16 статей
На поверхности твёрдого тела, погружённого в жидкость (газ), действуют силы давления.
Иррациональными называют неравенства, в которых переменные входят под знаком корня. Так как корень чётной степени существует только у неотрицательных чисел, то при решении неравенств, содержащих такое выражение, прежде всего удобно найти ОДЗ.
Решите неравенство `sqrt(x + 3) > x + 1`.
Это неравенство можно решить несколькими способами. Решим его графически (рис. 1). Построим графики функций `y = sqrt(x + 3)`, `y = x + 1` и посмотрим, где первый график расположен выше второго. Для нахождения решения останется решить только уравнение `sqrt(x + 3) = x + 1` (и не надо рассматривать случаи разных знаков для `x + 1`!).
`[- 3; 1)`.
Сначала приведём уже выведенные в 10-ом классе условия равносильности для уравнений (в частности, для того, чтобы была понятна приве-дённая уже здесь нумерация условий равносильности для корней `(`УР К`)`):
`sqrt(f(x)) = a^2 iff f(x) = a^4`. | (УР К1) |
(УР К2) | |
(УР К3) | |
(УР К4) |
ПУНКТ 1. НЕРАВЕНСТВА ВИДА `sqrt(f(x)) >= g(x)` и `sqrt(f(x)) <= g(x)`
ОДЗ: `f(x) >= 0`.
Рассмотрим неравенство `sqrt(f(x)) >= g(x)`. Докажем, что
(УР К5) |
1. Если является решением неравенства `sqrt(f(x)) >= g(x)`, то `f(x) >= 0` и `sqrt(f(x))` существует. При этом неравенство заведомо выполнено при `g(x) < 0`. Если же `g(x) >= 0`, то возведение в квадрат обеих частей неравенства приводит к равносильному неравенству `f^2 (x) >= g^2 (x)`.
2. Пусть теперь `x` является решением совокупности неравенств
Тогда:
а) если `g(x) < 0` и `f(x) >= 0`, то существует `sqrt(f(x))` и заведомо выполнено неравенство `sqrt(f(x)) >= g(x)`:
б) если `g(x) >= 0` и `f(x) - g^2 (x) >= 0 iff (sqrt(f(x)) - g(x)) (sqrt(f(x)) + g(x)) >= 0`,
то `f(x) - g^2 (x) >= 0 iff sqrt(f(x)) - g(x) >= 0`.
Можно ОДЗ неравенства найти отдельно, тогда условие равносильности примет вид:
(УР К6) |
Теперь рассмотрим неравенство вида `sqrt(f(x)) <= g(x)`. Докажем, что
(УР К7) |
Решите неравенство `3 sqrt(3x^2 -8x - 3) > 1 - 2x`.
Первый способ
Воспользуемся (УР К6):
`(- oo ; (34 - 30 sqrt2)/(23)) uu [3; + oo)`.
Второй способ
Можно оформить решение неравенства и несколько по – другому. Найдём сначала ОДЗ: