние между молекулами вернётся к первоначальному значению, а это означает, что и потенциальные энергии молекул примут первоначальные значения. Тот же результат получится для потенциальной энергии молекул газа, если повторить эти процессы без нагревания. Кинетические энергии молекул при этом могут меняться.
Данные примеры приводят нас к пониманию того, что внутренняя энергия тела, находящегося в состоянии термодинамического равновесия, не зависит от того, каким способом данное тело приведено в данное состояние, а определяется параметрами его состояния, например, температурой и объёмом.
Молекулы могут участвовать в разных типах движения: поступательном (любые молекулы), вращательном (двух – и многоатомные), колебательном (двух – и многоатомные).
это число независимых параметров (координат), необходимых для однозначного описания положения тела в пространстве.
Для описания положения в пространстве одноатомной молекулы потребуется всего три координаты, что соответствует тому, что она обладает тремя степенями свободы (см. рис. 1).
Принято обозначать число степеней свободы буквой . Для рассматриваемого примера Наличие этих трёх координат фактически указывает на способность тела двигаться в трёх направлениях, или, как говорят, обладает тремя поступательными степенями свободы (рис. 1).
Для описания положения в пространстве двухатомной молекулы потребуется учесть способность центра масс этой молекулы двигаться в трёх направлениях (три поступательные степени свободы) и способность вращаться вокруг двух осей, проходящих через центр масс (две вращательные степени свободы). Третья ось, проходящая и через центры атомов двухатомных молекул, не изменяет положения атомов, и потому не рассматривается (на рис. 2 пунктирные оси и фигурные оси).
У трёхатомных или многоатомных молекул их было бы три.
И последнее возможное движение — это колебания атомов относительно центра масс молекулы. Такое движение приводит к изменению расстояния . (на рис. 2 показано для одного атома).
Этот тип движения атомов в молекуле «даёт о себе знать» только при температурах выше некоторой характерной температуры (для большинства молекул она составляет примерно `1000` К). При более высокой температуре есть смысл рассматривать эту одну колебательную степень свободы, а при более низкой — считать, что данная степень свободы отсутствует.
Таким образом, для описания положения в пространстве двухатомной молекулы требуется 6 величин:
1) три координаты центра масс (поступательные степени свободы),
2) два угла (вращательные степени свободы) и
3) одно расстояние между атомами (колебательная степень свободы).
В итоге имеем | при высокой температуре и |
при низкой температуре . |
Число степеней свободы, подсчитываемое для расчёта энергии, отличается от выше описанного в части колебательного движения.
В модели идеального газа потенциальная энергия взаимодействия молекул считается равной нулю. Тогда из (1) имеем
$$ U=\sum {W}_{\mathrm{К}}$$ | (2) |
В термодинамике часто пользуются принципом равнораспределения энергии по степеням свободы. Суть принципа состоит в том, что на каждую степень свободы приходится одинаковая часть общей внутренней энергии.
Во втором задании было установлено: средняя кинетическая энергия поступательного движения молекул идеального газа равна
$$ {\overline{E}}_{\mathrm{К}} ={\displaystyle \frac{3}{2}}kT,$$ |
(3) |
где $$ k$$ – постоянная Больцмана, $$ T$$ – абсолютная температура газа.
Число степеней свободы у одноатомных молекул равно трём: $$ i=3$$. Легко догадаться, что на каждую степень свободы для одноатомных газов будет приходиться энергия:
$${\overline{\varepsilon }}_{K}=\frac{1}{2}kT$$ - энергия, приходящаяся на одну степень свободы |
(4) |
Тогда средняя кинетическая энергия каждой молекулы с числом степеней $$ i$$ свободы будет записываться так:
$$ {\overline{E}}_{\mathrm{К}}=\frac{i}{2}kT$$ – средняя кинетическая энергия молекулы идеального газа. | (5) |
Для всего газа с числом молекул `N` можем получить выражение для внутренней энергии:
$$ U={\displaystyle \frac{i}{2}}kT·N={\displaystyle \frac{i}{2}}kT·{\displaystyle \frac{m}{M}}{N}_{A}={\displaystyle \frac{i}{2}}{\displaystyle \frac{m}{M}}k{N}_{A}T$$.
Так $$ R=k{N}_{A}= \mathrm{8,31}{\displaystyle \frac{\mathrm{Дж}}{\mathrm{моль}·\mathrm{К} }}$$— универсальная газовая постоянная, то
$$ \overline{U}={\displaystyle \frac{i}{2}}·{\displaystyle \frac{m}{M}}RT$$ — внутренняя энергия идеального газа. | (6) |
Используя уравнение Менделеева – Клапейрона, выражение для внутренней энергии идеального газа можно записать так:
$$ \overline{U}=\frac{i}{2}pV$$ — внутренняя энергия идеального газа. | (7) |
Напомним, что для двухатомного газа число степеней свободы может быть
разным:
$$ i=7$$ при высокой температуре $$ (Т>1000 \mathrm{К})$$ и |
$$ i=5$$ при низкой температуре $$(Т< 1000\;\mathrm К).$$ |
В распределении энергии по степеням свободы у молекул есть очень важная особенность: при колебательном движении на каждую колебательную степень свободы приходится энергия $$ kТ$$ (!). Это связано с тем, что при колебаниях атомов в молекуле следует учитывать не только их кинетическую энергию, но и их потенциальную энергию взаимодействия. Средние значения этих энергий равны `kT//2` каждое, что (для полной энергии) в сумме и даёт среднее значение энергии колебательного движения, равное $$ kT$$.
Поэтому подсчёт числа степеней свободы для двухатомной молекулы газа, имеющего высокую температуру $$ (Т>1000 \mathrm{К})$$, приводит к следующему результату: $$ i={i}_{\mathrm{пост}}+{i}_{\mathrm{вращ}}+2{i}_{\mathrm{кол}}=7$$.
Далее всегда (если нет специальной оговорки) мы будем считать, что молекулярная система жёсткая и в ней нет колебаний.
Внутреннюю энергию тела можно изменить:
1) теплопередачей (теплопроводностью, конвекцией и излучением);
2) совершением механической работы над телом (трение, удар, сжатие и др.).
Энергия тела, которую оно получает или отдаёт при обмене теплом с другими телами (без совершения работы), называют количеством теплоты.
$$ {Q}= \Delta U$$ — количество теплоты. | (8) |
Рассмотрим эти процессы более подробно.
1. Виды теплопередачи
А)
явление передачи теплоты (энергии) от одной части тела (более нагретой) к другой (менее нагретой).
Передача теплоты осуществляется в основном за счёт колебательного движения и столкновения отдельных молекул. При этом при столкновениях некоторая доля кинетической энергии молекул от одной (более нагретой) части тела передаётся молекулам другой (менее нагретой) его части. Важно заметить, что при теплопроводности само вещество не перемещается, а теплопередача всегда идёт в определённом направлении: внутренняя энергия горячего тела уменьшается, а внутренняя энергия холодного тела увеличивается.
В твёрдых металлических телах теплопроводность осуществляется преимущественно за счёт движущихся особым образом свободных электронов (в металлах также осуществляется перенос тепла колеблющимися атомами, но их вклад сравнительно небольшой).
Благодаря непрерывному взаимодействию соседствующих молекул, теплопроводность в твёрдых телах и жидкостях происходит заметно быстрее, чем в газах.
Интенсивность теплопроводности между телами зависит от разности их температур, площади поверхности, через которую происходит теплопередача, а также от свойств вещества, расположенного между телами.
В обычных условиях для расчёта количества теплоты `Q`, передаваемого через слой вещества путём теплопроводности, пользуются следующим соотношением:
$$ Q=k\frac{S·\Delta T}{h}·t$$ — закон Фурье. | (9) |
Здесь | $$ k$$ – коэффициент теплопроводности вещества слоя, |
$$ S$$ – площадь поверхности, через которую происходит теплопередача (см. рис 3), | |
$$ h$$ – толщина слоя вещества, | |
$$ t$$ – время наблюдения, | |
$$ \Delta T={T}_{1}-{T}_{2} $$ — разность температур между границами слоя $$ ({T}_{1}>{T}_{2})$$. |
Например, тепловая энергия уходит из комнаты через стену на улицу.
В этом случае:
$$ S$$ – площадь поверхности стены,
$$ k$$ – коэффициент теплопроводности вещества стены.
Следует отметить, что значения коэффициентов теплопроводности различных веществ отличаются столь сильно, что некоторые вещества применяют как эффективные теплопроводники (металлы, термомастика), а другие, наоборот, как теплоизоляторы (кирпич, дерево, пенопласт).
Б) В поле силы тяжести ещё одним механизмом теплопередачи может служить конвекция.
называют процесс перемешивания вещества, осуществляемый силой Архимеда, вследствии разности температур.
Конвекция может быть обнаружена в газах, жидкостях или сыпучих материалах.
Например, в кастрюле (см. рисунок 4) нагреваемая снизу вода расширяется, плотность её уменьшается. Сила Архимеда, действующая на небольшой фрагмент прогретой воды, поднимает её вверх. На поверхности прогретая вода остывает, смешиваясь с более холодной водой, испаряясь и т. п. Вследствие чего вода сжимается, становится более плотной, и тонет. Возникает конвективная ячейка.
На практике часто встречается принудительная конвекция, осуществляемая насосами или специальными перемешивающими механизмами.
В) Все тела, температура которых отлична от абсолютного нуля, излучают электромагнитные волны, которые переносят энергию. При комнатной температуре это в основном инфракрасное излучение. Так происходит лучистый теплообмен, или теплопередача посредством теплового излучения.
Из этого факта вытекает, что энергией в форме излучения обмениваются практически все окружающие нас тела. Этот процесс также приводит к выравниванию температур тел, участвующих в теплообмене.
Согласно теории равновесного теплового излучения интенсивность $$ I$$ излучения так называемого абсолютно чёрного тела пропорциональна четвёртой степени абсолютной температуры $$ T$$ тела:
$$I=\sigma ·{T}^{4}$$ — (закон Стефана—Больцмана). | (10) |
Где `sigma=5,67*10^(-8)` `"Вт"//"м"^2``"К"^4` - постоянная Стефана-Больцмана.
(Подробно речь об этом пойдёт в разделе «Основы квантовой физики» в 11 классе.)
В замкнутой системе теплообмен должен привести к установлению теплового равновесия. Теперь понятию «замкнутой системы» можно придать более отчётливые очертания: если границы некоторой области пространства имеют очень малый коэффициент теплопроводности (граница – слой теплоизолятора) и теплопередача через него не проходит, то содержащаяся внутри области пространства энергия изменяться не может и будет сохраняться.
2. Работа и изменение внутренней энергии.
Работа газа при расширении и сжатии
Для изменения внутренней энергии тела необходимо изменить кинетическую или потенциальную энергию его молекул. Этого можно добиться, не только при теплопередаче, но и деформируя тело. При упругой деформации изменяется расположение молекул или атомов внутри тела, приводящее к изменению сил взаимодействия (а значит, и потенциальной энергии взаимодействия), а при неупругой изменяются и амплитуды колебаний молекул или атомов, что изменяет кинетическую энергию молекул или атомов.
При ударе молотком по свинцовой пластине молоток заметно деформирует поверхность свинца (рис. 5). Атомы поверхностных слоёв начинают двигаться быстрее, внутренняя энергия пластины увеличивается.
Стоя на улице в морозную погоду и потирая руки, мы совершаем работу, что также приводит к увеличению внутренней энергии. Если сила трения возникла из-за взаимодействия шероховатостей, то при прохождении одной шероховатости мимо другой возникают колебания частей тела. Энергия колебаний превращается в тепло. Тот же процесс происходит и при разрывах шероховатостей.
Если работу совершает газ, закрытый в цилиндре и поршень будет перемещаться из положения `1` в положение `2` (рис. 6), то работа равна
$$ {A}^{\text{'}}=F·l·cos\alpha =\left(pS\right)l·1=p\left(Sl\right)=p \Delta V.$$ | (11) |
Здесь $$ F$$ – сила, действующая на поршень со стороны газа,
$$ \Delta V$$ – изменение объёма газа.
В некоторых случаях для расчёта работы газа в тепловом процессе удобно воспользоваться графическим методом. Суть его можно представить следующим образом. Допустим, что газ изобарно расширяется от начального объёма $$ {V}_{1}$$ до конечного объёма $$ {V}_{2}$$. На $$ pV$$ -диаграмме график процесса представляет собой отрезок прямой линии (см. рис. 7). Сравним полученное выражение для расчёта работы $$ {A}^{\text{'}}$$ газа (см. выше) с «площадью» заштрихованного прямоугольника под графиком изобары $$ {}^{"}S{ }^{"}=p({V}_{2}-{V}_{1})$$.
Нетрудно убедиться, что $$ {}^{"}S{ }^{"}={A}^{\text{'}}$$, т. е. работа газа при расширении от объёма $$ {V}_{1}$$ до объёма $$ {V}_{2}$$ численно равна площади прямоугольника под графиком процесса на этом участке зависимости.
Если же процесс является более сложным (см. рис. 8), то и в этом случае графически работу можно найти как площадь фигуры под графиком процесса `1–2`.
Докажем это, рассмотрев переход газа из состояния 1 в состояние 2 не по кривой, а по ломаной, состоящей из $$ N$$ отрезков изохор и изобар. Работа на $$ i$$-ой изобаре (на рисунке $$ i=5$$) равна $$ {A}_{i}={p}_{i}·\Delta {V}_{i}$$. Суммируя площади под всеми изобарами, получим площадь фигуры под ломаной, которую можно приближённо считать равной работе газа при расширении:
$$ A={p}_{1}·\Delta {V}_{1}+{p}_{2}· \Delta {V}_{2}+...+{p}_{N}· \Delta {V}_{N}$$.
Эту работу можно вычислить точнее, если увеличить число изобар и изохор ломаной (увеличить $$ N$$ и уменьшить $$ \Delta {V}_{i}$$). Площадь под ломаной при этом возрастёт,
так как к площади заштрихованной фигуры добавятся новые площади. Если число изобар и изохор устремить к бесконечности так, чтобы длина отрезков любой изобары и изохоры неограниченно уменьшалась, то ломаная линия совпадёт с кривой. Это и доказывает утверждение о том, что графически работу газа можно вычислить, найдя площадь фигуры под графиком процесса. Аналогично подсчитывают работу газа при его сжатии (уменьшении объёма). Необходимо только помнить, что работа газа в этом случае отрицательна.
При разбиении фигуры, образованной графиком процесса, изохорами и осью объёмов, на бесконечно малые элементы, изменение объёма записывается как $$ dV$$ (рис. 9). В этом случае малый элемент общей работы (элементарную работу) можно найти как $$ dA=p·dV$$, а всю работу получим суммированием всех элементарных работ на участке расширения:
$$ A=\int dA=\underset{{V}_{0}}{\overset{{V}_{k}}{\int }}pdV$$ — работа газа.
Работа газа численно равна площади фигуры под графиком $$ p\left(V\right)$$.
Если идеальный газ находится в теплоизолированном сосуде (стенки сосуда не пропускают тепло), то работа внешней силы, совершённая над ним, равна изменению кинетически энергий молекул газа, т. е. равна изменению его внутренней энергии:
$$∆U=A$$
В рамках молекулярно-кинетической теории этот факт можно пояснить следующим образом. При столкновении молекулы с движущимся навстречу ей массивным поршнем перпендикулярная к поршню составляющая скорости молекулы увеличится на удвоенную скорость поршня.
Обобщая полученные результаты рассмотрений способов изменений внутренней энергии, можем записать:
— первый закон термодинамики.
По сути, мы видим закон сохранения энергии, записанный для тепловых процессов, но это и есть первый закон термодинамики.
Изменение внутренней энергии термодинамической системы равно сумме полученного количества теплоты и работы, совершённой над ней окружающими телами.
Можно проиллюстрировать первый закон термодинамики и на другом примере: Если газ заперт в легком цилиндре под поршнем (рис. 10), а цилиндру сообщить количество теплоты , то газ нагреется, увеличив внутреннюю энергию, (теплоёмкостью цилиндра пренебрегаем), его давление увеличится, и он совершит работу над окружающими телами .
— первый закон термодинамики.
Количество теплоты, переданное термодинамической системе, расходуется на изменение внутренней энергии системы и на совершение работы системой над окружающими телами.
В последних формулах встретились работы и . Напомним, что
– работа окружающих тел над термодинамической системой.
При равномерном движении поршня сила, действующая на поршень со стороны газа, расположенного внутри цилиндра, равна по модулю и противоположна по направлению силе, действующей на газ со стороны поршня.
Очевидно, что
Работа окружающих тел над системой равна и противоположна по знаку работе системы над окружающими телами.
Первый закон термодинамики имеет одно важное следствие:
Невозможно создать вечный двигатель первого рода.
Т. е. невозможно создать двигатель, который непрерывно и бесконечно долго совершал бы работу без потребления энергии из окружающей среды. И действительно: если , то , следовательно, система может совершить вполне конечную работу, не превосходящую запаса внутренней энергии системы.
Коротко остановимся на терминологии, используемой при описании тепловых процессов.
Термодинамический процесс называется обратимым, если при совершении его в прямом, а потом в обратном направлении все тела, включая саму систему, вернутся в исходное состояние.
Необходимым и достаточным условием обратимости процесса является равновесность его промежуточных состояний.
Употребляются также термины: равновесный, или квазистатический процессы. Равновесные процессы можно описать графически, неравновесный – невозможно.
Реальные процессы сопровождаются теплообменом, диффузией, трением (необратимыми процессами), следовательно, большинство реальных процессов являются необратимыми.
Круговым процессом (циклом) называют термодинамический процесс, в результате совершения которого система возвращается в исходное состояние. Равновесный круговой процесс можно изобразить графически, при этом график процесса представляет собой замкнутую линию.
В прямом круговом процессе система за цикл совершает положительную работу (см. рис. 11 слева).
В обратном круговом процессе система за цикл совершает отрицательную работу (см. рис. 11 справа).
Перевод термодинамической системы (например, порции идеального газа) из состояния `1` в состояние `2` можно осуществить разными способами. На рис. 12 показаны графики двух возможных процессов (`1-"а"-2` и `1-"в"-2`), позволяющих осуществить такой перевод. Изменение внутренней энергии системы в том и в другом случае одинаково (оно определяется положениями точек `1` и `2` на -диаграмме), а работа, совершённая системой над окружающими телами, различна (площадь фигур под графиками процессов `1-"а"-2` и `1-"в"-2` разная, площадь под графиком процесса `1-"в"-2` больше).
Следовательно, и количество теплоты, затраченное на перевод системы из состояния `1` в `2` ( $$ Q=\Delta U+{A}^{\text{'}}$$ ), будет разным.
Теплоёмкостью $$ C$$ термодинамической системы (тела) называют отношение бесконечно малого количества теплоты $$ \Delta Q$$, переданного системе, к изменению $$ \Delta T$$ его температуры, вызванного этим количеством теплоты.
$$ C={\displaystyle \frac{\Delta Q}{\Delta T}}$$ — теплоёмкость тела (системы).
Единицей измерения этой величины будет $$ \left[C\right]={\displaystyle \frac{1\mathrm{Дж}}{\mathrm{К}}}$$.
Численное значение теплоёмкости тела показывает, какое количество теплоты потребуется для изменения температуры всего тела на `1` градус по шкале Цельсия (Кельвина).
При расчётах чаще пользуются удельной теплоёмкостью (теплоёмкостью `1` кг вещества).
называют отношение теплоёмкости тела (системы) к массе этого тела (системы):
$$ {c}_{\mathrm{уд}}={\displaystyle \frac{C}{m}}={\displaystyle \frac{\Delta Q}{m· \Delta T}}$$ — удельная теплоёмкость тела (системы). | (1) |
Единицей измерения этой величины будет $$ \left[c\right]={\displaystyle \frac{1\mathrm{Дж}}{\mathrm{кг}·\mathrm{К}}}$$.
называют отношение теплоёмкости тела (системы) к количеству вещества в этом теле (системе):
$$ {c}_{\mathrm{мол}}={\displaystyle \frac{C}{\nu }}={\displaystyle \frac{\Delta Q}{ \Delta T·\nu }}$$ — молярная теплоёмкость тела (системы). | (2) |
Единицей измерения этой величины будет $$ \left[{c}_{\mathrm{мол}}\right]={\displaystyle \frac{1\mathrm{Дж}}{\mathrm{моль}·\mathrm{К}}}$$.
Получим соотношение между удельной и молярной теплоёмкостями:
$$ {c}_{\mathrm{мол}}={\displaystyle \frac{Q}{ \Delta T·\frac{m}{M}}}={\displaystyle \frac{Q·M}{ \Delta T·m}}={c}_{\mathrm{уд}}·M$$ — соотношение между молярной и удельной теплоёмкостями | (3) |
Теперь найдём молярную теплоёмкость идеального газа при изобарном и при изохорном процессах.
При изобарном процессе присутствуют и $$ \Delta U$$, и $$ {A}^{\text{'}}$$, следовательно:
$$ {c}_{p}={\displaystyle \frac{Q}{\nu · \Delta T}}={\displaystyle \frac{\Delta U+A\text{'}}{\nu · \Delta T}}={\displaystyle \frac{\Delta U}{\nu \Delta T}}+{\displaystyle \frac{A\text{'}}{\nu \Delta T}}={\displaystyle \frac{\frac{i}{2}\nu R \Delta T}{\nu \Delta T}}+{\displaystyle \frac{\nu R \Delta T}{\nu \Delta T}}={\displaystyle \frac{iR}{2}}+R=R{\displaystyle \frac{i+2}{2}}$$,
$${c}_{p}=R{\displaystyle \frac{i+2}{2}}$$ — молярная теплоёмкость газа при изобарном процессе.
При изохорном процессе работа не совершается, $$ {A}^{\text{'}}=0$$, следовательно:
$$ {c}_{V}={\displaystyle \frac{Q}{\nu \Delta T}}={\displaystyle \frac{\Delta U+{A}^{\text{'}}}{\nu \Delta T}}={\displaystyle \frac{\Delta U}{\nu \Delta T}}={\displaystyle \frac{\frac{i}{2}\nu R \Delta T}{\nu \Delta T}}={\displaystyle \frac{iR}{2}}$$
$$ {c}_{V}=R{\displaystyle \frac{i}{2}}$$ — молярная теплоёмкость газа при изохорном процессе.
Соотношение между $$ {c}_{V}$$ и $$ {c}_{р}$$ можно записать в двух формах:
1) $$ {c}_{p}={c}_{V}+R$$ — закон Майера, и
2) $$ \gamma ={\displaystyle \frac{{c}_{p}}{{c}_{V}}}$$ — коэффициент Пуассона.
Т. к. мы уже знаем, чему равно число степеней свободы у разных молекул, то можем вычислить и значения $$ {с}_{р}$$ и $$ \gamma $$:
|
формула |
Одноатомные `(i = 3)` |
Двухатомные `(i = 5)` |
||
`c_p` |
`R((i+2)/2)` |
`5/2 R` |
`20,775 "Дж"/("моль"*"К")` | `7/2 R` | `29,085 "Дж"/("моль"*"К")` |
`gamma` |
`(i+2)/i` |
`5/3` |
`1,66667` |
`7/5` |
`1,4` |
Воздух представляет собой смесь газов, преимущественно двухатомных азота и кислорода, потому для него эксперименты дают значение $$ \gamma \approx \mathrm{1,4}$$.
Для твёрдых тел теплоёмкости $$ {с}_{р}$$ и $$ {c}_{V}$$ будут почти одинаковыми. Это можно показать следующим образом. По определению $$ C={\displaystyle \frac{\Delta Q}{ \Delta T}}$$, но $$ \Delta Q= \Delta U+p\Delta V$$, тогда
$$ {C}_{p}={\displaystyle \frac{\Delta U+p\Delta V}{ \Delta T}}={\displaystyle \frac{\Delta U}{ \Delta T}}+{\displaystyle \frac{p\Delta V}{ \Delta T}}={C}_{V}+{\displaystyle \frac{p\Delta V}{ \Delta T}}$$.
При нагревании твёрдых или жидких тел изменение объёма составляет около $$ {10}^{-6}$$ первоначального объёма, поэтому вторым слагаемым можно пренебречь по сравнению с первым, что и позволяет говорить о равенстве $$ {c}_{p}={c}_{V}$$.
Для газов $$ \frac{ \Delta V}{V}$$ на два порядка больше, чем для твёрдых или жидких тел, потому пренебрегать вторым слагаемым нельзя, более того, оно будет составлять заметную долю теплоёмкости $$ {c}_{p}$$.
называют процесс изменения термодинамического состояния, происходящий без теплообмена с окружающей средой.
Какой процесс можно было бы считать адиабатным? Вопрос не столь простой. Условием адиабатности можно считать следующее условие: с одной стороны — процесс должен быть очень быстрым, чтобы за время процесса не успел произойти теплообмен, а с другой стороны — он должен быть медленным, чтобы промежуточные состояния были обратимыми (квазистатичными).
Процесс без теплообмена не является адиабатным, если он протекает настолько быстро, что промежуточные состояния не являются квазистатическими (обратимыми)!!!
Если в цилиндре поршень сжимает газ, то в каждый момент времени давление и температура газа должны быть одинаковыми по всему объёму. Для осуществления этого требования требуется некоторое время, называемое временем релаксации. Иначе поршень будет «сгребать» перед собой «сугроб» из молекул.
Первый закон термодинамики для адиабатного процесса будет иметь вид:
, или , или , где .
Если работа, совершаемая над газом внешними телами, будет положительной (отрицательной), то изменение внутренней энергии тоже будет положительным (отрицательным), следовательно, газ нагревается (остывает).
Пусть из некоторого одинакового начального состояния начинают расширяться две одинаковые порции газа. Одна порция расширяется изотермически, другая адиабатно. При увеличении объёмов газов на некоторую величину изотермический процесс приведёт к снижению давления только потому, что уменьшится концентрация молекул.
В адиабатном же расширении газ уменьшает внутреннюю энергию и остывает. Давление при этом уменьшится за счёт уменьшения концентрации так же, как в и изотермическом процессе, но при этом давление ещё дополнительно уменьшится из-за уменьшения температуры. Поэтому давление в адиабатном процессе падает быстрее, чем в изотермическом процессе. Данный факт означает, что график адиабатного процесса в координатной плоскости `pV` будет пересекать график изотермического процесса. На качественном уровне мы уже приходим к выводу, что график адиабаты круче изотермы (рис. 13).
Уравнение, отображающее изменения термодинамических параметров при адиабатном квазистатическом процессе, называют уравнением Пуассона. Не задаваясь целью рассмотрения вывода уравнения, запишем его в готовом виде в различных формах.
— уравнение Пуассона.
— уравнение Пуассона.
— уравнение Пуассона.
называют такие термодинамические системы, которые периодически совершают прямой круговой цикл.
При совершении такого кругового процесса внутренняя энергия идеального газа, потраченная нагревателем на его проведение, лишь частично превращается в механическую работу.
То, что в работу превращается только часть внутренней энергии, видно уже из того, что положительная работа — это площадь фигуры, ограниченная графиками процессов, составляющих этот цикл. Площадь фигуры под циклом заметно больше, но её невозможно потратить полностью.
Для работы такой машины необходимо иметь в наличии более нагретое тело (далее называемое «нагревателем») с температурой `T_2` и менее нагретое тело (далее называемое «холодильником») с температурой `T_1`. Иначе получить положительную работу за цикл не удастся.
Вещество, производящее работу в тепловых машинах, называется рабочим телом. В качестве рабочего тела могут быть использованы различные тела, но в теоретическом рассмотрении мы будем считать, что рабочим телом такой машины является идеальный газ.
Идеальная тепловая машина построена только на обратимых процессах, и цикл такой машины состоит из чередующихся изотермических и адиабатных процессов (рис. 14). Такой цикл предложил использовать для тепловых машин итальянец С. Карно, потому называют циклом Карно.
Рассмотрим потактно работу такой машины.
Изотермическое расширение: .
Пусть газ находится в цилиндре под поршнем при температуре , и цилиндр помещаем на нагреватель с температурой . Газ изотермически расширяется от объёма до объёма (рис. 15). Первый закон термодинамики для данного процесса принимает вид: , тем самым находим работу в этом процессе. Так же при изотермическом процессе работа может быть найдена как площадь под графиком процесса, и равна (формулу приводим без вывода):
.
Адиабатное расширение: .
Удалим цилиндр с поршнем с нагревателя. Тем самым теплоизолируем его. Предоставим возможность газу расшириться адиабатно на столько, что его температура понизится от начальной до конечной (рис. 16). Первый закон термодинамики для данного процесса принимает вид:
,
тем самым находим работу в этом процессе. При адиабатном процессе работа может быть найдена как:
.
Изотермическое сжатие: .
Поместим цилиндр с поршнем на холодильник с температурой . Далее сжимаем газ от объёма до объёма при постоянной температуре (рис. 17). При этом часть внутренней энергии будет передаваться от рабочего тела (газа) к холодильнику (теряется газом).
Первый закон термодинамики для данного процесса принимает вид:
,
тем самым находим работу в этом процессе. Также известно, что при изотермическом процессе работа может быть найдена как площадь под графиком процесса, и равна:
.
Адиабатное сжатие: .
Удалим цилиндр с поршнем с холодильника. Тем самым теплоизолируем его. Сожмём газ адиабатно на столько, что его температура повысится от начальной до конечной (рис. 18). Первый закон термодинамики для данного процесса принимает вид:
,
тем самым находим работу в этом процессе. При адиабатном процессе работа может быть найдена как:
.
Далее цикл за циклом идёт повторение процессов.
За каждый прямой цикл система совершает работу, которую можно назвать полезной и которую можно найти как алгебраическую сумму всех работ на каждом такте:
$$ {A}_{\mathrm{полезн}}^{\text{'}}={A}_{1}^{\text{'}}+{A}_{2}^{\text{'}}+{A}_{3}^{\text{'}}+{A}_{4}^{\text{'}}={Q}_{2}-{\displaystyle \frac{i}{2}}\nu R({T}_{1}-{T}_{2})-{Q}_{1}-{\displaystyle \frac{i}{2}}\nu R({T}_{2}-{T}_{1})=$$
$$ ={Q}_{2}-{Q}_{1}$$.
Тратится же энергия (подводится к рабочему телу) только на первом такте в количестве $$ {Q}_{2}$$ (затраты на четвёртом такте полностью скомпенсированы положительной работой второго такта).
Теперь имеем в наличии все данные для нахождения КПД тепловой машины, работающей по циклу Карно:
$$ \eta ={\displaystyle \frac{{Q}_{\mathrm{полезн}}}{{Q}_{\mathrm{затр}}}}={\displaystyle \frac{{A}_{\mathrm{полезн}}^{\text{'}}}{{Q}_{\mathrm{затр}}}}={\displaystyle \frac{{Q}_{2}-{Q}_{1}}{{Q}_{2}}}=1-{\displaystyle \frac{{Q}_{1}}{{Q}_{2}}}$$, или $$ \eta =1-{\displaystyle \frac{{T}_{1}}{{T}_{2}}}$$.
КПД идеальных тепловых машин, состоящих из обратимых процессов, с данными температурами нагревателя и холодильника, находится по формулам:
$$ \eta =1-{\displaystyle \frac{{Q}_{1}}{{Q}_{2}}}$$ — максимальный КПД тепловых машин.
Можно доказать, что КПД может быть найден и по другой формуле:
$$ \eta =1-{\displaystyle \frac{{T}_{1}}{{T}_{2}}}$$ — максимальный КПД тепловых машин с циклом Карно.
Сади Карно доказал, что тепловая машина с таким циклом имеет максимально возможный КПД.
Цикл Отто
Мы уже говорили о том, что цикл Карно позволяет получить максимальный из всех возможных КПД. В практической деятельности часто создаются машины, работа которых не нацелена на получение максимального КПД. Одним из таких примеров может служить цикл Отто, по которому работает бензиновый двигатель внутреннего сгорания (ДВС). На схеме показаны основные элементы двигателя и характерные точки положений поршня (рис. 19).
Теперь рассмотрим более подробно работу ДВС по циклу Отто. В идеале он должен выглядеть так:
А) Участок $$ АВ$$ (см. рис. 20) соответствует второй части такта выпуска, где поршень поднимается от нижней до верхней мёртвой точки и выталкивает через открытый выпускной клапан остатки отработанных газов в атмосферу при атмосферном же давлении (см. рис. 19).
Б) На участке $$ ВС$$ (см. рис. 20) (такт впуск) поршень совершает обратное движение к нижней мёртвой точке, но при этом клапан выпускной закрывается, впускной клапан открывается, и рабочая смесь воздуха и бензина поступает (втягивается при атмосферном давлении) в камеру сгорания.
В) На участке $$ CD$$ поршень вновь поднимается к верхней мёртвой точке и, при закрытых клапанах, сжимает рабочую смесь (такт сжатие). Сжатие идёт так быстро, что теплообмен практически не происходит, и процесс можно принять как адиабатный.
Г) В точке $$ D$$ на свечу зажигания подают высокое напряжение, рабочая смесь практически мгновенно сгорает, и давление возрастает в несколько раз при постоянном объёме.
Д) Далее на участке $$ EF$$ газ (отработанная смесь) совершает работу (такт рабочий ход). Процесс опять в первом приближении можно считать адиабатным, а клапаны на протяжении такта закрыты.
Е) Последним процессом будет расширение газа при открытии выпускного клапана (первая часть такта выпуска). Газ выходит лишь частично, давление падает до атмосферного. В действительности процесс сжатия и последующего возрастания давления после сгорания идёт сложнее, да и такт выпуска тоже идёт сложнее (показано пунктирной линией, и соответствует индикаторной диаграмме). Затем повторяются все выше перечисленные процессы.
Эксплуатация тепловых машин сопряжена с рядом факторов:
1. КПД реальных тепловых машин меньше, чем КПД машин, работающих по циклу Карно, но достигает `40%` и более (для дизельных двигателей). Этот коэффициент можно повышать разными способами: добавлением присадок в топливо для более полного сгорания, уменьшением трения в узлах машины, совершенствованием систем охлаждения и зажигания.
2. Тепловые машины являются источниками загрязнения окружающей среды: выхлопные газы (отработанная рабочая смесь) содержат много ядовитых (канцерогенных) веществ и веществ, из которых образуются канцерогены.
3. Однако в значительно большей степени вредоносными для экологии являются не сами тепловые машины, а сопутствующие (обслуживающие) производства: топливная промышленность (добыча, транспортировка, переработка и вновь транспортировка топлива), производство и утилизация ГСМ, сеть Станций Технического Обслуживания, автодорожное строительство и содержании дорог. Каждая из названных категорий представляет собой сложную структуру, агрессивно воздействующую на природную среду.
Далеко не каждый человек осознал значение его простых действий (или бездействий) в развитии биосферы, техносферы и ноосферы.
называют термодинамические системы, которые периодически совершают обратный круговой процесс и служат для передачи количества теплоты от менее нагретого тела к более нагретому, используя для этого работу окружающих тел над рабочим телом.
Они могут быть использованы для поддержания в некотором объёме камеры машины более низкой температуры, чем снаружи.
Наиболее эффективным круговым процессом опять можно выбрать цикл Карно, но теперь он должен совершаться в обратном направлении (см. рис. 21).
Пусть вновь более нагретое тело имеет температуру (атмосфера), а менее нагретое (морозильная камера). Именно в нём и нужно поддерживать более низкую температуру, периодически отбирая у него часть внутренней энергии. Отобранную энергию нужно передавать более нагретому телу, т. е. окружающей среде.
.
Полезным действием в таком круговом процессе будет передача теплоты в первом процессе от охлаждаемого тела к рабочему телу .
Эффективность такой теплопередачи характеризует холодильный коэффициент:
— холодильный коэффициент,
или
— холодильный коэффициент для цикла Карно.
Если применить холодильник (как агрегат) для обогрева помещения, то для этого будет необходимо:
1) количество теплоты , ранее передаваемое в окружающую среду, передавать теперь в обогреваемое помещение и
2) забирать теплоту не у морозильной камеры, а у окружающей среды (атмосферы). Такой агрегат называют тепловым насосом. Теперь полезным окажется именно , а затраченным вновь .
По аналогии с холодильным коэффициентом, теперь уже отопительный коэффициент можно записать в виде:
— отопительный коэффициент, или
— отопительный коэффициент для цикла Карно.
Нетрудно догадаться, что полученные коэффициенты могут оказаться больше единицы, т. е. больше `100%`. Это вполне нормально. Наибольшее значение коэффициента будет тогда, когда температура в помещении мало отличается от температуры улицы (или температура морозильной камеры близка к комнатной). Для отопительного коэффициента значения лежат в интервале от `2` до `12`. Это означает, что в комнату будет передано в `2-:12` раз больше теплоты, чем затрачено электрической энергии. Препятствием к широкому применению таких агрегатов является дороговизна их изготовления.
1) На каких участках процесса газ получает теплоту, а на каких отдаёт?
2) Чему равно изменение внутренней энергии в конце цикла?
3) Какую работу совершает газ за цикл?
1) Для ответа на первый вопрос задачи необходимо определить знак количества теплоты для каждого участка цикла.
Процесс $$ 1–2$$ – изохорный процесс, идущий с увеличением давления. В этом процессе внутренняя энергия газа увеличивается:
(здесь и далее двойной индекс означает равенство данной величины в двух состояниях (двух точках на диаграмме) $$ {V}_{12}={V}_{1}={V}_{2}$$ или $$ {p}_{23}={p}_{2}={p}_{3}$$), а работа газа равна нулю: $$ {A}_{1-2}=0$$, т. к. объём газа не изменяется. Следовательно, на изохоре $$ 1–2$$ газ получает теплоту: $$ \Delta {Q}_{1-2}=(\Delta {U}_{1-2}+{A}_{1-2})>0$$.
Процесс $$ 2–3$$ изобарный, идущий с увеличением объёма. В этом процессе внутренняя энергия газа увеличивается: $$ \Delta {U}_{1-2}={\displaystyle \frac{i}{2}}{p}_{2-3}({V}_{34}-{V}_{12})>0$$, а работа газа при увеличении объёма положительна: $$ {A}_{2-3}={p}_{23}({V}_{34}-{V}_{12})>0$$. Следовательно, на изобаре $$ 2–3$$ газ получает теплоту:
Процесс $$ 3–4$$ – изохорный процесс, идущий с уменьшением давления.
В этом процессе внутренняя энергия газа уменьшается:
`DeltaU_(1-2)=i/2 V_(34)(p_(14)-p_(23))<0`, а работа газа равна нулю: $$ {A}_{3-4}=0$$, т. к. объём газа не изменяется. Следовательно, на изохоре $$ 3–4$$ газ отдаёт теплоту: $$ΔQ_{3-4} < 0$$.
Процесс $$ 4–1$$ изобарный, идущий с уменьшением объёма. В этом процессе внутренняя энергия газа уменьшается: `DeltaU_(1-2)=i/2 p_(14)(V_(12)-V_(34)<0`, а работа газа при уменьшении объёма отрицательна: $$ {A}_{4-1}={p}_{14}({V}_{12}-{V}_{34})$$. Следовательно, на изобаре $$ 4–1$$ газ отдаёт теплоту: $$ΔQ_{4-1} = (ΔU_{4-1} + A_{4-1}) < 0 $$.
2) Второй вопрос требует от нас анализа итогового изменения внутренней энергии. Так как цикл замкнутый, то термодинамическая система возвращается в исходное состояние, следовательно, внутренняя энергия не изменяется (внутренняя энергия, являясь функцией состояния, определяется только температурой. Температура же после совершения замкнутого цикла примет первоначальное значение). Следовательно,
$$ \Delta {U}_{1-2-3-4-1}=0$$.
3) Работа за цикл равна сумме работ в отдельных процессах:
$$ {A}_{1-2-3-4-1}={A}_{1-2}+{A}_{2-3}+{A}_{3-4}+{A}_{4-1}={A}_{2-3}+{A}_{4-1}=$$
$$ ={p}_{23}({V}_{34}-{V}_{12})+{p}_{14}({V}_{12}-{V}_{34})=({p}_{23}-{p}_{14})({V}_{34}-{V}_{12})$$.
На $$ pV$$-диаграмме это есть площадь фигуры, ограниченной графиками процессов, составляющих цикл.
Для нахождения работы за цикл можно складывать не работы, а количества теплоты, потраченные в отдельных процессах цикла. Докажем это:
$$ {A}_{1-2-3-4-1}= \Delta {Q}_{1-2}+ \Delta {Q}_{2-3}+ \Delta {Q}_{3-4}+ \Delta {Q}_{4-1}=$$
$$ =(\Delta {U}_{1-2}+{A}_{1-2})+(\Delta {U}_{2-3}+{A}_{2-3})+ (\Delta {U}_{3-4}+{A}_{3-4})+ (\Delta {U}_{4-1}+{A}_{4-1}=$$
$$ =(\Delta {U}_{1-2}+ \Delta {U}_{2-3}+ \Delta {U}_{3-4}+ \Delta {U}_{4-1})+({A}_{1-2}+{A}_{2-3}+{A}_{3-4}+{A}_{4-1})=$$
$$ ={A}_{1-2}+{A}_{2-3}+{A}_{3-4}+{A}_{4-1}$$.
Здесь использован тот факт, что для цикла изменение внутренней энергии системы равно нулю:
$$ \Delta {U}_{1-2}+ \Delta {U}_{2-3}+ \Delta {U}_{3-4}+ \Delta {U}_{4-1}= \Delta {U}_{1-2-3-4-1}=0$$ .
Если процесс не круговой (система не возвращается в исходное состояние), то $$ \sum {U}_{i-k} \ne 0$$ и такой способ расчёта работы не применим.
Для циклического процесса, который состоит из изохоры, изобары, снова изохоры и ещё одной изобары (см. рис. к задаче $$ 1$$) найти КПД цикла.
Для получения коэффициента полезного действия необходимо найти:
1) количество теплоты, потраченное (оно же получено рабочим телом) на проведение цикла, и
2) полезную работу, совершенную за цикл.
Тогда КПД находим по известной формуле:
$$ \eta ={\displaystyle \frac{{A}_{\mathrm{цикл}}}{{Q}_{\mathrm{подв}}}}$$
Затраты количества теплоты происходили на первом изохорном процессе:
$$ \Delta {Q}_{1-2}= \Delta {U}_{1-2}+{A}_{1-2}= \Delta {U}_{1-2}={\displaystyle \frac{i}{2}}{V}_{12}({p}_{23}-{p}_{14})>0$$ и
на втором процессе – изобарном расширении:
$$ \Delta {Q}_{2-3}= \Delta {U}_{2-3}+{A}_{2-3}={\displaystyle \frac{i}{2}}{p}_{2-3}({V}_{34}-{V}_{12})+{p}_{23}({V}_{34}-{V}_{12})>0$$.
Всего затрачено (а рабочим телом получено)
$$ \Delta {Q}_{1-3}=\Delta {U}_{1-3}+{A}_{1-3}={\displaystyle \frac{i}{2}}({p}_{23}{V}_{34}-{p}_{14}{V}_{12})+{p}_{23}({V}_{34}-{V}_{12})=$$
$$ ={\displaystyle \frac{i}{2}}\nu R({T}_{3}-{T}_{1})+\nu R({T}_{3}-{T}_{2})$$.
Т. к. тепло подводится на участках $$ 1–2$$ и $$ 2–3$$ (т. е. на участке $$ 1–2$$), то
$$ \eta ={\displaystyle \frac{{A}_{1-2-3-4-1}}{\Delta {Q}_{1-3}}}$$.
2) Работа за цикл находится уже рассмотренным в предыдущем примере
$$ {A}_{1-2-3-4-1}={A}_{1-2}+ {A}_{2-3}+ {A}_{3-4}+ {A}_{4-1}={A}_{2-3}+ {A}_{4-1}=$$При получении окончательной формулы использовано уравнение состояния идеального газа.
Найдём КПД:
$$ \eta ={\displaystyle \frac{{A}_{1-2-3-4-1}}{ \Delta {Q}_{1-3}}}={\displaystyle \frac{\nu R({T}_{3}-{T}_{2}-{T}_{4}+{T}_{1})}{{\displaystyle \frac{i}{2}}\nu R({T}_{3}-{T}_{1})+\nu R({T}_{3}-{T}_{2})}}={\displaystyle \frac{{T}_{3}-{T}_{2}-{T}_{4}+{T}_{1}}{{\displaystyle \frac{i}{2}}({T}_{3}-{T}_{1})+({T}_{3}-{T}_{2})}}$$
или
$$ \eta ={\displaystyle \frac{{A}_{1-2-3-4-1}}{ \Delta {Q}_{1-3}}} ={\displaystyle \frac{({p}_{23}-{p}_{14})({V}_{34}-{V}_{12})}{ \frac{i}{2}({p}_{23}{V}_{34}-{p}_{14}{V}_{12})+{p}_{23}\left)\right({V}_{34}-{V}_{12})}} =$$
$$ ={\displaystyle \frac{({p}_{23}-{p}_{14})({V}_{34}-{V}_{12})}{\frac{i}{2}{V}_{12}({p}_{23}-{p}_{14})+(\frac{i}{2}+1){p}_{23}({V}_{34}-{V}_{12})}}$$.
Пусть $$ {p}_{23}=2{p}_{14}$$, $$ i=3$$, $$ {V}_{34}=3{V}_{12}$$. Тогда для такого случая получаем:
$$ \eta ={\displaystyle \frac{2{p}_{14}{V}_{12}}{\mathrm{1,5}{p}_{14}{V}_{12}+10{p}_{14}{V}_{12}}}={\displaystyle \frac{2}{\mathrm{11,5}}}={\displaystyle \frac{4}{23}} \approx \mathrm{0,17}$$.
Воздух в комнате объёмом $$ 100 {\mathrm{м}}^{3}$$ прогрели от `t_1 = 10^@"C"` до `t_2 = 50^@"C"`. Давление воздуха – нормальное атмосферное. На сколько изменились масса и внутренняя энергия воздуха в комнате при повышении температуры?
Для ответа на первый вопрос воспользуемся уравнением Менделеева – Клапейрона: $$ pV=\frac{m}{M}RT$$, откуда $$ m=\frac{pVM}{RT}$$. С учётом того, что
процесс расширения воздуха изобарный, то
$$ \Delta m={\displaystyle \frac{{p}_{0}VM}{R}}(\frac{1}{{T}_{2}}-\frac{1}{{T}_{1}})$$.
$$ \Delta m={\displaystyle \frac{1}{R}}{p}_{0}VM({\displaystyle \frac{1}{{T}_{2}}}-{\displaystyle \frac{1}{{T}_{1}}}) \approx -\mathrm{15,3} \mathrm{кг}$$.
Минус указывает на убыль массы воздуха в комнате.
Для изменения внутренней энергии запишем: $$ \Delta U= {\displaystyle \frac{i}{2}}({p}_{2}{V}_{2}-{p}_{1}{V}_{1})$$. Заметим, что $$ {p}_{2}={p}_{1}={p}_{0}$$, также $$ {V}_{2}={V}_{1}=V$$. Эти факты указывают на то, что внутренняя энергия воздуха не изменяется: $$ \Delta U={\displaystyle \frac{i}{2}}({p}_{2}{V}_{2}-{p}_{1}{V}_{1})=0$$.
Из результата можно понять, что убыль внутренней энергии за счёт уменьшения массы равна приросту внутренней энергии за счёт увеличения температуры.
Тогда возникает вопрос целесообразности отопления зданий, ведь внутреннюю энергию при этом мы не увеличиваем. Ответ на вопрос лежит совсем в другой области: увеличение температуры воздуха помогает нашему организму терять меньше энергии (закон Фурье) и тем самым поддерживать скорость химических реакций обмена веществ в организме (метаболизм) на необходимом комфортном уровне.
1) Найти работу, совершённую газом при увеличении его объёма от $$ {V}_{1}$$ до $$ {V}_{2}$$.
2) Поглощается или выделяется энергия в таком процессе?
3) Чему равна молярная теплоёмкость газа в таком процессе?
1) Определим сначала, как давление в этом процессе зависит от объёма при изображении процесса на $$ рV$$-диаграмме. Для этого воспользуемся уравнением Менделеева-Клапейрона: $$ pV=\nu RT=\nu R·\alpha {V}^{2}$$.
Тогда получим, сокращая объём, что: $$ p=\nu R·\alpha V=\beta ·V$$, где $$ \nu R·\alpha =\beta $$. Видим, что давление изменяется прямо пропорционально объёму, и графиком процесса на $$ pV$$-диаграмме будет отрезок $$ 1–2$$, лежащий на прямой, проходящей через начало координат (см. рис. $$ 23$$).
Работа численно равна площади фигуры под графиком процесса на данной диаграмме. Площадь можно найти геометрически, как площадь трапеции:
$$ {A}^{\text{'}}={\displaystyle \frac{({p}_{1}+{p}_{2})}{2}}({V}_{2}-{V}_{1})={\displaystyle \frac{1}{2}}(\beta {V}_{1}+\beta {V}_{2})({V}_{2}-{V}_{1})=$$
$$ ={\displaystyle \frac{\beta }{2}}({V}_{2}^{2}-{V}_{1}^{2})={\displaystyle \frac{\nu R\alpha }{2}}({V}_{2}^{2}-{V}_{1}^{2})$$.
2) Так как объём газа увеличивается, и давление тоже растёт, то:
а) Работа газа положительнa $$ {A}^{\text{'}}>0$$.
б) Температура и, как следствие, внутренняя энергия увеличиваются $$ \Delta U>0$$.
Следовательно, в этом процессе газ получает теплоту $$ \Delta Q= \Delta U+{A}^{\text{'}}>0$$.
3) Молярная теплоёмкость процесса определяется отношением:
$$ {c}_{\mathrm{моль}}={\displaystyle \frac{\Delta Q}{\nu ·\Delta T}}={\displaystyle \frac{ \Delta U+{A}^{\text{'}}}{\nu ·\Delta T}}={\displaystyle \frac{\frac{i}{2}({p}_{2}{V}_{2}-{p}_{1}{V}_{1})+\frac{({p}_{1}+{p}_{2})}{2}({V}_{2}-{V}_{1})}{\nu ·\alpha ({V}_{2}^{2}-{V}_{1}^{2})}}=$$
$$ ={\displaystyle \frac{\frac{i}{2}\beta ({V}_{2}^{2}-{V}_{1}^{2})+\frac{\beta }{2}({V}_{2}^{2}-{V}_{1}^{2})}{\nu ·\alpha ({V}_{2}^{2}-{V}_{1}^{2})}}$$.
$$ {c}_{\mathrm{моль}}={\displaystyle \frac{\frac{i}{2}\beta +\frac{\beta }{2}}{\nu ·\alpha }}={\displaystyle \frac{\frac{\nu R\alpha }{2}(i+1)}{\nu ·\alpha }}={\displaystyle \frac{(i+1)R}{2}}$$.
Для одноатомного газа `(i=3)` получаем
$$ {c}_{\mathrm{моль}}={\displaystyle \frac{(3+1)\mathrm{8,31}\mathrm{Дж}/(\mathrm{моль}·\mathrm{К})}{2}}=\mathrm{16,62} \mathrm{Дж}/\mathrm{моль}·\mathrm{К}$$
В цилиндре под поршнем находится $$ \nu =\mathrm{0,5}$$ моль воздуха при температуре $$ {T}_{0}=300$$ K. Во сколько раз увеличится объём газа при сообщении ему количества теплоты $$ Q=\mathrm{13,2}$$ кДж?
Из текста задачи следует, что процесс нагрева газа идёт изобарно (находится в цилиндре под поршнем). Молярная теплоёмкость в таком процессе равна $$ {c}_{p}=({\displaystyle \frac{i}{2}}+1)R={\displaystyle \frac{7}{2}}R$$.
Количество теплоты, потраченное (полученное газом) в процессе,
$$ \Delta Q={c}_{p}·\nu ·\Delta T={\displaystyle \frac{{c}_{p}}{R}}·\nu R \Delta T={\displaystyle \frac{{c}_{p}}{R}}·p\Delta V$$.
Неизвестное давление $$ р$$ выразим из уравнения Менделеева – Клапейрона: $$ pV= {\displaystyle \frac{m}{M}}RT$$, откуда $$ p={\displaystyle \frac{m}{MV}}RT={\displaystyle \frac{\nu RT}{V}}$$. Подставляя это выражение в предыдущее, получим:
$$ \Delta Q={\displaystyle \frac{{c}_{p}}{R}}·P\Delta V={\displaystyle \frac{{c}_{p}}{R}}·{\displaystyle \frac{\nu RT}{V}}·({V}_{1}-V)={c}_{p}\nu T({\displaystyle \frac{{V}_{1}}{V}}-1)$$, откуда для искомой величины находим
$$ {\displaystyle \frac{{V}_{1}}{V}}={\displaystyle \frac{\Delta Q}{{c}_{p}\nu T}}+1$$, $$ {\displaystyle \frac{{V}_{1}}{V}}={\displaystyle \frac{\mathrm{13,2}\mathrm{кДж}}{\mathrm{29,085}\frac{\mathrm{Дж}}{\mathrm{моль} \mathrm{К}}· \mathrm{0,5} \mathrm{моль}·300 \mathrm{К}}}+1=4$$.
Моль гелия расширяется в изотермическом процессе $$ 1–2$$, совершая работу величиной $$ {A}_{12}$$. Затем газ охлаждается в изобарическом процессе $$ 2–3$$ и, наконец, в адиабатическом процессе $$ 3–1$$ возвращается в исходное состояние (рис. $$ 24$$). Какую работу совершил газ в замкнутом цикле, если разность максимальной и минимальной температур газа в нём составила величину $$ \Delta Т$$ градусов?
Вспомним, что работа за цикл (замкнутый процесс) равна сумме количеств теплоты, потраченных (переданных газу) в каждом из процессов:
$$ {A}_{1-2-3-1}= \Delta {Q}_{1-2}+ \Delta {Q}_{2-3}+ \Delta {Q}_{3-1}$$.
Теперь запишем первый закон термодинамики для каждого процесса в отдельности:
1) В первом процессе температура не изменяется, вся энергия идёт на совершение работы $$ \Delta {Q}_{1-2}= \Delta {U}_{12}+{A}_{12}=0+{A}_{12}={A}_{12}$$.
2) На втором процессе температура падает от $$ {Т}_{2}$$ до $$ {Т}_{3}$$, и данная величина составляет заданную в условии задачи разность температур $$ \Delta Т$$ (т. к. $$ {Т}_{3}$$ - минимальная температура, а $$ {Т}_{1}={Т}_{2}$$, тогда $$ ({T}_{1}-{T}_{3})=({T}_{2}-{T}_{3})= \Delta T$$.
$$ \Delta {Q}_{2-3}= \Delta {U}_{23}+{A}_{23}^{\text{'}}=-{\displaystyle \frac{i}{2}}\nu R\Delta T=-({\displaystyle \frac{i}{2}}+1)\nu R\Delta T$$.
3) Для адиабатного процесса $$ 3-1$$ имеем (по определению адиабатного процесса): $$ \Delta {Q}_{3-1}=0$$.
Сложим полученные результаты и получим ответ:
$$ {A}_{1-2-3-1}= \Delta {Q}_{1-2}+ \Delta {Q}_{2-3}+ \Delta {Q}_{3-1}={A}_{12}-({\displaystyle \frac{i}{2}}+1)\nu R \Delta T+0$$.
Или окончательно для гелия:
$$ {A}_{1-2-3-1}={A}_{12}-{\displaystyle \frac{5}{2}}\nu R\Delta T$$.
Рассмотрим часть газа, находящегося в трубе в той части, где расположен нагреватель (между сечениями $$ 1$$ и $$ 2$$) (рис. $$ 26$$). Первый термометр $$ \left({Т}_{1}\right)$$ находится перед рассматриваемой областью, а второй $$ \left({Т}_{2}\right)$$ за ней.
Запишем первый закон термодинамики для выделенной части газа:
$$ \Delta Q= \Delta U+{A}^{\text{'}}$$.
Теперь рассмотрим подробнее каждое слагаемое в этом уравнении.
Количество теплоты, получаемое газом от нагревателя за время $$ \Delta t$$, можно записать так:
$$ \Delta Q=N \Delta t$$.
Изменение внутренней энергии для $$ \Delta \nu $$ молей воздуха, прошедших через выделенную область за время $$ \Delta t$$, определяется выражением
$$ \Delta U={\displaystyle \frac{i}{2}}\nu R({T}_{2}-{T}_{1})$$.
Работа $$ {A}^{\text{'}}$$ газа над окружающими телами складывается из работы $$ {A}_{1}^{\text{'}}$$ газа при перемещении его левой границы (сечение $$ 1$$, перемещение $$ 1–{1}^{\text{'}}\text{'}$$) и работы $$ {A}_{2}^{\text{'}}$$ газа при перемещении его правой границы (сечение $$ 2$$, перемещение $$ 2–{2}^{\text{'}}\text{'}$$):
$$ {A}^{\text{'}}={A}_{1}^{\text{'}}+{A}_{2}^{\text{'}}$$.
Заметим, что `A_1^'<0` (газ в этой области сжимается), а $$ {A}_{2}^{\text{'}}>0$$ (газ в области расширяется).
Процесс совершения работы слева идёт при постоянной температуре $$ {Т}_{1}$$ и постоянном внешнем давлении `p_1`. Совершение этой работы приводит к введению в рассматриваемую область дополнительно $$ \Delta {\nu }_{1}$$ моль газа (показан как закрашенный участок справа от сечения $$ 1$$), занимающих объём $$ \Delta {V}_{1}$$. Для $$ {A}_{1}^{\text{'}}$$ получаем:
$$ {A}_{1}^{\text{'}}=-{p}_{1} \Delta {V}_{1}=-\Delta {\nu }_{1·}R·{T}_{1}$$.
Процесс совершения работы справа идёт при постоянной температуре $$ {Т}_{2}$$ и постоянном внешнем давлении `p_1`. Совершение этой работы приводит к выведению из рассматриваемой области объёма газа $$ \Delta {\nu }_{2}$$ моль газа (показан на рисунке выделенным объёмом справа от сечения $$ 2$$), занимающих объём $$ \Delta {V}_{2}$$. Для $$ {A}_{2}^{\text{'}}$$ получаем:
$$ {A}_{2}^{\text{'}}={p}_{2} \Delta {V}_{2}= \Delta {\nu }_{2}·R·{T}_{2}$$.
При стационарном процессе нагрева воздуха количество вошедшего воздуха равно количеству вышедшего: $$ \Delta {\nu }_{1}= \Delta {\nu }_{2}= \Delta \nu $$. Тогда работа $$ {A}^{\text{'}}$$ равна
$$ {A}^{\text{'}}={A}_{1}^{\text{'}}+{A}_{2}^{\text{'}}=-\Delta \nu R{T}_{1}+ \Delta \nu R{T}_{2}= \Delta \nu R({T}_{2}-{T}_{1})$$,
С учётом вышеизложенного перепишем первой закон термодинамики для рассматриваемой ситуации:
$$ N \Delta T={\displaystyle \frac{i}{2}} \Delta \nu R({T}_{2}-{T}_{1})+\Delta \nu R({T}_{2}-{T}_{1})=({\displaystyle \frac{i}{2}}+1) \Delta \nu R({T}_{2}-{T}_{1})$$.
Любопытно заметить, что процесс нагрева воздуха проходит так, что его описание совпадает с процессом изобарного нагрева.
Теперь подробнее остановимся на массовом расходе воздуха $$ {m}_{\tau }$$.
$$ {m}_{\tau }={\displaystyle \frac{\Delta m}{ \Delta t}}={\displaystyle \frac{\Delta \nu M}{ \Delta t}}$$, тогда $$ \Delta \nu ={m}_{\tau }{\displaystyle \frac{\Delta t}{M}}$$,
$$ N·\Delta t=({\displaystyle \frac{i}{2}}+1) \Delta \nu R({T}_{2}-{T}_{1})=({\displaystyle \frac{i}{2}}+1){m}_{\tau }{\displaystyle \frac{\Delta t}{M}}R({T}_{2}-{T}_{1})$$.
Откуда получаем ответ:
$$ N=({\displaystyle \frac{i}{2}}+1){\displaystyle \frac{{m}_{\tau }}{M}}R({T}_{2}-{T}_{1})=$$
$$ =\left(\mathrm{3,5}\right){\displaystyle \frac{720\mathrm{кг}}{360с \mathrm{0,029}\frac{\mathrm{кг}}{\mathrm{моль}}}}\mathrm{8,31}{\displaystyle \frac{\mathrm{Дж}}{\mathrm{моль}·\mathrm{К}}}5 \mathrm{K} \approx 1000 \mathrm{Вт}$$.
С идеальным одноатомным газом проводят циклический процесс $$ 1–2–3–1$$, состоящий из адиабатического расширения $$ 1–2$$, расширения в процессе $$ 2–3$$, в котором теплоёмкость газа оставалась постоянной, и сжатия в процессе $$ 3–1$$ с линейной зависимостью давления от объёма (см. рис. $$ 27$$). Известно, что связь между температурами и объёмами в промежуточных состояниях $$ 1$$, $$ 2$$ и $$ 3$$ выражается соотношениями: $$ {T}_{1}=2{T}_{2}={T}_{3}$$, $$ {V}_{3}=4{V}_{1}$$. Найдите молярную теплоёмкость газа в процессе $$ 2–3$$, если работа, совершённая над газом в цикле, составляет $$ 7/15$$ от работы, совершённой над газом в процессе $$ 3–1$$.
Первый закон термодинамики для процесса $$ 1–2$$ можем записать так:
$$ \Delta {Q}_{12}=0$$ (адиабатическое расширение).
Для процесса $$ 2–3$$ первый закон термодинамики можно записать так:
$$ \Delta {Q}_{23}={c}_{23}·\nu ({T}_{3}-{T}_{2})$$.
И, наконец, для процесса $$ 3–1$$ имеем:
$$ \Delta {Q}_{31}= \Delta {U}_{31}+{A}_{31}^{\text{'}}=0+\left({\displaystyle \frac{{p}_{1}+{p}_{3}}{2}}\right)({V}_{1}-{V}_{3})=-{\displaystyle \frac{1}{2}}·{\displaystyle \frac{15}{4}}{p}_{3}{V}_{3} =-{\displaystyle \frac{15}{8}}\nu R{T}_{1}$$.
Работа газа за весь цикл равна сумме количеств теплоты:
$$ {A}_{1-2-3-1}= \Delta {Q}_{1-2}+\Delta {Q}_{2-3}+\Delta {Q}_{3-1}=0+{c}_{23}\nu ({T}_{3}-{T}_{2})-{\displaystyle \frac{15}{8}}\nu R{T}_{1}$$.
$$ {A}_{1-2-3-1}={\displaystyle \frac{7}{15}}{A}_{31}=-{\displaystyle \frac{7}{15}}·{\displaystyle \frac{15}{8}}\nu R{T}_{1}$$.
Приравняем:
$$ -{\displaystyle \frac{7}{15}}·{\displaystyle \frac{15}{8}}\nu R{T}_{1}={c}_{23}\nu ({T}_{3}-{T}_{2})-{\displaystyle \frac{15}{8}}\nu R{T}_{1}$$.
Откуда, с учётом соотношений температур $$ {T}_{1}=2{T}_{2}={T}_{3}$$, искомая теплоёмкость будет равна $$ {c}_{23}=2R$$.
Всю совокупность электромагнитных явлений (не только электростатических!) удаётся объяснить существованием в природе только двух (не большего, но и не меньшего числа) типов электрических зарядов, одни из которых выражаются положительными числами, другие – отрицательными.
В Международной системе СИ за единицу измерения заряда принят кулон (Кл).
называют такие заряженные тела, размеры которых много меньше, чем характерные расстояния между ними.
Разноимённые точечные заряды притягиваются, а одноимённые отталкиваются друг от друга. Для тел конечных размеров это свойство может не выполняться (сильно наэлектризованное тело может притягивать тело, имеющее небольшой заряд того же знака).
электрический заряд любой системы тел (частиц) равен алгебраической сумме зарядов, входящих в систему.
Заряд любого тела можно представить в виде целого числа элементарных зарядов: `q=Ze`, где `Z` – целое число, `e` – так называемый элементарный заряд,
`e~~1,6*10^(-19)`Кл, численно равный заряду протона (или заряду электрона с противоположным знаком).
Ещё одно важное свойство заряда – независимость величины заряда от скорости движения, или инвариантность заряда. Если бы это свойство не имело места, то нельзя было бы вообще говорить о величине заряда, например, электрона, без указания системы отсчёта и задания его скорости в ней.
В замкнутой (изолированной) системе тел, которая не обменивается зарядами с другими телами, алгебраическая сумма зарядов отдельных тел остаётся неизменной, какие бы изменения внутри системы ни происходили – превращения одних заряженных частиц в другие, рождение или уничтожение заряженных частиц:
`q_1+q_2+q_3+...=q_1^'+q_2^'+q_3^'+...="const"`. (1.1.1)