Все статьи

Подкатегории

Новости

538 статей

О Физтехе

1 подкатегорий

2 статей

Московский политех

2 подкатегорий

1 статей

Разное

16 статей

Статьи , страница 467

  • §3. Понятие о пределе функции. Непрерывность функции

    Пусть функция `y=f(x)` определена на некотором интервале, содержащем точку `ain R`, за исключением, быть может, самой точки `a`.

    Определение

    Число `A` называется пределом функции `y=f(x)` в точке `a`, если для любой последовательности `(x_n)` из области её определения такой, что `x_n!=a` и `lim_(n->oo)x_n=a` выполняется равенство `lim_(n->oo)f(x_n)=A`.

    Обозначение:  `lim_(n->oo)f(x)=A`, или `f(x)->A`  при `x->a`.

    Замечание

    В определении предела рассматриваются значения `x_n`, не равные `a`, поэтому в самой точке `a`   функция  `y=f(x)` может  быть  не  определена;  если  значение `f(a)` определено, то оно не обязано совпадать с  `A`. К тому же, поскольку последовательность `(f(x_n))` имеет не более одного предела, получаем, что если функция `y=f(x)` имеет предел при  `x->a`, то этот предел единственный.

    На рис. 2 изображена лишь одна последовательность `(x_n)`, которая к тому же является монотонной. Важно понимать, что `lim_(n->oo)f(x_n)=A` для любой последовательности `(x_n)`  с условием `x_n!=a`  и  `lim_(n->oo)x_n=a`.

    Пример 3.1

    Доказать, что `lim_(n->oo)x=a`.

    Решение

    Очевидно, функция `f(x)=x` определена на любом интервале, содержащем `a`. Выберем произвольную последовательность `(x_n)` такую, что `x_n!=a` и `lim_(n->oo)x_n=a`. Тогда `f(x_n)=x_n` и, значит, `lim_(n->oo)f(x_n)=a`.

    Пример 3.2

    Доказать, что при  `a>0lim_(n->a)sqrtx=sqrta`.

    Решение

    Функция `f(x)=sqrtx` определена при `x>=0` и, следовательно, определена на некотором интервале, содержащем `a`. Выберем произвольную последовательность неотрицательных чисел  `x_n!=a`, что `lim_(n->oo)x_n=a`. Нам нужно показать, что `lim_(n->oo)sqrtx_n=sqrta`. Фиксируем произвольное `epsilon>0`, тогда найдётся такое число `k`, что при `n>k` выполняется неравенство `|x_n-a|<epsilonsqrta`. Следовательно,

    `|sqrtx_n-sqrta|=(|(sqrt(x_n)-sqrta)(sqrt(x_n)+sqrta)|)/(sqrt(x_n)+sqrta)<(|x_n-a|)/(sqrta)<epsilon`,

    что и требовалось.

    Пример 3.3

    Доказать, что `lim_(x->1)(x^2-1)/(x-1)=2`.

    Решение

    Функция `f(x)=(x^2-1)/(x-1)` определена на любом интервале, содержащем `x=1`, кроме этой точки. Поскольку при `x!=1` имеет место равенство `f(x)=x+1`, то для любой последовательности `(x_n)` такой, что `x_n!=1` и `lim_(n->oo)x_n=1` выполняется `lim_(n->oo)f(x_n)=lim_(n->oo)x_n+1=2`.

    Теорема 3.1

    Пусть функции `y=f(x)`, `y=g(x)` определены на некотором интервале, содержащем точку `a in R`, за исключением, быть может, самой точки `a`, `lim_(x->a)f(x)=A`  и `lim_(x->a)g(x)=B`. Тогда

    1) `lim_(x->a)(f(x)+g(x))=A+B`;

    2) `lim_(x->a)f(x)g(x)=AB`;

    3) если дополнительно `g(x)!=0` при `x!=a`, `B!=0`, то `lim_(x->a)(f(x))/(g(x))=A/B`.

    Эти свойства вытекают из арифметических операций над пределами последовательностей (теорема 2.2). Приведём доказательство для свойства 2. Остальные доказываются аналогично.

    Доказательство

    Пусть некоторая произвольная последовательность `(x_n)` из интервала, на котором определены функции, такова что `x_n!=a` и `lim_(n->oo)x_n=a`. Тогда по определению предела функции `lim_(n->oo)f(x_n)=A` и `lim_(n->oo)g(x_n)=B`. По пункту 2 теоремы 2.2 `lim_(n->oo)f(x_n)g(x_n)=AB`. По определению предела функции получаем, что `lim_(x->a)f(x)g(x)=AB`.

    Определение

    Пусть функция `y=f(x)` определена на некотором интервале, содержащем точку `a`. Функция `y=f(x)`называется непрерывной в точке `a`, если `lim_(x->a)f(x)=f(a)`, т. е. если для любой последовательности `(x_n)` из области определения функции такой, что `lim_(n->oo)x_n=a`, выполняется равенство `lim_(n->oo)f(x_n)=f(a)`.

    Замечание

    Отметим два обстоятельства, связанных с определением непрерывности. Во-первых, оговорка `x_n!=a` здесь не нужна, т. к. при `x_n=a` значения `f(x_n)` равны `f(a)`. Во-вторых, важно понимать, что если функция `y=f(x)` непрерывна в точке `a`, то 

    1) она определена в точке  `a`;

    2) существует `lim_(x->a)f(x)=A`  и

    3) `A=f(a)`.

    Если хотя бы один из пунктов 1) – 3) не выполнен, то функция не является непрерывной в точке `a`.

    Пример 3.4

    Многочлен является непрерывной на всей числовой прямой функцией.

    Решение

    Пусть `P(x)=a_nx^n+a_(n-1)x^(n-1)+...+a_1x+a_0` - многочлен степени `n, a in R`.  Нам нужно показать, что `lim_(x->a)P(x)=P(a)`. В силу примера 3.1 `lim_(x->a)x=a`,, а в силу примера 2.1 для константы `c` ‑ `lim_(x->a)c=c`. Последовательно применяя пункт 2 теоремы 3.1, получаем, что `lim_(x->a)cx^m=ca^m` при любом натуральном `m`. Осталось `n+1` раз применить пункт 1 теоремы 3.1 и заключить, что `lim_(x->a)P(x)=P(a)`.

    Замечание

    Из теоремы 3.1 вытекает, что если функции `y=f(x)`, `y=g(x)` непрерывны в точке `a`,  то функции  `y=f(x)+-g(x)`, `y=f(x)g(x)`, `y=f(x)//g(x)` `(g(a)!=0)`   также непрерывны в `a`.

    Определение

    Функция называется непрерывной на множестве, если она непрерывна в каждой точке этого множества.

    Пример 3.5

    Функция `y=|x|` непрерывна на всей числовой прямой.

    Решение

    Функция `y=|x|` на промежутке `(-oo;0)` совпадает с функцией `y=-x`, а на промежутке `(0;+oo)` - с функцией `y=x`, которые непрерывны на этих промежутках. Осталось исследовать на непрерывность данную функцию в точке `x=0`. Поскольку `||x_n|-0|=|x_n-0|`, то для любой последовательности `(x_n)` такой, что `lim_(n->oo)x_n=0` верно `lim_(n->oo)|x_n|=0`. По определению `lim_(x->0)|x|=0`, функция `y=|x|` непрерывна в точке `x=0`.

    Замечание

    Вообще, все элементарные функции, изучаемые в школьном курсе, непрерывны в каждой точке, в окрестности которой эти функции определены.

    Пример 3.6

    Найти `lim_(x->2)(x^3+sqrt((x-3)^2)+11)`.

    Решение

    Поскольку `sqrt((x+3)^2)=|x-3|` и `|x-3|=3-x` при `x<=3`,

    то `f(x)=x^3+|x-3|+11=x^3-x+14` при  `x<=3`.

    Многочлен `P(x)=x^3-x+14` непрерывен на всей числовой прямой, и в частности, в точке `x=2`. Поэтому `lim_(x->2)f(x)=P(2)=2^3-2+14=20`.

    Ответ
    `20`.

    Пример 3.7

    Найти `lim_(x->5)(sqrt(x-1)-2)/(x-5)`.

    Решение

    Обозначим дробь, стоящую под знаком предела, через `f(x)`. В числителе и знаменателе дроби `f(x)` стоят функции, непрерывные в точке `x=5`. Предел этих функций при `x->5` равен их значению в точке `x=5`, т. е. равен `0`. В этом случае говорят, что имеет место неопределённость `(0/0)`. Для её «раскрытия» приходится прибегнуть к искусственному приёму – умножению числителя и знаменателя дроби `f(x)` на «сопряжённое выражение» `sqrt(x-1)+2`:

    `lim_(x->5)f(x)=lim_(x->5)((sqrt(x-1)-2)(sqrt(x-1)+2))/((x-5)(sqrt(x-1)+2))=`

    `=lim_(x->5)(x-5)/((x-5)(sqrt(x-1)+2))=`

    `=lim_(x->5)1/(sqrt(x-1)+2)=1/(sqrt(5-1)+2)=1/4`.

    Предпоследнее равенство получено в силу непрерывности функции `y=1/(sqrt(x-1)+2)`  в точке  `x=5`.

    Ответ

    `1/4`.

  • §4. Производная функции
    Определение

    Пусть функция `y=f(x)` определена на некотором интервале `(c;d)`, содержащем точку `ainR`. Функция `y=f(x)` называется дифференцируемой в точке , если существует конечный

    `lim_(x->a)(f(x)-f(a))/(x-a)`.

    Этот предел называется производной функции  `y=f(x)` в точке  `a` и обозначается `f^'(a)`.

    Для точек `x,ain(c;d)`  введём обозначения: `Deltax=x-a` – приращение аргумента; `Deltaf=f(x)-f(a)` – приращение функции. Тогда дифференцируемость  `y=f(x)` в точке  `a` означает, что

    `f^'(a)=lim_(x->a)(Deltaf)/(Deltax)`.

    Функция называется дифференцируемой на множестве, если она дифференцируема в каждой точке этого множества.

    Пример 4.1

    Найти по определению производные функций:

    а) `f(x)=c, cinR`,  в произвольной точке;

    б)  `f(x)=x^n,ninN`, в произвольной точке;

    в)  `f(x)=sqrtx` в точке `a>0`.

    Решение

    а) Пусть `ainR`. Поскольку приращение постоянной функции  `Deltaf=c-c=0`, то производная `f^'(a)=lim_(x->a)0/(x-a)=0`.

    б) Приращение данной функции в точке  `ainR` можно записать следующим образом: `Deltaf=x^n-a^n=(x-a)(x^(n-1)+ax^(n-2)+...+a^(n-1))`.  Тогда 

    `f^'(a)=lim_(x->a)(x^n-a^n)/(x-a)=lim_(x->a)(x^(n-1)+ax^(n-2)+...+a^(n-1))=na^(n-1)`.

    Итак, `(x^n)^'=nx^(n-1)` для всех `xinR`.

    в) Пусть `a>0`. Функция `s(x)=sqrtx` определена на некотором интервале, содержащем `a` (например, `(a//2,2a)`). Запишем отношение приращений

    `(Deltaf)/(Deltax)=(sqrtx-sqrta)/(x-a)=(sqrtx-sqrta)/((sqrtx-sqrta)(sqrtx+sqrta))=1/(sqrtx+sqrta)`.

    Тогда `f^'(a)=lim_(x->a)1/(sqrtx+sqrta)=1/(2sqrta)`, т. е. `(sqrtx)=1/(2sqrtx)`  при `x>0`.

    Укажем физический смысл производной. Пусть `s=s(t)` - расстояние, пройденное телом за время `t` (движение одномерное). Тогда частное `(s(t)-s(t_0))/(t-t_0)` выражает среднюю скорость за время от `t_0` до `t`. Если мы хотим узнать скорость тела в момент времени `t_0`, то нужно неограниченно уменьшать промежуток от `t_0` до `t`, т. е. устремлять `t` к `t_0`. Таким образом, `s^'(t_0)=lim_(t->t_0)(s(t)-s(t_0))/(t-t_0)` есть мгновенная скорость в `t_0`. Так что интуитивное представление о производной есть у каждого, кто видел спидометр автомобиля.

    Теорема 4.1

    Если функция `y=f(x)` дифференцируема в точке `a`, то она непрерывна в точке `a`.

    Следующий пример показывает, что обратное утверждение к теореме 4.1 неверно.

    Пример 4.2

    Доказать, что функция `y=|x|` не дифференцируема (не имеет производной) в точке `x=0`.

    Решение

     Рассмотрим две последовательности `(x_n)` и `(bar(x)_n)` такие что `x_n->0`, `bar(x)_n->0` при `n->oo`, все  `x_n>0`, а все `barx_n<0`. Тогда соответствующие отношения приращений функции к приращениям аргумента в точке `x=0` имеют вид `((Deltay)/(Deltax))_n=(|x_n|-0)/(x_n-0)=(x_n)/(x_n)=1` и `((Deltay)/(Deltax))_n=(|barx_n|-0)/(barx_n-0)=(-barx_n)/(barx_n)=-1` что означает отсутствие предела `lim_(x->0)(Deltay)/(Deltax)`, т. е. отсутствие `y^'(0)`.

    Теорема 4.2

     Пусть функции `y=f(x)`, `y=g(x)`  дифференцируемы в точке `a`, тогда в этой точке дифференцируемы функции `y=(f+g)(x)`, `y=c*f(x)`  (где `cinR`), `y=(f*g)(x)` и, если `g(a)!=0`, то также  `y=(f/g)(x)`,причём

    1)  `(f+-g)^'(a)=f^'(a)+-g^'(a)` и `(c*f)^'(a)=c*f^'(a)`;

    2) `(f*g)^'(a)=f^'(a)g(a)+f(a)g^'(a)`;

    3) `(f/g)^'(a)=(f^'(a)g(a)-f(a)g^'(a))/(g^2(a))`.

    Из теоремы 4.2 и пунктов а) и б) примера 4.1 вытекает

    Следствие

    Любой многочлен `P(x)=a_nx^n+a_(n-1)x^(n-1)+...+a_1x+a_0` является дифференцируемой на `R`  функцией с производной `P^'(x)=a_n nx^(n-1)+a_(n-1)(n-1)x^(n-2)+...+a_1`.

    Пример 4.3

    Найти производную функции `y=(x+1)/(3x-6)` при `x!=2`.

    Решение

    На основании примера 4.1 и теоремы 4.2 получаем:

    `y^'((x+1)^'(3x-6)-(x+1)(3x-6)^')/((3x-6)^2)=`

    `=(3x-6-(x+1)*3)/(9(x-2)^2)=(-1)/((x-2)^2)`.

    Замечание

    Вообще говоря, любая дробно-рациональная функция дифференцируема во всех точках, за исключением нулей знаменателя.

    Определение

    Пусть на множестве `X` задана функция `y=f(x)`  и на множестве её значений задана функция `z=g(y)`. Тогда говорят, что на множестве `X` определена сложная функция (или композиция)  `z=g(f(x))` функций `z=g(y)` и `y=f(x)`. Например, рассмотрим на луче `X=(-oo;-1]` функцию `y=x^2-1`. На множестве её значений `[0;+oo)` определена функция `z=g(y)=sqrty`. Тогда на `X` можно определить сложную функцию `z=g(f(x))=sqrt(x^2-1)`.

    Теорема 4.3

    Пусть на множестве `X` определена сложная функция `z=g(f(x))`. Если функция  `y=f(x)` дифференцируема в точке `x_0`, а функция `z=g(y)` дифференцируема в точке `y_0=f(x_0)`, то сложная функция `z=g(f(x))` дифференцируема в точке `x_0` и `(g(f(x_0)))^'=g(y_0)f^'(x_0)`.

    Пример 4.4

    Найти производную функции `z(x)=sqrt(x^2-1)` в точке `x in(-oo;-1)`.

    Решение

    Данная функция является композицией двух функций `g(y)=sqrty` и `y=f(x)=x^2-1`. Поскольку `g^'(y)=1/(2sqrty)` (см. пример 4.1), а `y^'=f^'(x)=2x`, то по теореме 4.3 получаем

    `z^'(x)=g^'(f(x))*f^'(x)=(1)/(2sqrt(f(x)))*f^'(x)=`

    `=(2x)/(2sqrt(x^2-1))=x/(sqrt(x^2-1))`.

    Определение

    Пусть функция `y=f(x)` дифференцируема в точке `a`. Касательной к графику `f` в точке `A(a;f(a))` называется прямая, проходящая через точку `A`, угловой коэффициент которой равен `f^'(a)`. Уравнение касательной в точке `A`  имеет вид

    `y=f(a)+f^'(a)(x-a)`. 

    Функция `f(x)=sqrt(1-x^2)` дифференцируема в каждой точке интервала `(-1;1)` с `f^'(x)=-x/(sqrt(1-x^2))`. Следовательно, уравнение касательной к графику этой функции в `A(a;f(a))` имеет вид `y=sqrt(1-a^2)-(a(x-a))/(sqrt(1-a^2))`, т. е. `y=(1-ax)/(sqrt(1-a^2)`. График  `f` представляет собой полуокружность, а касательная к этой кривой была определена в геометрии. Докажем, что оба определения дают одну и ту же прямую.

    Рассмотрим случай `ain(0;1)`. Касательная, определенная при помощи производной, проходит через точку `A(a;f(a))` и угловой коэффициент её равен `f^'(a)=-a/(sqrt(1-a^2))`. Так как этот угловой коэффициент отрицателен, то угол `varphi`, образованный касательной с положительным направлением оси `Ox`, тупой: `"tg"varphi=f^'(a)`. Тогда тангенс острого угла `alpha` (см. рис. 3), образованного касательной с отрицательным направлением оси `Ox`, равен `a/(sqrt(1-a^2))`. Котангенс же острого угла `beta`, образованного прямой `OA` с положительным направлением оси `Ox`, равен `a/(f(a))=a/(sqrt(1-a^2))`. Итак, `"tg"alpha="ctg"beta`, оба угла `alpha` и `beta` острые, поэтому `beta=90^@-alpha`. А это значит, что касательная, определенная при помощи производной, перпендикулярна радиусу окружности, проведенному в точку `A`, т. е. совпадает с касательной в смысле геометрического определения. Случай `ain(-1;0)` рассматривается аналогично. Этот случай (а также случай `a=0`) рекомендуем рассмотреть самостоятельно.

     Часто требуется провести касательную к графику функции через произвольную точку плоскости. Такая задача может иметь два и более решений, а может и вообще не иметь решений.

    Пример 4.5

    Провести касательную к параболе `y=1+2x-x^2` через произвольную точку плоскости `(x_0;y_0)`. Исследовать решение.

    Решение

    Так как `(1+2x-x^2)^'=2-2x`,  то уравнение касательной к параболе в точке `(a;1+2a-a^2)` имеет вид:

    `y=(1+2a-a^2)+(2-2a)(x-a)`.

    Эта касательная должна проходить через точку `(x_0;y_0)`, откуда `y_0=(1+2a-a^2)+(2-2a)(x_0-a)` и после преобразований получаем уравнение для нахождения абсциссы точки касания `a`:

    `a^2-2x_0a+(1+2x_0-y_0)=0`.                  (*)

    Если  `D/4=x_0^2-2x_0-1+y_0<0`, т. е. `y_0<1+2x_0-x_0^2`, то уравнение (*) не имеет решений.

    Если `D/4>0`, т. е. `y_0>1+2x_0-x_0^2`, то уравнение (*) имеет два решения `a=x_0+-sqrt(x_0^2-2x_0-1+y_0)`. Подставляя найденные `a` получим уравнения двух касательных, проходящих через точку `(x_0;y_0)`. Например, при `x_0=0`, `y_0=2` имеем `a+-1` и соответственно уравнения двух касательных: `y=2` (горизонтальная касательная, касающаяся параболы в её вершине `(1;2)`) и `y=4x+2` (наклонная касательная, касающаяся параболы в точке `(-1;-2)`, см. рис. 4). Наконец, если `D/4=0` т. е. `y_0=1+2x_0-x_0^2`, то уравнение имеет одно решение `a=x_0`. Геометрический смысл решения очень прост.

    Если `y_0<1+2x_0-x_0^2`, т. е. точка `(x_0;y_0)` лежит «ниже» параболы, то через эту точку касательную провести нельзя.

    Если `y_0>1+2x_0-x_0^2`, т. е. точка `(x_0;y_0)` лежит «выше» параболы, то через эту точку можно провести две касательные к параболе. Наконец, если `y_0=1+2x_0-x_0^2`, т. е. точка `(x_0;y_0)` лежит на параболе, то через нее можно провести единственную касательную, касающуюся параболы в точке `(x_0;y_0)`.

  • §5. Экстремум функции. Монотонные функции. Наибольшее и наименьшее значение функции на отрезке
    Определение

    Пусть функция `y=f(x)` определена на некотором интервале, содержащем точку `ainR`. Точка `a` называется точкой локального максимума функции `f`, если существует `epsilon` - окрестность точки `a` что для любого `x!=a` из этой окрестности `f(x)<f(a)`.

    Если выполнено неравенство  `f(x)>f(a)`, то `a` называется точкой локального минимума функции `f`.

    Точки локального максимума и локального минимума называют точками локального экстремума.

    Теорема 5.1 (Ферма)

    Если точка `a` является точкой локального экстремума функции `y=f(x)` и функция `f` имеет производную в этой точке, то `f^'(a)=0`.

    Физический смысл: при одномерном движении с возвращением в точке максимального удаления должна быть остановка. Геометрический смысл: касательная в точке локального экстремума горизонтальна.

    Замечание.

    Из теоремы Ферма следует, что если функция имеет экстремум в точке `a`, то в этой точке производная функции либо равна нулю, либо не существует. Например, функция `y=|x|` имеет минимум в точке `x=0`, а производная в этой точке не существует (см. пример 4.2). Точки, в которых функция определена, а производная равна нулю или не существует, будем называть критическими.

    Итак, если у функции имеются точки экстремума, то они лежат среди критических точек (критические точки «подозрительны» на экстремум). Для формулировки условий, обеспечивающих наличие экстремума в критической точке, нам потребуется следующее понятие.

    Напомним, что под промежутком понимается интервал (конечный или бесконечный), полуинтервал или отрезок числовой прямой.

    Определение

    Пусть функция `y=f(x)` определена на промежутке `I`.

    1) Функция `y=f(x)` возрастает на `I`, если для любых `x,yinI`, `x<y`, выполняется `f(x)<f(y)`.

    2) Функция `y=f(x)` убывает на `I`, если для любых `x,yinI`, `x<y`, выполняется `f(x)>f(y)`.

    Если функция возрастает или убывает на `I`, то говорят, что функция монотонна на промежутке `I`.

    Условия монотонности. Пусть функция `y=f(x)` определена на промежутке `I` с концами `a`, `b`, дифференцируема на `(a, b)` и непрерывна в концах, если они принадлежат `I`. Тогда

    1) если `f^'(x)>0` на `(a, b)`, то функция возрастает на `I`;

    2) если `f^'(x)<0` на `(a, b)`, то функция убывает на `I`.

    Условия экстремума. Пусть функция `y=f(x)` определена на интервале `(ab)`, непрерывна в точке `x_0 in(a, b)` и дифференцируема на `(a,x_0) uu (x_0,b)`. Тогда

    1) если `f^'(x)>0` на `(a;x_0)` и `f^'(x)<0` на `(x_0;b)`, то `x_0` - точка локального максимума функции `f`;

    2) если `f^'(x)<0` на `(a;x_0)` и `f^'(x)>0` на `(x_0;b)`, то `x_0` - точка локального минимума функции `f`.


    Пример 5.1

    Исследовать функцию `y=x^3-3x` на монотонность и экстремумы на области определения.

    Решение

    Данная функция определена на `R` и дифференцируема в каждой точке (см. следствие теоремы 4.2), причём `y^'=3(x^2-1)`. Так как `y^'<0` при `x in(-1,1)`; `y^'>0` при `x in(-oo,-1)uu(1,+oo)`, то функция возрастает на лучах `(-oo,-1]` и `[1,+oo)` (на каждом из двух лучей в отдельности, но не на их объединении!), убывает на отрезке `[-1,1]`. По условию экстремума `x=-1` - точка локального максимума, а `x=1` - точка локального минимума. Так как `y^'=0` только в точках `x=1` и `x=-1`, то по теореме Ферма других точек экстремума у функции нет.

    Рассмотрим важный класс задач, в которых используется понятие производной – задачи нахождения наибольшего и наименьшего значения функции на отрезке.

    Пример 5.2

    Найти наибольшее и наименьшее значение функции `y=x^3-3x` на отрезке: а) `[-2;0]`; б) `[1;3]`.

    Решение

    а) Из примера 5.1 следует, что функция возрастает на `(-oo,-1]` и убывает на `[-1,1]`. Так что `y(-1)>=y(x)` при всех `x in[-2;0]` и `y_"наиб"=y(-1)=2` - наибольшее значение функции на отрезке `[-2;0]`. Чтобы найти наименьшее значение, нужно сравнить значения функции на концах отрезка. Поскольку `y(-2)=-2`, а `y(0)=0`, то `y_"наим"=-2` - наименьшее значение функции на отрезке `[-2;0]`.

    б) Так как на луче  `[1,+oo)` функция возрастает, то `y(1)<=y(x)<=y(3)` для всех `x in[1;3]`, поэтому `y_"наим"=y(1)=-2`, `y_"наиб"=y(3)=18`. 

    Замечание

    Отметим, что непрерывная на отрезке функция всегда имеет наибольшее и наименьшее значение.

    Пример 5.3

    Найти наибольшее и наименьшее значение функции `y=x^3-12|x+1|` на отрезке `[-4;3]`.

    Решение

    Отметим, что функция  непрерывна на всей числовой прямой. Обозначим  `f_1(x)=x^3+12(x+1)`, `f_2(x)=x^3-12(x+1)`. Тогда `y=f_1(x)` при `-4<=x<=-1` и `y=f_2(x)` при `-1<=x<=3`. Находим `f_1^'(x)=3x^2+12`, `f_2^'(x)=3x^2-12`. Уравнение `f_1^'(x)=0` не имеет действительных корней, а уравнение `f_2^'(x)=0` имеет два действительных корня  `x_1=-2`, `x_2=2`, из которых интервалу `(-1;3)` принадлежит только точка `x_2`. В точке `x=-1` функция  определена, но не имеет производной (можно, например, провести рассуждения, аналогичные рассуждениям примера 4.2). Итак, имеется две критические точки: `x=-1` и `x=2`. Производная `y^'(x)=f_1^'(x)>0` на `(-4;-1)`, `y^'(x)=f_2^'(x)<0`  на `(-1;2)` и `y^'(x)=f_2^'(x)>0` на `(2;3)`. Запишем все исследования в таблице:

    `x` `x=-4` `(-4;-1)` `x=-1` `(-1;2)` `x=2` `(2;3)` `x=3`
    `y^'`

     

    `+`

    не сущ.

    `-`

    `0`

    `+`

     

    `y` `-100`

    возр.

    `-1` макс.

    убыв.

    `-28` мин.

    возр.

    `-21`


    Ответ

    `y_"наиб"=-1`;  `y_"наим"=-100`.


  • §1. Определение комплексных чисел. Операции над комплексными числами
    Просмотр текста ограничен правами статьи
  • §2. Геометрическое изображение комплексных чисел. Модуль и аргументы комплексного числа
    Просмотр текста ограничен правами статьи
  • §3. Различные формы записи комплексных чисел. Операции над комплексными числами
    Просмотр текста ограничен правами статьи
  • §4. Алгебраические уравнения
    Просмотр текста ограничен правами статьи
  • § 1. Геометрическое место точек
    Просмотр текста ограничен правами статьи
  • § 2. Задачи на построение
    Просмотр текста ограничен правами статьи
  • §3 Алгебраический метод
    Просмотр текста ограничен правами статьи
  • § 1. Геометрическое место точек
    Просмотр текста ограничен правами статьи
  • § 2. Задачи на построение
    Просмотр текста ограничен правами статьи
  • §3 Алгебраический метод
    Просмотр текста ограничен правами статьи
  • Итоги конкурсов Онлайн-этапа олимпиады «Физтех» 2020 года

    Розыгрыш среди абсолютных победителей

    С помощью генератора случайных чисел в каждом классе и предмете были выбраны участники, набравшие максимальный балл. 

    Физика 11 класс Дремин Арсений Алексеевич
    Математика 11 класс Волков Алексей Дмитриевич
    Физика 10 класс Питомцев Александр Олегович
    Математика 10 класс Баранов Даниил Юрьевич
    Физика 9 класс Болотецкий Михаил Александрович
    Математика 9 класс Епихина Татьяна Евгеньевна
    Физика 8 класс Елизарова Юлия Максимовна
    Математика 8 класс Дубинин Артем Сергеевич
    Физика 7 класс Суставова Ольга Сергеевна
    Математика 7 класс Щербакова Елена Николаевна
    Математика 6 класс Климченко Валентина Ильинична
    Математика 5 класс Рылев Артемий Андреевич


    Конкурс рефералов

    Абсолютный победитель

    Организаторы олимпиады свяжутся с победителями конкурсов посредством личных сообщений портала abitu.net.


  • Текстовые задачи
    Просмотр текста ограничен правами статьи
  • 3. Интерференция
    Просмотр текста ограничен правами статьи
  • 4. Дифракция
    Просмотр текста ограничен правами статьи
  • Введение
    Просмотр текста ограничен правами статьи
  • 1. Электромагнитные волны
    Просмотр текста ограничен правами статьи
  • 2. Отражение и преломление
    Просмотр текста ограничен правами статьи