Решить уравнение `3sin^5x+4cos^3x=7`.
Так как
`3sin^5x<=3` (8)
и `4cos^3x<=4`, (9)
а неравенства одного знака можно складывать, то `3sin^5x+4cos^3x<=7`, причём если хотя бы в одном из неравенств (8) или (9) знак «`<=`» заменить на «`<`», то получим `3sin^5x+4cos^3<7`. Значит, чтобы `x` удовлетворяло уравнению необходимо и достаточно, чтобы выполнялась система
$$ \left\{\begin{array}{l}3{\mathrm{sin}}^{5}x=3,\\ 4{\mathrm{cos}}^{3}x=4\end{array}\right.$$ или $$ \left\{\begin{array}{l}\mathrm{sin}x=1,\\ \mathrm{cos}x=1,\end{array}\right.$$
но это невозможно, т. к. `sin^2x+cos^2x=1`.
Решений нет.
Решить уравнение `sin^4 2x+1=cos3x`.
Так как левая часть уравнения `sin^4 2x+1>=1`, а правая часть `cos3x<=1`, то уравнение эквивалентно системе
$$ \left\{\begin{array}{l}{\mathrm{sin}}^{4}2x+1=1,\\ \mathrm{cos}3x=1\end{array}\right.$$ или $$ \left\{\begin{array}{l}\mathrm{sin}2x=0,\\ \mathrm{cos}3x=1.\end{array}\right.$$
Отсюда
$$ \left\{\begin{array}{l}2x=\pi n,n\in Z,\\ 3x=2\pi m,m\in Z\end{array}\right.$$ или $$ \left\{\begin{array}{l}x={\displaystyle \frac{\pi n}{2}},n\in Z,\\ x={\displaystyle \frac{2\pi n}{3}},m\in Z.\end{array}\right.$$
На тригонометрическом круге изобразим решения первого уравнения последней системы на рис. 14, а второго- на рис. 15. Совпадение будет при `x=2pik,kinZ`.
`x=2pik,kinZ`.
Решить уравнение `sin^2 4x+cos^2x=2sin4x*cos^4x`.
Перепишем уравнение `sin^2 4x-2sin4x*cos^4x+cos^2x=0`.
Будем решать его как квадратное относительно `sin4x`. Дискриминант уравнения
`D=4cos^8x-4cos^2x=4cos^2x(cos^6x-1)<=0`.
Значит, решения возможны только в случае `D=0` или $$ \left[\begin{array}{l}\mathrm{cos}x=0,\\ \mathrm{cos}x=\end{array}\right.\pm 1.$$ Последней совокупности уравнений удовлетворяют значения `x=(pin)/2,ninZ`. Так как при этих `x` обращается в нуль и `sin4x`, то из уравнения следует, что должно быть `cosx=0`.
Отсюда `x=pi/2+pin,ninZ`.
`x=pi/2+pin,ninZ`.
Решить систему уравнений
$$ \left\{\begin{array}{l}\sqrt{2}\mathrm{sin}x-\sqrt{3}\mathrm{cos}y={\displaystyle \frac{5}{2}},\\ \mathrm{sin}y+\sqrt{2}\mathrm{cos}x=-{\displaystyle \frac{3}{2}}.\end{array}\right.$$
Вычтем из первого уравнения системы второе. Получим:
`sqrt2(sinx-cosx)-(siny+sqrt3cosy)=4`.
По формуле дополнительного угла имеем:
`2sin(x-pi/4)-2sin(y+pi/3)=4` или `sin(x-pi/4)-sin(y+pi/4)=2`
Так как `sin(x-pi/4)<=1` и `-sin(y+pi/3)<=1`, то `sin(x-pi/4)-sin(y+pi/3)<=2`,
причём равенство может достигаться только в случае, если
$$ \left\{\begin{array}{l}\mathrm{sin}\left(x-{\displaystyle \frac{\pi }{4}}\right)=1,\\ -\mathrm{sin}\left(y+{\displaystyle \frac{\pi }{3}}\right)=1\end{array}\right.$$ или $$ \left\{\begin{array}{l}\mathrm{sin}\left(x-{\displaystyle \frac{\pi }{4}}\right)=1,\\ \mathrm{sin}\left(y+{\displaystyle \frac{\pi }{3}}\right)=-1.\end{array}\right.$$
Решая эту систему, получаем
$$ \left\{\begin{array}{l}x-{\displaystyle \frac{\pi }{4}}={\displaystyle \frac{\pi }{2}}+2\pi n,n\in Z,\\ y+{\displaystyle \frac{\pi }{3}}=-{\displaystyle \frac{\pi }{2}}+2\pi m,m\in Z\end{array}\right.$$ или $$ \left\{\begin{array}{l}x={\displaystyle \frac{3\pi }{4}}+2\pi n,n\in Z,\\ y=-{\displaystyle \frac{5\pi }{6}}+2\pi m,m\in Z.\end{array}\right.$$
Так как мы решаем уравнение – следствие системы и могли получить лишние корни, то надо сделать проверку. В нашем случае
`sinx=1/(sqrt2)`, `cosx=-1/(sqrt2)`, `siny=-1/2`, `cosy=-(sqrt3)/2`
и, подставляя эти значения в исходную систему, убеждаемся, что она удовлетворяется. Итак,
$$ \left\{\begin{array}{l}x={\displaystyle \frac{3\pi }{4}}+2\pi n,\\ y=-{\displaystyle \frac{5\pi }{6}}+2\pi m, n,m\in Z.\end{array}\right.$$
Решить уравнение `"arctg"3x=arccos8x`.
Напишем ОДЗ `|8x|<=1`, `|x|<=1/8`. Возьмём тангенс от обеих частей уравнения. Получим: `3x=(sin(arccos8x))/(8x)` или `24x^2=sqrt(1-64x^2)`.
Обозначим `t=8x^2`. Имеем уравнение `3t=sqrt(1-8t)` или `9t^2+8t-1=0`.
`t_1=-1`, `t_2=1/9`. Т. к. `t>=0`, то `t=1/9=8x^2`, `x^2=1/72` (ОДЗ удовлетворяется).
Отсюда `x=+-1/(6sqrt2)`.
Далее нужно делать проверку, т. к. в исходном уравнении углы равны, а мы перешли к уравнению, где тангенсы этих углов равны, т. е. к следствию нашего уравнения. При этом могут появиться посторонние корни.
`x_1=-1/(6sqrt2)` не удовлетворяет уравнению, т. к. `"arctg"3x_1<0` (`"arctg"x<0`, если `x<0`), а `arccos8x_1>=0` (`arccosx>=0` всегда).
`x_2=1/(6sqrt2)` - удовлетворяет уравнению, т. к. углы `"arctg"3x_2 in (0;pi/2)` и
`arccos8x_2 in (0;pi/2)` и тангенсы у них совпадают.
`x=1/(6sqrt2)`
При каких значениях параметра `a` уравнение `(x-a)arccos(x+3)=0` имеет единственное решение?
ОДЗ `arccos(x+3)`: `-1<=x+3<=1` или `-4<=x<= -2`. Решение уравнения:
$$ \left[\begin{array}{l}x=a,\\ x+3=1\end{array}\right.$$ или $$ \left[\begin{array}{l}x=a,\\ x=-2.\end{array}\right.$$
Так как `x=-2 in`ОДЗ, то единственным решением может быть только `x=-2`. Значит должно выполняться:
$$ \left[\begin{array}{l}a=-2,\\ a\notin \mathrm{ОДЗ}\end{array}\right.$$ или $$ \left[\begin{array}{l}a=-2,\\ a\in \left(-\infty ;-4\right)\cup \left(-2;+\infty \right).\end{array}\right.$$
`a in (-oo;-4)uu[-2;+oo)`.
Найти все значения параметра `a`, при которых уравнение `2cos2x+2asinx+a=1` имеет единственное решение на интервале `(-pi/2;0)`.
Преобразуем уравнение
`2(1-2sin^2x)+2asinx+(a-1)=0`,
`4sin^2x-2asinx-(a+1)=0`.
Обозначим `sinx=t`. Решим уравнение `4t^2-2at-(a+1)=0`.
`D/4=a^2+4(a+1)=(a+2)^2`, $$ {t}_{\mathrm{1,2}}={\displaystyle \frac{a\pm \left(a+2\right)}{4}}=\left[\begin{array}{l}-{\displaystyle \frac{1}{2}},\\ {\displaystyle \frac{a+1}{2}}.\end{array}\right.$$
Итак, $$ \left[\begin{array}{l}\mathrm{sin}x=-{\displaystyle \frac{1}{2}},\\ \mathrm{sin}x={\displaystyle \frac{a+1}{2}}.\end{array}\right.$$ Но уравнение `sinx=-1/2` даёт один корень на `(-pi/2;0)` - он равен `(-pi/6)`.
Значит, для единственности решения задачи должно быть либо
`(a+1)/2=-1/2` и `a=-2`, либо `(a+1)/2` не даёт значение `sinx` в интервале
`x in (-pi/2;0)`, т. е. $$ \left[\begin{array}{l}{\displaystyle \frac{a+1}{2}}\ge 0,\\ {\displaystyle \frac{a+1}{2}}\le -1\end{array}\right.\iff \left[\begin{array}{l}a\ge -1,\\ a\le -3.\end{array}\right.$$ Итак,
`ain(-oo;-3]uu{-2}uu[-1;+oo)`.
Найти все значения параметра `a`, при каждом из которых уравнение `(sinx-cosx)/(sinx-acosx)=a` имеет хотя бы одно решение на отрезке `[pi/2;pi]`.
Уравнение эквивалентно системе
$$ \left\{\begin{array}{l}\mathrm{sin}x-\mathrm{cos}x=a\mathrm{sin}x-{a}^{2}\mathrm{cos}x,\\ \mathrm{sin}x-a\mathrm{cos}x\ne 0.\end{array}\right.$$
Эта система из однородного уравнения первого порядка и неравенства.
1) Если `cosx=0`, `x in [pi/2;pi]`, т. е. `x=pi/2`, то `sinx=1` и система даёт `a=1`.
2) Если же `cosx!=0`, то делим уравнение и неравенство системы на `cosx`. Получаем систему
$$ \left\{\begin{array}{l}\mathrm{tg}x-1=a\mathrm{tg}x-{a}^{2},\\ \mathrm{tg}x-a\ne 0,\end{array}\right.$$ или $$ \left\{\begin{array}{l}\left(a-1\right)\mathrm{tg}x={a}^{2}-1,\\ \mathrm{tg}x\ne a.\end{array}\right.$$
Если `a=1`, то системе удовлетворяют все значения из `(pi/2;pi]`.
Если же `a!=1`, то система становится такой: $$ \left\{\begin{array}{l}\mathrm{tg}x=a+1,\\ \mathrm{tg}x\ne a.\end{array}\right.$$
Чтобы ей удовлетворяла хотя бы одна точка из `(pi/2;pi]`, необходимо и достаточно, чтобы выполнялось `a+1<=0`, т. е. `a<= -1` (см. рис. 16).
Итак,
`a<= -1`, `a=1`.
Цель нашего задания - вспомнить основные правила и приемы решения алгебраических неравенств и систем уравнений. Многие из них вам хорошо известны, некоторые покажутся новыми и, с первого взгляда, даже лишними, но не спешите их отбросить сразу - решите известную вам задачу разными способами и выберите сами тот способ, который вам больше нравится.
В нашем задании большую роль будет играть понятие равносильности.
Два неравенства
`f_1 (x) > g_1 (x)` и `f_2 (x) > g_2 (x)` | (1) |
или два уравнения
`f_1 (x) = g_1 (x)` и `f_2 (x) = g_2 (x)` | (2) |
называются равносильными на множестве `X`, если каждое решение первого неравенства (уравнения), принадлежащее множеству `X`, является решением второго и, наоборот, каждое решение второго, принадлежащее `X`, является решением первого, или, если, ни одно из неравенств (уравнений) на `X` не имеет решений. Т. е. два неравенства (уравнения) равносильны, по определению, если множества решений этих неравенств (уравнений) на `X` совпадают.
Отсюда следует, что вместо того, чтобы решать данное неравенство (уравнение), можно решать любое другое, равносильное данному. Замену одного неравенства (уравнения) другим, равносильным данному на `X`, называют равносильным переходом на `X`. Равносильный переход обозначают двойной стрелкой `hArr`. Если уравнение `f(x) = 0` (или неравенство) `f(x) > 0`) равносильно уравнению `g(x) = 0` (или неравенству `g(x) > 0`), то это мы будем обозначать так:
`f(x) = 0 hArr g(x) = 0` (или `f(x) > 0 hArr g(x) > 0`).
`sqrt(x^2 -4) = 1 - x^2 hArr sqrt(sin ^2 x - 2) = 0`, т. к. ни то, ни другое не имеет решения.
Важно понимать, что для доказательства неравносильности двух неравенств (уравнений) нет необходимости решать каждое из неравенств (уравнений), а затем убеждаться в том, что множества их решений не совпадают - достаточно указать одно решение одного из неравенств (уравнений), которое не является решением другого неравенства (уравнения).
При каких значениях параметра `a` системы
и |
равносильны?
Решим сначала первую, более простую систему
Подставим `a = 3` во вторую систему
Следовательно, при `a = 3` системы равносильны, т. к. при этом значении параметра обе системы не имеют решений.
При `a != 3` первая система имеет единственное решение. Заметим, что во второй системе `y` входит только в чётной степени, значит, если решением является пара `(x_0, y_0)`, то пара `(x_0 , -y_0)` тоже будет решением. При этом если `y_0 != - y_0 iff y_0 != 0`, то решений будет два. Следовательно, единственным решением может быть только пара `(x_0 , 0)`. Посмотрим, при каких `a` такое решение у системы есть. Подставим эту пару в систему
Итак, таких `a` три: `0, 1, 2`. Но при этих `a` вторая система может иметь и другие решения, а если у неё других решений нет, то её единственное решение может не совпадать с решением первой системы, и тогда такое `a` не удовлетворяет условию задачи. Проверим эти значения параметра.
1. `a=0`: Первая система имеет решение: `x = 4/3` и `y = - 4/3 != 0`. Следовательно, системы не равносильны, т. к. решения систем не совпадают (у второй `y=0`).
2. `a=1`: Вторая система имеет вид
Следовательно, системы не равносильны, т. к. вторая имеет два решения.
3.
и
Следовательно, системы при этом значении `a` равносильны – они имеют единственное решение `(4; 0)`.
`2; 3`.
При решении неравенств и уравнений часто используются следующие равносильные переходы.
1. Если функции `f(x)`, `g(x)`, `h(x)` определены на множестве `X` , то на этом множестве
а) | `f(x) < g(x) iff f(x) + h(x) < g(x) + h(x)`. | (УР 1) |
б) | `f(x) = g(x) iff f(x) + h(x) = g(x) + h(x)`. | (УР 2) |
2. Если `h(x) > 0` на `X`, то на `X`
`f(x) < g(x) iff f(x) h(x) < g(x) h(x)`, | (УР 3) |
т. е. умножение неравенства на положительную функцию приводит к равносильному неравенству с тем же знаком.
3. Если `h(x) < 0` на `X`, то на `X`
`f(x) < g(x) iff f(x) h(x) > g(x) h(x)`, | (УР 4) |
т. е. при умножении неравенства на отрицательную функцию знак неравенства меняется на противоположный.
4. Если `h(x) != 0` на `X`, то на `X`
`f(x) = g(x) iff f(x) h(x) = g(x) h(x)`. | (УР 5) |
5. Если обе части неравенства неотрицательны на `X`, то возведение в квадрат обеих частей приводит к равносильному неравенству, т. е.
`f(x) < g(x) iff f^2 (x) < g^2 (x)`. | (УР 6) |
Если обе части неравенства отрицательны, то умножив обе части на `(–1)`, придём к неравенству противоположного знака, но с положительными частями, и к нему применим (УР 6).
Если левая и правая части неравенства имеют разные знаки, то возведение в квадрат может привести как к верному, так и к неверному неравенству: `-4<5`; `16<25`; `-7<5`, но `49>25`, поэтому в этом случае нельзя возводить неравенство в квадрат.
6. Если обе части уравнения неотрицательны, то
`f(x) = g(x) iff f^2 (x) = g^2 (x)`. | (УР 7) |
7. Для любых `f(x)` и `g(x)` на `X` и любого натурального `n`
`f(x) = g(x) iff f^(2n + 1) (x) = g^(2n + 1) (x)`. | (УР 8) |
8. Неравенство вида `f(x)>=0(<=0)` называется нестрогим. По определению,
$$f\left(x\right)\geq0\left(\leq0\right)\Leftrightarrow\left[\begin{array}{l}f\left(x\right)=0,\\f\left(x\right)>0\left(<0\right).\end{array}\right.$$ | (УР 9) |
Иррациональными называют неравенства, в которых переменные входят под знаком корня. Так как корень чётной степени существует только у неотрицательных чисел, то при решении неравенств, содержащих такое выражение, прежде всего удобно найти ОДЗ.
Решите неравенство `sqrt(x + 3) > x + 1`.
Это неравенство можно решить несколькими способами. Решим его графически.
Рис. 1 |
Построим графики функций `y = sqrt(x + 3)`, `y = x + 1` и посмотрим, где первый график расположен выше второго. Для нахождения решения останется решить только уравнение `sqrt(x + 3) = x + 1` (и не надо рассматривать случаи разных знаков для `x + 1`!).
`[- 3; 1)`.
Сначала приведём уже выведенные в 10-ом классе условия равносильности для уравнений (в частности, для того, чтобы была понятна приведённая уже здесь нумерация условий равносильности для корней `(`УР К`)`):
`sqrt(f(x)) = a^2 iff f(x) = a^4`. | (УР К1) |
(УР К2) | |
(УР К3) | |
(УР К4) |
ПУНКТ 1. НЕРАВЕНСТВА ВИДА `sqrt(f(x)) >= g(x)` и `sqrt(f(x)) <= g(x)`
ОДЗ: `f(x) >= 0`.
Рассмотрим неравенство
`sqrt(f(x)) >= g(x)`.
Докажем, что
`sqrt(f(x))>=g(x)`$$\Leftrightarrow\left[\begin{array}{l}\left\{\begin{array}{l}g\left(x\right)<0,\\f\left(x\right)\geq0;\end{array}\right.\\\left\{\begin{array}{l}g\left(x\right)\geq0,\\f\left(x\right)\geq g^2\left(x\right).\end{array}\right.\end{array}\right.$$ |
(УР К5) |
1. Если `x` является решением неравенства `sqrt(f(x)) >= g(x)`, то `f(x) >= 0` и `sqrt(f(x))` существует. При этом неравенство заведомо выполнено при `g(x) < 0`. Если же `g(x) >= 0`, то возведение в квадрат обеих частей неравенства приводит к равносильному неравенству `f^2 (x) >= g^2 (x)`.
2. Пусть теперь `x` является решением совокупности неравенств
$$\left[\begin{array}{l}\left\{\begin{array}{l}g\left(x\right)<0,\\f\left(x\right)\geq0;\end{array}\right.\\\left\{\begin{array}{l}g\left(x\right)\geq0,\\f\left(x\right)\geq g^2\left(x\right).\end{array}\right.\end{array}\right.$$
Тогда:
а) если `g(x) < 0` и `f(x) >= 0`, то существует `sqrt(f(x))` и заведомо выполнено неравенство `sqrt(f(x)) >= g(x)`:
б) если `g(x) >= 0` и
`f(x) - g^2 (x) >= 0 iff (sqrt(f(x)) - g(x)) (sqrt(f(x)) + g(x)) >= 0`,
то
`f(x) - g^2 (x) >= 0 iff sqrt(f(x)) - g(x) >= 0`.
Можно ОДЗ неравенства найти отдельно, тогда условие равносильности примет вид:
`sqrt(f(x))>=g(x)`$$\overset{\mathrm{ОДЗ}}\Leftrightarrow\left[\begin{array}{l}g\left(x\right)<0,\\\left\{\begin{array}{l}g\left(x\right)\geq0,\\f\left(x\right)\geq g^2\left(x\right).\end{array}\right.\end{array}\right.$$ | (УР К6) |
Теперь рассмотрим неравенство вида
`sqrt(f(x)) <= g(x)`.
Докажем, что
(УР К7) |
Решите неравенство `3 sqrt(3x^2 -8x - 3) > 1 - 2x`.
Первый способ
Воспользуемся (УР К5):
`3sqrt(3x^2-8x-3)>1-2x iff`$$\left[\begin{array}{l}\left\{\begin{array}{l}1-2x<0,\\3x^2-8x-3\geq0;\end{array}\right.\\\left\{\begin{array}{l}1-2x\geq0,\\9\left(3x^2-8x-3\right)>\left(1-2x\right)^2\end{array}\right.\end{array}\right.\Leftrightarrow$$
$$\begin{array}{l}\Leftrightarrow\left[\begin{array}{l}\left\{\begin{array}{l}x>0,5,\\x\in\left(-\infty;\dfrac{-1}3\right]\cup\left[3;+\infty\right);\end{array}\right.\\\left\{\begin{array}{l}x\leq0,5,\\x\in\left(-\infty;\dfrac{34-30\sqrt2}{23}\right)\cup\left(\dfrac{34+30\sqrt2}{23};+\infty\right)\end{array}\right.\end{array}\right.\Leftrightarrow\\\Leftrightarrow\left[\begin{array}{l}x\in\left[3;+\infty\right)\\x\in\left(-\infty;\dfrac{34-30\sqrt2}{23}\right)\end{array}\right.\Leftrightarrow\end{array}$$
`iff x in (- oo ; (34 - 30 sqrt2)/(23)) uu [3; + oo)`.
`(- oo ; (34 - 30 sqrt2)/(23)) uu [3; + oo)`.
Второй способ
Можно оформить решение неравенства и несколько по – другому. Найдём сначала ОДЗ:
`3x^2 - 8x - 3 >= 0 iff (x - 3)(x+1/3) >= 0 iff x in (-oo; - 1/3] uu [3; + oo)`.
Теперь неравенство перепишем в виде `3sqrt(3x^2 - 8x - 3) -(1 - 2x) > 0`.
1. Если `1 - 2x < 0`, т. е. `x > 1/2`, то неравенство выполнено в ОДЗ, т. е. `x in [3; + oo)`.
2. Если `1 - 2x>= 0`, т. е. `x <= 1/2`, то `3sqrt(3x^2 - 8x - 3) > 1 - 2x iff`
`iff 9(3x^2 - 8x - 3) > 1 - 4x + 4x^2 iff 23x^2 - 68x - 28 > 0 iff`
`iff x in (- oo; (34-30sqrt2 )/(23)) uu ((34+30 sqrt2)/(23); + oo)`.
Заметим, что ОДЗ в этом случае выполнилось автоматически.
Учтём, что `x <= 1/2` - тогда `x in (- oo; (34-30sqrt2)/(23))`.
Объединяя 1 и 2, получаем
`(- oo ; (34 - 30 sqrt2)/(23)) uu [3; + oo)`.
ПУНКТ 2. НЕРАВЕНСТВО ВИДА `sqrt(f(x)) <= sqrt(g(x))`
Рассмотрим неравенство вида `sqrt(f(x)) <= sqrt(g(x))`.
Докажем, что
(УР К8) |
1. Если `sqrt(f(x)) <= sqrt(g(x))`, то `f(x) >= 0`, `g(x) >= 0` и `f(x) <= g(x)`, т. е. `x` является решением системы неравенств
2. Если `x` является решением системы неравенств
то `f(x) >= 0`, `g(x) >= 0`, `sqrt(f(x))` и `sqrt(g(x))` существуют.
При этом `f(x) <= g(x) iff sqrt(f(x)) <= sqrt(g(x))`, т. е. неравенство выполнено.
Для строгих неравенств в условиях равносильности надо просто заменить значок `«>=»` или `«<=»` на `«>»` или `«<»` соответственно.
Решите неравенство `sqrt(2x + 1) <= sqrt(x^3 - 4x^2 + x + 5)`.
`sqrt(2x + 1) <= sqrt(x^3 - 4x^2 + x + 5) iff`
`[- 1/2;1] uu [4; + oo)`.
ПУНКТ 3. НЕРАВЕНСТВА ВИДА `(sqrtf(x) - g(x))/(h(x))>=0` `(<= 0)`
Роль сопряжённых выражений
Обычно при решении неравенств, имеющих ОДЗ, надо сначала найти ОДЗ. При нахождении ОДЗ такого сложного неравенства, как `(sqrtf(x) - g(x))/(h(x)) >= 0`, учителя и школьники обычно решают систему . Затем школьники иногда ошибочно опускают знаменатель и решают неравенство `sqrt(f(x)) - g(x) >= 0`.
Мы в ОДЗ дроби не будем записывать условие `h(x) != 0`, и тем более не будем тратить время и силы на решение этого неравенства. Оправдывается это тем, что в дальнейшем используем только классический метод интервалов для рациональных функций, в котором условие `h(x) != 0` автоматически выполняется, ибо нули знаменателя наносятся на числовую ось кружочками («дырками»), т. е. ограничение `h(x) != 0` заложено в самом методе. Это ОДЗ, которое отличается от привычного школьного (с `h(x) != 0`), по предложению самих учителей, будем обозначать не ОДЗ, а ОДЗ*. Итак, например, для неравенств вида `(sqrtf(x) - g(x))/(h(x)) >= 0` будем искать ОДЗ*: `f(x) >= 0`.
Рассмотрим довольно часто встречающееся неравенство вида
`(sqrt(f(x)) - g(x))/(h(x)) >= 0 (<= 0)`.
В методической литературе предлагается рассмотреть две системы в зависимости от знака знаменателя `h(x)`, причём в каждой есть неравенство с корнем. Энтузиазм решать задачу при этом быстро «испаряется».
Мы поступим иначе: рассмотрим два случая в зависимости не от знака `h(x)`, а от знака `g(x)`, и неравенств с корнем решать не придётся.
Рассмотрим отдельно разность `sqrt(f(x)) - g(x)`. Отметим две особенности поведения этой разности:
1) если `g(x) < 0`, то разность `sqrt(f(x)) - g(x)` положительна в ОДЗ;
2) если `g(x) >= 0`, то разность `sqrt(f(x)) - g(x)` может быть как положительной, так и отрицательной в ОДЗ. Заметим, однако, что в этом случае сумма `sqrt(f(x)) + g(x)` всегда неотрицательна в ОДЗ, а умножение разности `(sqrt(f(x)) - g(x))` на неотрицательное выражениене `(sqrt(f(x)) + g(x))` не изменит знака разности, т. е. выражение
`(sqrt(f(x)) - g(x))(sqrt(f(x)) + g(x)) -= f(x) - g^2 (x)`
имеет тот же знак, что и `(sqrt(f(x)) - g(x))` в ОДЗ. Новое выражение уже не содержит радикалов (корней), а выражение `(sqrt(f(x)) + g(x))` называется сопряжённым для `(sqrt(f(x)) - g(x))` выражением. Отсюда следует важное правило П К1:
Если `g(x)>=0`, то знак разности `sqrt(f(x)) - g(x)` совпадает со знаком разности `f(x) - g^2 (x)` в ОДЗ. | (П К1) |
Теперь используем эти свойства для решения довольно сложных неравенств вида
`(sqrt(f(x)) - g(x))/(h(x)) >= 0` или `(sqrt(f(x)) - g(x))h(x) >=0`.
Сейчас мы покажем, что можно обойтись, хотя и двумя случаями, но без корней.
Рассмотрим, для определённости, неравенство `(sqrt(f(x)) - g(x))/(h(x)) >= 0`.
1. Мы уже заметили, что, если `g(x) < 0`, то числитель положителен в ОДЗ. Но тогда .
2. Если же `g(x) >= 0`, то разность может менять знак в зависимости от значений `x`, но сумма `sqrt(f(x)) + g(x)` всегда неотрицательна в ОДЗ, и умножение обеих частей неравенства на это сопряжённое выражение приводит к равносильному неравенству, т. е. в этом случае
.
Для неравенства другого знака меняется лишь знак неравенства. Объединив оба условия, получаем новое замечательное условие равносильности в ОДЗ:
(УР К9) |
Найденные в результате исследования совокупности (УР К9) решения следует сравнить с ОДЗ.
Решите неравенство `(4x+15-4x^2)/(sqrt(4x+15) +2x) >=0`.
ОДЗ*. `4x+15>=0 iff x>=-(15)/4`.
Теперь в ОДЗ преобразуем неравенство:
Попробуем решить эту систему графически. Из графика на рисунке 2 видно, что неравенство выполнено от точки `x=-(15)/4` до абсциссы точки пересечения кривой `y=sqrt(4x+15)` и прямой `y=2x`.
Рис. 2 |
Найдём эту абсциссу:
Заметим, что для решения уравнения мы возводили обе части в квадрат, а, значит, одновременно с нашим решили «чужое» уравнение:
А в нашей системе решение этого уравнения `x=-3/2` как раз нам надо исключить. Главное в том, что для решения всей системы, оказалось достаточно решить единственное уравнение
Теперь можно записать
.
Решите неравенство `(sqrt(2-x) +4x-3)/x >= 2`.
Найдём сначала ОДЗ*: `2-x>=0 iff x<=2`.
Теперь воспользуемся (УР К9):
$$\Leftrightarrow\left[\begin{array}{l}\left\{\begin{array}{l}3-2x<0,\\x>0;\end{array}\right.\\\left\{\begin{array}{l}3-2x\geq0,\\\dfrac{2-x-\left(2x-3\right)^2}x\geq0\end{array}\right.\end{array}\right.\Leftrightarrow\left[\begin{array}{l}x>\dfrac32,\\\left\{\begin{array}{l}x\leq\dfrac32,\\\dfrac{4x^2-11x+7}x\leq0\end{array}\right.\end{array}\right.\Leftrightarrow$$
$$\Leftrightarrow\left[\begin{array}{l}x>\dfrac32,\\\left\{\begin{array}{l}x\leq\dfrac32,\\\dfrac{\left(x-{\displaystyle\dfrac74}\right)\left(x-1\right)}x\leq0\end{array}\right.\end{array}\right.\Leftrightarrow$$
Систему неравенств решили классическим методом интервалов - рис. 3.
Рис. 3 |
`(- oo; 0) uu [1; 2]`.
`(sqrt(x^2 -4x+3) -2(x+7))/(x^2 -x-72) <= 0`.
Неравенство довольно громоздкое и сложное.
Найдём сначала ОДЗ*:
`x^2 -4x+3>=0 iff (x-1)(x-3)>=0 iff x in (- oo; 1] uu [3; +oo)`.
Затем рассмотрим отдельно два случая в зависимости от знака `(x+7)`.
1. Если `x+7<0 iff x< -7`, то числитель положителен в ОДЗ* и
$$\dfrac{\sqrt{x^2-4x+3}-2\left(x+7\right)}{x^2-x-72}\leq0\overset{\mathrm{ОДЗ}\ast}\Leftrightarrow x^2-x-72<0\Leftrightarrow\left(x+8\right)\left(x-9\right)<0\Leftrightarrow $$
$$\Leftrightarrow x\in\left(-8;9\right)$$.
Учитывая ограничение `x< -7`, получаем, что `x in (-8;-7)`. Оказалось, что этот промежуток принадлежит ОДЗ*.
2. Если `x+7>=0 iff x>= -7`, то воспользуемся правилом П К1. Тогда
с учётом ограничения `x>= -7`. Оказалось, что и эти промежутки принадлежат ОДЗ*. Поэтому `x in (-8; (-30+sqrt(321))/3 ] uu (9; + oo)`.
`(-8; (-30+sqrt(321))/3 ] uu (9; + oo)`.
ПУНКТ 4. НЕРАВЕНСТВО ВИДА `(sqrt(f(x)) - sqrt(g(x)))/(h(x)) >= 0 (<= 0)`.
Роль сопряжённых выражений
Теперь рассмотрим неравенство вида `(sqrt(f(x)) - sqrt(g(x)))/(h(x)) >= 0 (<= 0)`.
На вид довольно сложное неравенство. Разность `sqrt(f(x)) - sqrt(g(x))` где-то на числовой оси положительна, где-то отрицательна, но сумма корней `sqrt(f(x)) + sqrt(g(x))` всегда неотрицательна в ОДЗ. Поэтому умножение обеих частей неравенства на это сопряжённое выражение приводит к равносильному в ОДЗ неравенству, и имеет место условие равносильности в ОДЗ
(УР К10) |
или полное условие равносильности, включающее ОДЗ:
(УР К11) |
Отсюда, в частности, следует полезное правило (П К2):
Знак разности `sqrt(f(x)) - sqrt(g(x))` совпадает со знаком разности `f(x) - g(x)` в ОДЗ. | (П К2) |
Решите неравенство `(sqrt(1-x^3) -1)/(x+1) <= x`
и найдите наименьшую длину промежутка, который содержит все его решения.
Замечательный пример на применение (УР К11)!
Приведём всё к общему знаменателю, затем разложим разность кубов на множители. При этом учтём, что неполный квадрат суммы `x^2 +x+1` никогда в `0` не обращается - он всегда положителен, потому что его дискриминант отрицателен. Поэтому на `sqrt(x^2 +x+1)` можно сократить. Затем воспользуемся (УР К11), или, что то же, тем, что умножение неравенства на положительное сопряжённое выражение приводит к равносильному неравенству. Тогда
`(sqrt(1-x^3 ) -1)/(1+x) <= x iff (sqrt(1-x^3) -1-x-x^2 )/(1+x) <= 0 iff`
`iff (sqrt((1-x)(x^2 +x+1)) - (sqrt(x^2 +x+1))^2)/(1+x) <= 0 iff`
`iff (sqrt(1-x) - sqrt(x^2 +x+1))/(1+x) <= 0 iff`
`iff ((sqrt(1-x) - sqrt(x^2 +x+1))(sqrt(1-x) + sqrt(x^2 +x+1)))/(1+x) <= 0 iff`
`iff x in [-2; -1) uu [0; 1]`.
Неравенство решено методом интервалов - рис. 4.
Рис. 4 |
Наименьшая длина промежутка, который содержит все решения, равна `3`.
`[-2; -1) uu [0; 1], 3`.
Решите неравенство `(sqrt(4x^2 - 3x+2) - sqrt(4x-3))/(x^2 -5x+6) <=0`
и найдите наименьшую длину промежутка, который содержит все его решения.
Найдём сначала ОДЗ*: .
Теперь можно решить неравенство, применив правило (П К2) :
.
Промежуток принадлежит ОДЗ*. Наименьшая длина промежутка, который содержит все решения, равна `1`.
`(2; 3), 1`.
ПУНКТ 5. НЕСТРОГОЕ НЕРАВЕНСТВО `(sqrt(f(x)))/(g(x)) >= 0 (<= 0)`.
Воспользуемся определением нестрогого неравенства и особенностью иррациональных неравенств.
Получим
(УР10) |
Решите неравенство `(sqrt(6-x-x^2))/(x^2 -1) <= 0`.
Воспользуемся (УР10): `(sqrt(6-x-x^2))/(x^2 -1) <= 0 iff`
$$\begin{array}{l}\Leftrightarrow\left[\begin{array}{l}\left\{\begin{array}{l}6-x-x^2=0,\\x^2-1\neq0;\end{array}\right.\\\left\{\begin{array}{l}6-x-x^2>0,\\x^2-1<0\end{array}\right.\end{array}\right.\Leftrightarrow\left[\begin{array}{l}x=-3,\\x=2,\\\left\{\begin{array}{l}x\in\left(-3;2\right),\\x\in\left(-1;1\right)\end{array}\right.\end{array}\right.\Leftrightarrow\\\\\end{array}$$
`iff x in {-3} uu (-1; 1) uu {2}`.
`{-3} uu (-1; 1) uu {2}`.
В этом параграфе рассматриваются неравенства, содержащие переменную под знаком абсолютной величины (под знаком модуля).
Во многих случаях для решения таких неравенств целесообразно разбить числовую ось на промежутки так, чтобы функции, стоящие под знаком модуля, на каждом из промежутков сохраняли знак, т. е. были или положительными, или отрицательными. Тогда на каждом таком промежутке неравенство можно записать без модуля. В таком случае говорят, что мы раскрыли модуль.
Решите неравенство `|x-1|/{x+2}<1`.
`|x-1|/{x+2}<1hArr{|x-1|-x-2}/{x+2}<0`.
1. `x-1>=0hArrx>=1`: `{x-1-x-2}/{x+2}=-3/{x+2}<0hArrx> -2`.
Получаем в этом случае `x>=1`.
2. `x-1<0hArrx<1: {-x+1-x-2}/{x+2}=-{2x+1}/{x+2}<0hArr{x+0,5}/{x+2}>0`.
Рис. 5 |
И мы получаем в этом случае `x in(-oo;-2)uu(-0,5; 1)`.
Объединяя результаты 1, 2, получаем окончательный
`(-oo;-2)uu(-0,5;+oo)`.
Решите неравенство `{|x-5|-1}/{2|x-6|-4}<=1`.
`{|x-5|-1}/{2|x-6|-4}<=1hArr{|x-5|-2|x-6|+3}/{2|x-6|-4}<=0`.
1. `x>6: {x-5-2x+12+3}/{2x-12-4}={10-x}/{2x-16}<=0hArrx in(-oo;8)uu[10;+oo)`.
Учитывая условие `x>6`, получаем `x in(6;8)in[10;+oo)`.
2. `5<=x<=6: {x-5+2x-12+3}/{-2x+12-4}={3x-14}/{8-2x}<=0hArrx in(-oo;4)uu[14/3;+oo)`.
Учитывая условие `x in[5;6]`, получаем `x in[5;6]`.
3.
Учитывая условие `x<5`, получаем `x in(-oo;4)in(4;5)`.
`(-oo;4)in(4;8)in[10;+oo)`.
ПУНКТ 1. НЕРАВЕНСТВА ВИДА `|f(x)|<g(x)`
Пусть в некоторой точке `a` выполнено неравенство `|f(x)|<g(x)`, тогда `g(a)>0` и `|f(a)|g(a)`.
Тогда имеет место рисунок 6
Рис. 6 |
и неравенства `-g(a)<f(a)<g(a)`.
И, наоборот: пусть в некоторой точке `a` выполнены неравенства `-g(a)<f(a)<g(a)`. Тогда, во-первых, `-g(a)<g(a)hArrg(a)>0`, a, во-вторых, `|f(a)|<g(a)`. Следовательно, имеет место условие равносильности
(УРМ1) |
ПУНКТ 2. НЕРАВЕНСТВО ВИДА `|f(x)|>g(x)`
Пусть в некоторой точке `a` неравенство выполнено, т. е. `|f(x)|>g(x)`.
Это означает, что, или,
а) `g(a)<0` (модуль принимает неотрицательные значения и всегда больше любого отрицательного числа), или,
б) если `g(x)>=0`, имеет место рисунок 7
Рис. 7 |
и совокупность неравенств
И, наоборот, пусть в некоторой точке `a` имеет место совокупность неравенств Тогда
а) если `g(a)<0`, то неравенство `|f(a)|>g(a)` выполнено,
б) если `g(a)>=0`, то имеет место предыдущая картинка и выполнено неравенство `|f(a)|>g(a)`.
Следовательно, имеем равносильные соотношения
$$\vert f(x)\vert>g(x)$$ $$\Leftrightarrow\left[\begin{array}{l}f(x)>g(x),\\f(x)<-g(x).\end{array}\right.$$ | (УР М2) |
Решите неравенство `||x^2-8x+2|-x^2|>=2x+2`.
$$ \begin{array}{l}\begin{array}{l}\left|\left|{x}^{2}-8x+2\right|-{x}^{2}\right|\ge 2x+2\iff \left[\begin{array}{l}\left|{x}^{2}-8x+2\right|-{x}^{2}\ge 2x+2,\\ \left|{x}^{2}-8x+2\right|-{x}^{2}\le -2x-2\end{array}\iff \right.\\ \iff \left[\begin{array}{l}\left|{x}^{2}-8x+2\right|\ge {x}^{2}+2x+2,\\ \left|{x}^{2}-8x+2\right|\le {x}^{2}-2x-2\end{array}\iff \left[\begin{array}{l}\begin{array}{l}{x}^{2}-8x+2\ge {x}^{2}+2x+2,\\ {x}^{2}-8x+2\le -{x}^{2}-2x-2;\end{array}\\ \left\{\begin{array}{l}{x}^{2}-8x+2\le {x}^{2}-2x-2,\\ {x}^{2}-8x+2\ge -{x}^{2}+2x+2\end{array}\right.\end{array}\right.\iff \right.\end{array}\\ \iff \left[\begin{array}{l}x\le 0,\\ x\in [1;2],=2,\\ \left\{\begin{array}{l}x\ge \frac{2}{3},\\ x\in (-\infty ;0]\cup [5;\infty )\end{array}\right.\end{array}\right.\iff \end{array}$$
`iff x in (-oo;0]uu[1;2]uu[5;oo)`.
`(oo;0]uu[1;2]uu[5;+oo)`.
ПУНКТ 3. НЕРАВЕНСТВО ВИДА `|f(x)|<|g(x)|`
Рассмотрим разность `|f(x)|-|g(x)|`. Она может быть любого знака, но сумма `|f(x)|+|g(x)|` всегда неотрицательна, и умножение разности на эту сумму не изменит знака разности, т. е. `(|f(x)|-|g(x)|)(|f(x)|+|g(x)|)=(|f(x)|^2-|g(x)|^2)=(f^2(x)-g^2(x))=`
`=(f(x)-g(x))(f(x)+g(x))` и
знак разности `|f(x)|-|g(x)|` совпадает со знаком произведения `(f(x)+g(x))(f(x)-g(x))` |
(П М1) |
Имеем ещё одно условие равносильности
`|f(x)|<|g(x)|hArr(f(x)-g(x))(f(x)+g(x))<0`. | (УР М3) |
Решите неравенство $$ {\displaystyle \frac{\sqrt{-{x}^{2}+7x-6}}{\left|{x}^{2}-6x+5\right|-\left|{x}^{2}-2x-3\right|}}\le 0.$$
ОДЗ*:`-x^2+7x-6>=0hArr(x-1)(x-6)<=0hArrx in[1;6]`.
В ОДЗ* имеем $$ \begin{array}{l}{\displaystyle \frac{\sqrt{-{x}^{2}+7x-6}}{\left|{x}^{2}-6x+5\right|-\left|{x}^{2}-2x-3\right|}}\le 0\iff (\mathrm{в} \mathrm{силу} \mathrm{УРМ}3)\\ {\displaystyle \frac{\sqrt{-{x}^{2}+7x-6}}{\left(2{x}^{2}-8x+2\right){\displaystyle \left(-4x+8\right)}}}\le 0\iff {\displaystyle \frac{\sqrt{-{x}^{2}+7x-6}}{\left(x-\left(2+\sqrt{3}\right)\right){\displaystyle \left(x-\left(2-\sqrt{3}\right)\right)}{\displaystyle (}{\displaystyle x}{\displaystyle -}{\displaystyle 2}{\displaystyle )}}}\ge 0\iff \\ \iff \left[\begin{array}{l}\left\{\begin{array}{l}{x}^{2}-7x+6=0,\\ x\ne 2\pm \sqrt{3},\\ x\ne 2,\end{array}\iff \left[\begin{array}{l}x=1,\\ x=6,\end{array}\right.\right.\\ \left(x-\left(2+\sqrt{3}\right)\right)\left(x-\left(2-\sqrt{3}\right)\right)\left(x-2\right)>0\iff \left(2-\sqrt{3};2\right)\cup \left(2+\sqrt{3};+\infty \right).\end{array}\right.\end{array}$$
Учитывая ОДЗ*, получаем
Рис. 8 |
1. Самым распространенным методом решений систем является метод последовательного исключения неизвестных: выражаем одно неизвестное из одного из уравнений и подставляем в остальные. Получаем новую систему, в которой число уравнений и неизвестных на одно меньше. С новой системой поступаем так же до тех пор, пока это возможно.
Однако очень часто при решении системы этим способом мы приходим к уравнениям, которые невозможно решить. Общих правил для решения систем не существует, но для некоторых систем существуют специальные приемы.
2. Однородные системы
3. Симметрические системы
4. Часто систему можно решить, если её сначала упростить с помощью равносильных преобразований.
Приведём примеры некоторых преобразований, приводящих к равносильным системам.
1. Если любое уравнение системы заменить равносильным ему уравнением, то получим равносильную систему.
2. Если в одном из уравнений системы левая часть является произведением двух функций, то система равносильна совокупности при условии, что справа 0. Например,
(УР С1) |
3. Если какое-нибудь уравнение системы умножить на число, отличное от нуля, то получится система, равносильная исходной.
4. Если к одному из уравнений системы прибавить линейную комбинацию нескольких других, то получим равносильную систему.
Например,
(УР С2) |
`a` - произвольное число.
5.
(УРС3) |
Обратим внимание на то, что в равносильной системе появилось дополнительное неравенство! (т. к. возведение в квадрат не всегда приводит к равносильному уравнению.)
6.
(УР С4) |
Обратим внимание на то, что в системе остается то уравнение, в котором обе части отличны от нуля!
7.
(УР С5) |
т. к.
Решите систему уравнений
Выразим `y` из второго уравнения `y=1-z+2x`, подставим в первое и третье и получим систему с двумя неизвестными
Теперь выразим из первого уравнения `z=x^2 +x-1` и, подставив во второе, получим уравнение с одним неизвестным
`x^4 +2x(x^2 +x-1) +2x-(x^2 +x-1)^2 -2(x^2 +x-1)=2 iff x^2 -1=0 =>`
`(1; 2; 1), (-1; 0; -1)`.
Решите систему уравнений
Выразим `x` из первого уравнения и подставим во второе и третье уравнения. Тогда получим равносильную систему
Теперь прибавим ко второму уравнению третье
`(3, 3, 4), (12, 3, 1)`.
Решите систему уравнений
В данной системе будем рассматривать каждое уравнение как квадратное относительно, например, `x`. Так как дискриминанты обоих уравнений являются полными квадратами, оказывается возможным свести систему двух нелинейных уравнений к совокупности четырёх линейных систем.
`(-5; 3/2), (-4; 2), (-3; 1/2)`.
Решите систему уравнений
Заменим второе уравнение системы суммой
Заметим, что решение второго уравнения - это ещё не решение системы. Полученные числа необходимо подставить в оставшееся первое уравнение системы. В данном случае после подстановки получаем тождество.
`(1, -6)`.
Функция `f(x, y)` называется однородной степени `k`, если `f(tx, ty)=t^k f(x, y)`.
Например, функция `f(x, y)=4x^3 y -5xy^3 +x^2 y^2` является однородной степени `4`, т. к.
`f(tx, ty)=4(tx)^3 (ty) -5(tx)(ty)^3 +(tx)^2 (ty)^2 =t^4 (4x^3 y -5xy^3 +x^2 y^2)`.
Уравнение `f(x, y) =0`, где `f(x, y)` - однородная функция, называется однородным. Оно сводится к уравнению с одним неизвестным, если ввести новую переменную `t= y/x`.
Система с двумя переменными , где `f(x,y)`, `g(x,y)` - однородные функции одной и той же степени, называется однородной.
Если `ab!= 0`, умножим первое уравнение на `b`, второе - на `a` и вычтем одно из другого - получим равносильную систему
Первое уравнение заменой переменных `t= x/y` (или `t= y/x`) сведётся к уравнению с одним неизвестным.
Если `a=0` `(b=0)`, то уравнение `f(x,y)=0` `(g(x,y)=0)` заменой переменных `t= x/y` (или `t= y/x`) сведётся к уравнению с одним неизвестным.
Решите систему
`(3sqrt3; sqrt3), (-3sqrt3; -sqrt3), (4;5), (-4;-5)`.
Функция `f(x,y)` называется симметрической, если `f(x,y) = f(y,x)`.
Система уравнений вида , где `f(x,y)`, `g(x,y)` - симметрические, называется симметрической системой. Такие системы решаются чаще всего с помощью введения новых переменных `x+y=u`, `xy=v`.
Решите систему уравнений
Эта алгебраическая (симметрическая) система, обычно она решается заменой `x+y=u`, `xy=v`. Заметив, что
`x^3 +x^3 y^3 +y^3 =(x+y)(x^2 -xy+y^2 )+x^3 y^3 =`
`=(x+y)((x+y)^2 -3xy)+x^3 y^3 =u(u^2 -3v)+v^3`,
перепишем систему в виде
(в старых переменных)
`(2;1), (1;2)`.
Для успешного выполнения задания необходимо помнить, что строго монотонная функция любое своё значение принимает только один раз, т. е. если функция `y(x)` строго монотонна, то для любых `x^** in D(y)`, `x^(** **) in D(y)` следует, что `y(x^**) = y(x^(** **)) iff x^** = x^(** **)`.
Вспомним ещё свойства не просто монотонных функций, а нечётных монотонных.
Если функция нечётная, то при любом `x` из области определения
`f(x) =-f(-x) iff f(x) + f(-x) =0`,
т. е. функция в симметричных точках принимает «противоположные» значения.
В случае произвольной нечётной функции равенство `f(x_1) =-f(x_2)` может выполняться в нескольких точках (не только в симметричных): например,
`sin pi/3 =-sin (- (pi)/3) =- sin (- (2pi)/3)`.
Если же функция нечётная, а к тому же и строго монотонная, то равенство `f(x_1) + f(x_2) =0` выполняется только в симметричных точках - вспомним график функции `y=x^3` - рис. 9.
Рис. 9 |
Итак, если нечётная и строго монотонная функция, то
`f(x_1) =- f(x_2) iff f(x_1) + f(x_2) =0 iff x_2 =- x_1`.
Поэтому для такой функции `f(x):`
`f(x) + f(g(x)) =0 iff x=- g(x)`.
Основное внимание, как во всех Заданиях, уделяется методам и приёмам решения задач. Именно решение задач делает изучение вообще, и геометрии в частности, активным. Ведь каждая решённая задача - это некоторый поиск и, пусть небольшое, но открытие. «То, что вы были принуждены открыть сами, оставляет в вашем уме дорожку, которой вы сможете воспользоваться, когда в том возникнет необходимость» (это слова немецкого физика XVII столетия Лихтенберга, который известен своими афоризмами).
Итак, если хотите научиться решать задачи, приобрести навыки решения – учитесь этому, разбирайте решения в учебнике и нашем Задании, повторяйте эти решения (ведь так учатся всему), а затем пробуйте свои силы. У Вас получится.
Задание состоит из четырёх параграфов. В параграфе 1 повторяются признаки подобия треугольников, решается несколько характерных задач на эту тему, повторяются свойства медиан, биссектрис и высот треугольника. Во втором параграфе обсуждаются «задачи в делении отрезка» и доказывается теорема Менелая. Третий параграф посвящён свойствам касательных, хорд, секущих, вписанных и описанных четырёхугольников. В параграфе 4 рассматривается применение теорем синусов и косинусов, разобраны задачи, решение которых требует применение тригонометрии. Почти все эти темы разбирались в заданиях по геометрии в 9 и 10 классах ЗФТШ, поэтому более простые утверждения здесь приводятся без доказательства. Тем, кто поступил в ЗФТШ в 11 класс, рекомендуется доказать эти утверждения самостоятельно, а те, кто учится в ЗФТШ не первый год, найдут много новых интересных задач, подробно решённых в 19 примерах.
Задание оканчивается контрольными вопросами и задачами для самостоятельного решения; они оценены по трудности в очках, которые указаны в скобках после номера. Знаком * «звёздочка» отмечены более трудные вопросы и задачи.
За правильный ответ и верное решение задачи ставится полное число очков, за недочёты и ошибки определённое число очков снимается.
Работу над заданием рекомендуется начать с внимательного чтения его и самостоятельного решения (после ознакомления) всех приведённых в нём задач. Ответы на контрольные вопросы следует давать подробные, со ссылками на соответствующие теоремы учебника или данного задания, с доказательствами своих ответов. В случае отрицательного ответа должен быть приведён опровергающий пример. Приведём примеры ответов на контрольные вопросы.
Можно ли утверждать, что треугольник равнобедренный, если его биссектриса является медианой?
Ответ
![]() |
Рис. 1 |
Да, можно. Докажем это. Пусть в треугольнике биссектриса `BM` является медианой: (рис. 1). На продолжении биссектрисы отложим отрезок , равный . Треугольники и равны по первому признаку: у них углы при вершине равны как вертикальные и , . Из равенства треугольников следует
(1)
и . Но , поэтому , т. е. в треугольнике углы при основании равны. По теореме этот треугольник равнобедренный: . Отсюда и из (1) заключаем: . Утверждение доказано.
![]() |
Рис. 2 |
Могут ли длины сторон треугольника быть меньше `1` мм, а радиус описанной окружности больше `1` км?
ОТвет
Да, могут. Приведём пример. Из точки , лежащей на окружности радиуса `2` км, дугой радиуса мм отмечаем точки и , лежащие на большей окружности (рис. 2); очевидно, мм.
Треугольник вписан в окружность радиуса `2` км, а его наибольшая сторона < мм.
![]() |
Рис. 3 |
Можно ли через точку окружности провести три равные между собой хорды?
Нет, нельзя. Действительно, предположим противное, т. е. предположим, что хорды , и окружности с центром в точке равны между собой (рис. 3). Тогда точки , и одинаково удалены от точки `A`, т. е. они лежат на окружности с центром в точке . Однако, этого не может быть, так как две окружности с разными центрами не могут иметь более двух общих точек. Значит предположение неверно.
![]() |
Рис. 4 |
Верно ли, что , если , , ?
Нет, например, на рис. 4 показаны треугольники и , для которых, как легко видеть, выполнены все заданные равенства, но , так как .
Итак, при утвердительном ответе надо либо привести доказательство того, что данное утверждение верно (как в ответе на вопрос 1), либо привести конкретный пример реализации заданных условий (как в ответе на вопрос 2).
При отрицательном ответе надо либо привести рассуждения, приводящие к противоречию заданных условий аксиоме, теореме или определению (как в ответе на вопрос 3), либо построить один опровергающий пример (как в ответе на вопрос 4).
После повторения тем в §1 – 4 в заключительном пятом параграфе обсудим вопросы подходов к решению, важность хорошего рисунка, выбора переменных, а также остановимся на некоторых ошибках, допускаемых учащимися и абитуриентами.
Это задание вместе с присланным решением будут Вам полезны при подготовке к экзаменам.
Две фигуры $$ F$$ и $$ {F}^{\text{'}}$$ называются подобными, если они переводятся друг в друга преобразованием подобия, т. е. таким преобразованием, при котором расстояния между двумя точками изменяются (увеличиваются или уменьшаются) в одно и то же число раз. Если фигуры $$ F$$ и $$ {F}^{\text{'}}$$ подобны, то пишется $$ F\sim {F}^{\text{'}}$$Напомним, что в записи подобия треугольников $$ ∆ABC~∆{A}_{1}{B}_{1}{C}_{1}$$ предполагается, что вершины, совмещаемые преобразованием подобия, стоят на соответствующих местах, т. е. $$ A$$ переходит в $$ {A}_{1}$$, $$ B$$ - в $$ {B}_{1}$$, $$ C$$ - в $$ {C}_{1}$$. Из свойств преобразования подобия следует, что у подобных фигур соответствующие углы равны, а соответствующие отрезки пропорциональны. В частности, если $$ ∆ABC~∆{A}_{1}{B}_{1}{C}_{1}$$
$$ \angle A=\angle {A}_{1}, \angle B=\angle {B}_{1}, \angle C=\angle {C}_{1}, {\displaystyle \frac{AB}{{A}_{1}{B}_{1}}}={\displaystyle \frac{BC}{{B}_{1}{C}_{1}}}={\displaystyle \frac{AC}{{A}_{1}{C}_{1}}}$$.
Два треугольника подобны:
Из признаков подобия следует утверждения, которые удобно использовать в решении задач:
1°. Прямая, параллельная одной из сторон треугольника и пересекающая две другие в различных точках, отсекает треугольник, подобный данному.
![]() |
Рис. 5 |
2°. Прямая, параллельная одной из сторон треугольника и пересекающая две другие стороны, отсекает на них отрезки, пропорциональные данным сторонам, т. е. если $$ MN\left|\right|AC$$ (рис. 5), то
$$ {\displaystyle \frac{m}{n}}={\displaystyle \frac{p}{q}}=\frac{m+p}{n+q}$$
3°. Если прямая пересекает две стороны треугольника и отсекает на них пропорциональные отрезки, то она параллельна третьей стороне, т. е. если (см. рис. 5)
$$ {\displaystyle \frac{m}{n}}={\displaystyle \frac{m+p}{n+q}}$$ или $$ {\displaystyle \frac{m}{n}}={\displaystyle \frac{p}{q}}$$,
то $$ MN$$ параллельна $$ AC$$ (доказательство было дано в задании для 9 класса).
Прямая, проходящая через точку пересечения диагоналей трапеции параллельно её основаниям, пересекает боковые стороны трапеции в точках $$ M$$ и $$ N$$. Найти длину отрезка `MN`, если основания трапеции равны $$ a$$ и $$ b$$.
Пусть $$ O$$ точка пересечения диагоналей трапеции (рис. 6). Обозначим:
$$ AD=a, BC=b, MO=x, BO=p, OD=q.$$
$$1.\;\left.\begin{array}{l}BC\parallel AD\\\bigtriangleup BOC\sim\bigtriangleup DOA\;(\mathrm{по}\;\mathrm{двум}\;\mathrm{углам})\end{array}\right|\Rightarrow\dfrac ba=\dfrac pq$$ (1)
$$2.\;\left.\begin{array}{l}MO\parallel AD\\\bigtriangleup MBO\sim\bigtriangleup ABD\end{array}\right|\Rightarrow\dfrac xa=\dfrac p{p+q}$$. (2)
Из (1) и (2) следует $$ x=a{\displaystyle \frac{p}{p+q}}=q{\displaystyle \frac{p/q}{p/q+1}}={\displaystyle \frac{ab}{a+b}}$$, т. е. $$ MO={\displaystyle \frac{ab}{a+b}}.$$
Аналогично устанавливаем, что $$ NO={\displaystyle \frac{ab}{a+b}}$$, поэтому $$ \overline{)MN={\displaystyle \frac{2ab}{a+b}}}$$.
Результат этой задачи, как утверждение, верное для любой трапеции, следует запомнить.
![]() |
Рис. 6 |
Из определения подобия фигур следует, что в подобных фигурах все соответствующие линейные элементы пропорциональны. Так, отношение периметров подобных треугольников равно отношению длин соответствующих сторон. Или, например, в подобных треугольниках отношение радиусов вписанных окружностей (также и описанных окружностей) равно отношению длин соответствующих сторон. Это замечание поможет нам решить следующую задачу.
![]() |
Рис. 7 |
В прямоугольном треугольнике $$ ABC$$ из вершины $$ C$$ прямого угла проведена высота $$ CD$$ (рис. 7). Радиусы окружностей, вписанных в треугольники $$ ACD$$ и $$ BCD$$ равны соответственно $$ {r}_{1}$$ и $$ {r}_{2}$$. Найти радиус окружности, вписанной в треугольник $$ ABC$$.
Обозначим искомый радиус $$ r$$, положим $$ AB=c$$, $$ AC=b$$, $$ BC=a$$. Из подобия прямоугольных треугольников $$ ACD$$ и $$ ABC$$ (у них равные углы при вершине $$ A$$) имеем $$ {\displaystyle \frac{r}{{r}_{1}}}={\displaystyle \frac{c}{b}}$$, откуда $$ b={\displaystyle \frac{{r}_{1}}{r}}c$$. Прямоугольные треугольники $$ BCD$$ и $$ BAC$$ также подобны, поэтому $$ {\displaystyle \frac{r}{{r}_{2}}}={\displaystyle \frac{c}{a}}$$, - откуда $$ a={\displaystyle \frac{{r}_{2}}{r}}c$$. Так как $$ {a}^{2}+{b}^{2}={c}^{2}$$ то, возводя в квадрат выражения для $$ a$$ и $$ b$$ и складывая их, получим $$ {\left(\frac{{r}_{1}}{r}\right)}^{2}{c}^{2}+{\left(\frac{{r}_{2}}{r}\right)}^{2}{c}^{2}={c}^{2}$$ или $$ {\displaystyle \frac{{r}_{1}^{2}+{r}_{2}^{2}}{{r}^{2}}}=1$$. Находим $$ r=\sqrt{{{r}_{1}}^{2}+{{r}_{2}}^{2}}$$.
Напомним, что площади подобных фигур относятся как квадраты соответствующих линейных элементов. Для треугольников это утверждение можно сформулировать так: площади подобных треугольников относятся как квадраты соответствующих сторон. Рассмотрим характерную задачу на эту тему.
![]() |
Рис. 8 |
Через точку $$ M$$, лежащую внутри треугольника $$ ABC$$, проведены три прямые, параллельные его сторонам. При этом образовались три треугольника (рис. 8), площади которых равны $$ {S}_{1}$$, $$ {S}_{2}$$ и $$ {S}_{3}$$. Найти площадь треугольника $$ ABC$$.
Легко видеть, что треугольники $$ EKM$$, $$ MQF$$ и $$ PMN$$ подобны треугольнику $$ ABC$$.
Пусть $$ S$$ -площадь треугольника $$ ABC$$, тогда
$$ {\displaystyle \frac{{S}_{1}}{S}}={\left({\displaystyle \frac{EM}{AC}}\right)}^{2}; {\displaystyle \frac{{S}_{2}}{S}}={\left({\displaystyle \frac{MF}{AC}}\right)}^{2}; {\displaystyle \frac{{S}_{3}}{S}}={\left({\displaystyle \frac{PN}{AC}}\right)}^{2}.$$
Откуда находим
$$ EM=\sqrt{{\displaystyle \frac{{S}_{1}}{S}}}AC, MF=\sqrt{{\displaystyle \frac{{S}_{2}}{S}}}AC, PN=\sqrt{{\displaystyle \frac{{S}_{3}}{S}}}AC.$$
А так как $$ EM=AP, MF=NC$$, то $$ EM+PN+MF=AP+PN+NC=AC$$.
Таким образом, $$ AC=AC·\left(\sqrt{{\displaystyle \frac{{S}_{1}}{S}}}+\sqrt{{\displaystyle \frac{{S}_{2}}{S}}}+\sqrt{{\displaystyle \frac{{S}_{3}}{S}}}\right)$$, откуда следует
$$ S={\left(\sqrt{{S}_{1}}+\sqrt{{S}_{2}}+\sqrt{{S}_{3}}\right)}^{2}$$.
Свойства медиан, высот, биссектрис треугольника
В наших заданиях 9-го и 10-го классов здесь повторяемые теоремы и утверждения были доказаны. Для некоторых из них мы напоминаем пути доказательств, доказывая их моменты и давая поясняющие рисунки.
![]() |
Рис. 9 |
Теорема 1. Три медианы треугольника пересекаются в одной точке и точкой пересечения каждая медиана делится в отношении `2 : 1`, считая от вершины.
Теорема 2. Три медианы, пересекаясь, разбивают треугольник на `6` треугольников с общей вершиной, площади которых равны между собой.
(На рис. 9 площадь каждого из `6` треугольников с вершиной `M` и основанием, равным половине стороны, равна $$ {\displaystyle \frac{1}{2}}{S}_{ABC}$$. Точка пересечения медиан называется центром тяжести треугольника.
Теорема 3. Пусть $$ BD$$ - медиана треугольника
$$ ABC (BC=a, AC=b, AB=c, BD={m}_{a})$$, тогда
$$ {m}_{c}^{2}={\displaystyle \frac{{a}^{2}+{b}^{2}}{2}}-{\displaystyle \frac{{c}^{2}}{4}}$$. (Доказательство приведено далее в §4 Задания).
![]() |
Рис. 10 |
Медианы $$ A{A}_{1}$$ треугольника $$ ABC$$ пересекаются в точке $$ O$$, $$ A{A}_{1}=12$$ и $$ C{C}_{1}=6$$ и одна из сторон треугольника равна `12`. (рис. 10). Найти площадь треугольника $$ ABC$$.
1. По теореме 1 имеем $$ AO={\displaystyle \frac{2}{3}}A{A}_{1}=8$$, $$ CO={\displaystyle \frac{2}{3}}C{C}_{1}=4$$.
Расставим на рисунке 10 длины отрезков медиан. По условию, одна из сторон треугольника равна `12`, сторона $$ AC$$ не может равняться `12`, иначе $$ AC=AO+OC$$ - нарушено неравенство треугольника. Также не может равняться `12` сторона $$ AB$$, так в этом случае $$ A{C}_{1}=6$$ и треугольник $$ AO{C}_{1}$$ со сторонами `8`, `2`, `6` не существует. Значит, $$ BC=12$$ и $$ A{C}_{1}=6$$.
2. Площадь треугольника находим по формуле Герона:
$$ p=7, {S}_{{A}_{1}OC}=\sqrt{7·1·3·3}=3\sqrt{7}$$.
По теореме 2 площадь треугольника $$ ABC$$ в `6` раз больше, находим $$ {S}_{ABC}=18\sqrt{7}$$.
Теорема 4. Три высоты треугольника или три прямые, на которых лежат высоты, пересекаются в одной точке. (Эта точка называется ортоцентром треугольника). В остроугольном треугольнике точка пересечения высот лежит внутри треугольника.
Были доказаны также две леммы о высотах
1-ая лемма.
Если $$ A{A}_{1}$$ и $$ B{B}_{1}$$ - высоты треугольника $$ ABC$$, то треугольник $$ {A}_{1}{B}_{1}C$$ подобен треугольнику $$ ABC$$ с коэффициентом подобия $$ k={\displaystyle \frac{{A}_{1}{B}_{1}}{AB}}=\left|\mathrm{cos}C\right|$$. Можно это утверждение сформулировать так: Если соединить основания двух высот $$ A{A}_{1}$$ и $$ B{B}_{1}$$ треугольника $$ ABC$$, то образуется треугольник, подобный данному: $$ ∆{A}_{1}{B}_{1}C~∆ABC$$.
Из прямоугольных треугольников $$ AC{A}_{1}$$ следует $$ {A}_{1}C=AC·\mathrm{cos}C$$ или $$ {A}_{1}C=AC·\mathrm{cos}(180°-C)=AC\left|\mathrm{cos}C\right|$$ (рис. 11а, б), а из прямоугольных треугольников $$ BC{B}_{1}$$ следует $$ {B}_{1}C=BC·\mathrm{cos}C$$ или $$ {B}_{1}C=BC·\mathrm{cos}(180°-C)=BC\left|\mathrm{cos}C\right|$$. Далее рассуждения очевидны.
![]() |
![]() |
Рис. 11a | Рис. 11б |
2-ая лемма.
Если высоты $$ A{A}_{1}$$ и $$ B{B}_{1}$$ (или их продолжения) пересекаются в точке $$ H$$, то справедливо равенство $$ AH·H{A}_{1}=BH·H{B}_{1}$$ (рис. 12а, б).
![]() |
![]() |
Рис. 12a | Рис. 12б |
![]() |
Рис. 13 |
Высоты $$ A{A}_{1}$$ и $$ B{B}_{1}$$ пересекаются в точке $$ H$$ (рис. 13), при этом $$ AH=3H{A}_{1}$$ и $$ BH=H{B}_{1}$$. Найти косинус угла $$ ACB$$ и площадь треугольника $$ ABC$$, если $$ AC=a$$.
Обозначим $$ H{A}_{1}=x, H{B}_{1}=y$$,
1. Точка $$ H$$ - середина высоты (рис. 13). Если отрезок $$ MH$$ проходит через точку $$ H$$ и параллелен основаниям, то `MN` - средняя линия; `MN=a/2`.
2. $$\left.\triangle HA_1N\sim\triangle AA_1C\right|\Rightarrow\dfrac{HN}{AC}=\dfrac x{4x},\;HN=\dfrac14a.$$ Значит, $$ MH=HN={\displaystyle \frac{a}{4}}$$ и $$ A{B}_{1}={B}_{1}C={\displaystyle \frac{a}{2}}$$ Треугольник $$ ABC$$ равнобедренный, $$ AB=BC$$.
3. $$ \angle {B}_{1}BC=90°-\angle C$$, поэтому `ul(/_BHA_1=/_AHB_1=/_C)`, а по второй лемме о высотах $$ AH·H{A}_{1}=BH·H{B}_{1}$$ т. е. $$ 3{x}^{2}={y}^{2}, y=x\sqrt{3}$$.
Далее, $$ \mathrm{cos}C=\mathrm{cos}(\angle AH{B}_{1})={\displaystyle \frac{y}{3x}}$$, находим $$ \mathrm{cos}C={\displaystyle \frac{1}{\sqrt{3}}}$$.
4. $$ △AH{B}_{1}: A{B}_{1}^{2}=(3x{)}^{2}-{y}^{2}$$, $$ {\displaystyle \frac{{a}^{2}}{4}}=6{x}^{2}$$, $$ x={\displaystyle \frac{a}{2\sqrt{6}}}$$, $$ y={\displaystyle \frac{a}{2\sqrt{2}}}$$, тогда
$$ {S}_{ABC}={\displaystyle \frac{1}{2}}AC·B{B}_{1}=ay={\displaystyle \frac{{a}^{2}\sqrt{2}}{4}}$$.
Теорема 5. Биссектриса угла треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам, т. е. если $$ AD$$ - биссектриса треугольника $$ ABC$$ (рис. 14), то
$$ {\displaystyle \frac{BD}{DC}}={\displaystyle \frac{AB}{AC}} \left({\displaystyle \frac{x}{y}}={\displaystyle \frac{c}{b}}\right)$$
Доказательство легко выполните сами, применяя теорему синусов к треугольникам $$ ADB$$ и $$ ADC$$.
Теорема 6. Пусть $$ AD$$ - биссектриса треугольника $$ ABC$$ (рис. 14), тогда $$ AD=\sqrt{AB·AC-DB·DC}$$ (в обозначениях рисунка 14а)
`ul(AD=sqrt(bc-xy))`.
![]() |
![]() |
||
Рис. 14 | Рис. 14а |
Эту теорему докажем. Опишем около треугольника $$ ABC$$ окружность, точку пересечения прямой $$ AD$$ и окружности обозначим $$ K$$ (рис. 14а).
Обозначим $$ AD=z, DK=m.△ABD\sim ∆AKC$$ $$ (\angle ABD=\angle AKC$$ и $$ \angle 1=\angle 2)$$. Из подобия следует $$ {\displaystyle \frac{AB}{AK}}={\displaystyle \frac{AD}{AC}}$$, т. е. $$ {\displaystyle \frac{c}{z+m}}={\displaystyle \frac{z}{b}}$$, откуда $$ {z}^{2}+zm=bc$$, $$ {z}^{2}=bc-zm$$.
По свойству пересекающихся хорд: $$ AD·DK=BD·CD$$, т. е. $$ z·m=x·y$$, тогда $$ {z}^{2}=bc-xy$$, $$ z=\sqrt{bc-xy}$$.
В треугольнике $$ ABC$$ со сторонами $$ AB=5$$, $$ AC=3$$ биссектриса $$ AD={\displaystyle \frac{15}{8}}$$. Найти сторону $$ BC$$ и радиус вписанной окружности.
По теореме 5 (см. рис. 14) имеем $$ {\displaystyle \frac{x}{y}}={\displaystyle \frac{5}{3}}$$ Обозначим $$ x=5z$$, тогда $$ y=3z$$. По теореме 6 выполнено равенство $$ {\left({\displaystyle \frac{15}{8}}\right)}^{2}=5·3-5z·3z.$$ Легко находим $$ z={\displaystyle \frac{7}{8}}$$ значит `ul(BC=7)`. Радиус вписанной окружности найдём по формуле $$ S=pr$$ (`S` - площадь треугольника, `p` -полупериметр). Имеем $$ p={\displaystyle \frac{15}{2}}$$, по формуле Герона $$ S=\sqrt{{\displaystyle \frac{15}{2}}·{\displaystyle \frac{1}{2}}·{\displaystyle \frac{10}{2}}·{\displaystyle \frac{9}{2}}}={\displaystyle \frac{15\sqrt{3}}{2}},$$ поэтому $$ r={\displaystyle \frac{S}{p}}={\displaystyle \frac{\sqrt{3}}{2}}.$$
Задача о «делении отрезка», как правило, решаются дополнительным построением – проведением прямой, параллельной рассекающей, и использованием подобия или теоремы о пересечении сторон угла параллельными прямыми. Общий подход к решению таких задач даёт теорема Менелая (далее напомним формулировку и доказательство, в задании 9-го класса это уже было сделано).
Точка $$ D$$ лежит на стороне $$ BC$$, точка $$ K$$ - на стороне $$ AB$$ треугольника $$ ABC$$, прямые $$ AD$$ и $$ CK$$ пересекаются в точке $$ O$$ (рис. 15). Найти отношение $$ AO:OD$$, если $$ AK:KB=1:3$$ и $$ BD:DC=2:3$$.
![]() |
Рис. 15 |
Расставим на рисунке данные о делении сторон. Чтобы решение стало более понятным, сделаем ещё один рисунок (рис. 15а), на нём проведём $$ DS\left|\right|CK$$.
Рассматриваем треугольник $$ KBC$$. Из `DS``||``CK`
(второй признак подобия треугольников) следует $$ KS:KB=CD:CB$$, откуда $$ KS={\displaystyle \frac{3}{5}}·3x={\displaystyle \frac{9}{5}}x$$. (Ставим это на рисунке). На этом этапе удобно сделать ещё один рисунок (рис. 15б), либо на рисунке 15а провести прямую `AD` и отметить точку $$ O$$.
В треугольнике $$ ASD$$ по построению $$ SD\left|\right|KO$$, По утверждению $$ 2°$$ имеем $$ AO:OD=AK:KS$$, откуда следует $$ AO:OD=5:9$$
![]() |
![]() |
Рис. 15a | Рис. 15б |
Точки `A_1` и `C_1`, расположенные на сторонах `BC` и `AB` треугольника `ABC`, и точка `B_1`, расположенная на продолжении стороны `AC` за точку `C`, лежат на одной прямой тогда и только тогда, когда имеет место равенство:
$$ {\displaystyle \frac{A{C}_{1}}{{C}_{1}B}}·{\displaystyle \frac{B{A}_{1}}{{A}_{1}C}}·{\displaystyle \frac{C{B}_{1}}{{B}_{1}A}}=1$$. (`**`)
Проводим $$ CK\left|\right|AB$$ (рис. 16а):
$$\begin{array}{l}\left.\triangle A_1CK\sim\triangle A_1BC_1\right|\Rightarrow\dfrac{CK}{C_1B}=\dfrac{A_1C}{BA_1};\\\left.\triangle B_1AC_1\sim\triangle B_1CK\right|\Rightarrow\dfrac{AC_1}{CK}=\dfrac{B_1A}{B_1C}.\end{array}$$
Почленно перемножив, получим
$$ {\displaystyle \frac{A{C}_{1}}{{C}_{1}B}}={\displaystyle \frac{{A}_{1}C}{B{A}_{1}}}·{\displaystyle \frac{{B}_{1}A}{C{B}_{1}}}$$,
откуда и следует
$$ {\displaystyle \frac{A{C}_{1}}{{C}_{1}B}}·{\displaystyle \frac{B{A}_{1}}{{A}_{1}C}}·{\displaystyle \frac{C{B}_{1}}{{B}_{1}A}}=1$$
(стрелочки на рис. 16а показывают последовательность взятия отрезков, движение начинается в точке `A` и в ней же заканчивается).
![]() |
![]() |
Рис. 16а | Рис. 16б |
2. Пусть имеет место равенство (`**`). Через две точки $$ {B}_{1}$$ и $$ {A}_{1}$$ проводим прямую, точку пересечения с отрезком $$ AB$$ обозначаем $$ {C}_{2}$$ (рис. 16б). Точки $$ {A}_{1},{B}_{1}$$ и $$ {C}_{2}$$ лежат на одной прямой, по доказанному имеет место
$$ {\displaystyle \frac{A{C}_{1}}{{C}_{1}B}}·{\displaystyle \frac{B{A}_{1}}{{A}_{1}C}}·{\displaystyle \frac{C{B}_{1}}{{B}_{1}A}}=1.$$
Сравнивая с равенством (`**`), устанавливаем, что $$ {\displaystyle \frac{A{C}_{2}}{{C}_{2}B}}={\displaystyle \frac{A{C}_{1}}{{C}_{1}B}}$$ и показываем, что точки $$ {C}_{2}$$ и $$ {C}_{1}$$ совпадают, т. к. делят отрезок $$ AB$$ на равные отрезки.
Применим теорему Менелая к решению примера 7 (см. рис. 15): рассматриваем треугольник $$ BAD$$ и секущую $$ CK$$ (она определяет три точки: $$ K,O,C$$ ). Имеем: $$ {\displaystyle \frac{BK}{KA}}·{\displaystyle \frac{AO}{OD}}·{\displaystyle \frac{DC}{CB}}=1$$,
т. е. $$ {\displaystyle \frac{3x}{x}}·{\displaystyle \frac{AO}{OD}}·{\displaystyle \frac{3y}{5y}}=1$$ откуда $$ {\displaystyle \frac{AO}{OD}}={\displaystyle \frac{5}{9}}$$.
Если при тех же условиях задачи 7 требуется определить, какую часть площади треугольника составляет, например, площадь четырёхугольника $$ KODB$$ то полезно сначала решить задачу о «делении отрезка» и найти, например, $$ AO:OD=5:9$$, а затем использовать тот факт, что площади треугольников с одинаковыми высотами относятся как длины их оснований:
$$ {S}_{ABC}=S; {S}_{ADC}={\displaystyle \frac{3}{5}}S$$ $$ ($$ т. к. $$ DC={\displaystyle \frac{3}{5}}BC$$$$ )$$;
$$ {S}_{OCD}={\displaystyle \frac{9}{14}}{S}_{ADC}={\displaystyle \frac{9}{14}}\left({\displaystyle \frac{3}{5}}S\right)={\displaystyle \frac{27}{70}}S$$ $$ ($$ т. к. $$ OD={\displaystyle \frac{9}{14}}AD$$$$ )$$;
$$ {S}_{KCB}={\displaystyle \frac{3}{4}}S$$ $$ ($$ т. к. $$ BK={\displaystyle \frac{3}{4}}AB$$$$ )$$, поэтому
$$ {S}_{KODB}={S}_{KCB}-{S}_{OCD}={\displaystyle \frac{3}{4}}S-{\displaystyle \frac{27}{70}}S={\displaystyle \frac{51}{140}}S$$.
![]() |
Рис. 17 |
Если из точки к окружности проведены две касательные, то длины отрезков от этой точки до точек касания равны и прямая, проходящая через центр окружности и эту точку, делит угол между касательными пополам (рис. 17).
Используя это свойство, легко решить следующую задачу.
На основании $$ AC$$ равнобедренного треугольника $$ ABC$$ расположена точка $$ D$$ так, что $$ AD=a,CD=b$$. Окружности, вписанные в треугольники $$ ABD$$ и $$ DBC$$, касаются прямой $$ BD$$ в точках $$ M$$ и $$ N$$ соответственно. Найти отрезок $$ MN$$.
![]() |
![]() |
Рис. 18 | Рис. 18a |
Пусть $$ a>b.$$ Точки касания окружностей со сторонами треугольника $$ ABC$$ обозначим и $$ F$$ (рис. 18). Положим По свойству касательных:
$$ DE=y$$, $$ QD=x+y$$, $$ AQ=AP=a-(x+y)$$, $$ EC=CF=b-y$$, $$ PB=BM=z, BF=BN=z+x$$ (рис. 18а). Выразим боковые стороны:
$$ AB=z+a-x-y$$, $$ BC=z+x+b-y$$. По условию $$ AB=BC$$; получим
$$ z+a-x-y=z+x+b-y$$, откуда находим $$ x={\displaystyle \frac{a-b}{2}}$$.
Если $$ a
Итак: $$ MN={\displaystyle \frac{\left|a-b\right|}{2}}.$$
Четырёхугольник называется описанным около окружности, если окружность касается всех его сторон.
В выпуклый четырёхугольник можно вписать окружность тогда и только тогда, когда суммы длин противолежащих сторон равны.
![]() |
Рис. 19 |
Пусть четырёхугольник $$ ABCD$$ описан около окружности (рис. 19).
По свойству касательных: $$ AM=AN$$, $$ NB=BP$$, $$ PC=CQ$$ и $$ QD=DM$$, поэтому
$$ AM+MD+BP+PC=AN+NB+CQ+QD$$, что означает
$$ AD+BC=AB+CD$$.
Докажем обратное утверждение. Пусть в выпуклом четырёхугольнике $$ ABCD$$ стороны удовлетворяют условию $$ AB+CD=BC+AD.$$ Положим $$ AD=a, AB=b, BC=c, CD=d.$$
По условию $$ a+c=b+d,$$ что равносильно $$ c-b=d-a.$$
Пусть $$ d>a.$$ Отложим на большей стороне $$ CD$$ меньшую сторону `DM=a` (рис. 20). Так как в этом случае $$ c>b$$, то также отложим $$ BN=b$$, получим три равнобедренных треугольника `ABN`, `ADM` и `MCN`.
![]() |
Рис. 20 |
В равнобедренном треугольнике биссектриса угла при вершине является медианой и высотой, отсюда следует, что если провести биссектрисы углов `B`, `C` и `D`, то они разделят пополам соответственно отрезки `AN`, `MN` и `AM` и будут им перпендикулярны. Это означает, что биссектрисы будут серединными перпендикулярами трёх сторон треугольника $$ ANM$$, а они по теореме пересекаются в одной точке. Обозначим эту точку $$ O$$. Эта точка одинаково удалена от отрезков `AB` и `BC` (лежит на $$ OB$$), `BC` и `CD` (лежит на $$ OC$$) и `CD` и `AD` (лежит на $$ OD$$), следовательно, точка $$ O$$ одинакова удалена от всех четырёх сторон четырёхугольника $$ ABCD$$ и является центром вписанной окружности. Случай $$ d=a$$, как более простой, рассмотрите самостоятельно.
Равнобокая трапеция описана около окружности. Найти радиус окружности, если длины оснований равны $$ a$$ и $$ b$$.
![]() |
Рис. 21 |
Пусть в равнобокой трапеции $$ ABCD$$ `BC=b`, `AD=a` (рис. 21). Эта трапеция равнобокая $$ (AB=CD)$$, она описана около окружности, следовательно, $$ AB+CD=AD+BC$$ Отсюда получаем:
$$ AB=CD={\displaystyle \frac{a+b}{2}}.$$
Проведём $$ BM$$ и $$ CN$$ перпендикулярно $$ AD$$. Трапеция равнобокая, углы при основании равны, следовательно, равны и треугольники $$ ABM$$ и $$ DCN$$ и $$ AM=ND$$. По построению $$ MBCN$$ - прямоугольник, $$ MN=BC=b$$ поэтому $$ AM={\displaystyle \frac{1}{2}}(AD-BC)-{\displaystyle \frac{1}{2}}(a-b)$$. Из прямоугольного треугольника $$ ABM$$ находим высоту трапеции $$ ABCD$$:
$$ BM=\sqrt{A{B}^{2}-A{M}^{2}}=\sqrt{{\left({\displaystyle \frac{a+b}{2}}\right)}^{2}-{\left({\displaystyle \frac{a-b}{2}}\right)}^{2}}=\sqrt{ab}$$.
Очевидно, что высота трапеции равна диаметру окружности, поэтому
радиус вписанной окружности равен $$ \overline{)r={\displaystyle \frac{1}{2}}\sqrt{ab}}$$.
Очень полезная задача. Заметим, что из решения также следует, что в равнобокой описанной трапеции $$ \overline{)\mathrm{cos}\alpha ={\displaystyle \frac{a-b}{a+b}}}$$.
Градусная мера угла, образованного хордой и касательной, имеющими общую точку на окружности, равна половине градусной меры дуги, заключённой между его сторонами (рис. 22).
![]() |
Рис. 22 |
Рассматриваем угол $$ NAB$$ между касательной $$ NA$$ и хордой $$ AB$$. Если $$ O$$ - центр окружности, то $$ OA\perp AN$$, `/_OAB=/_OBA=90^@alpha`. Сумма углов треугольника равна `180^@`, следовательно, $$ \angle AOB=2\alpha $$. Итак, $$ \alpha =\angle NAB={\displaystyle \frac{1}{2}}\angle AOB.$$
Обратим внимание, что угол $$ NAB$$ равен любому вписанному углу $$ AKB$$, опирающемуся на ту же дугу $$ AB$$.
Случай `/_alpha>=90^@` рассматривается аналогично.
Из этого свойства следует важная теорема «о касательной и секущей», которая часто используется при решении задач.
Пусть к окружности проведены из одной точки касательная $$ MA$$ и секущая $$ MB$$, пересекающая окружность в точке $$ C$$ (рис. 23). Тогда справедливо равенство
$$ M{A}^{2}=MB·MC$$
т. е. если из точки `M` к окружности проведены касательная и секущая, то квадрат отрезка касательной от точки `M` до точки касания равен произведению длин отрезков секущей от точки `M` до точек её пересечения с окружностью.
Угол $$ MAC$$ образован хордой и касательной, $$ \angle MAC=\angle ABC$$. Так как в треугольниках $$ MAC$$ и $$ MBA$$ угол $$ M$$ общий, то по двум углам они подобны. Из подобия следует:
$$ {\displaystyle \frac{MA}{MB}}={\displaystyle \frac{MC}{MA}}$$
Откуда получаем: $$ M{A}^{2}=MB·MC$$.
![]() |
Рис. 23 |
Если из точки $$ M$$ к окружности проведены две секущие: $$ MB$$, пересекающая окружность в точке $$ C$$ и $$ MK$$, пересекающая окружность в точке $$ L$$ (рис. 23), то справедливо равенство $$ MB·MC=MK·ML$$.
Проведём касательную $$ MA$$. По доказанной теореме $$ M{A}^{2}=MB·MC$$ и $$ M{A}^{2}=MK·ML$$, следовательно $$ MB·MC=MK·ML$$.
![]() |
Рис. 24 |
Окружность проходит через вершины $$ C u D$$ трапеции $$ ABCD,$$ касается боковой стороны $$ AB$$ в точке $$ B$$ и пересекает большее основание $$ AD$$ в точке $$ K$$ (рис. 24). Известно, что $$ AB=5\sqrt{3}$$, $$ BC=5$$ и $$ KD=10$$.
Найти радиус окружности.
1. Пусть $$ AK=x$$ тогда $$ AD=10+x$$ю
По теореме о касательной и секущей:
$$ A{B}^{2}=AK·KD$$ т. е. $$ 75=x(x+10)$$, откуда $$ x=5$$. Итак $$ AD=15$$.
2. Заметим теперь, что угол $$ ABD$$ между касательной $$ AB$$ и хордой $$ BD$$ равен вписанному углу $$ BCD$$, а из параллельности прямых $$ AD$$ и $$ BC$$ следует равенство углов `1` и `2`. По первому признаку подобия $$ △ABD\sim △DCB$$. Из подобия имеем $$ {\displaystyle \frac{AB}{CD}}={\displaystyle \frac{AD}{BD}}{\displaystyle \frac{BD}{BC}}$$. Из последнего равенства находим, что $$ B{D}^{2}=AD·BC$$, т. е. $$ BD=\sqrt{AD·BC}=5\sqrt{3}$$, а из первого равенства находим $$ CD={\displaystyle \frac{AB·BD}{AB}}=5$$.
3. Так как $$ KB=CD$$ ($$ KBCD$$ - вписанная трапеция, она равнобокая), и $$ K{B}^{2}+B{D}^{2}=K{D}^{2},$$ то `/_ KBD=90^@` и $$ KD$$ - диаметр окружности.
Значит, её радиус равен `5`.
Около четырёхугольника можно описать окружность тогда и только тогда, когда сумма противолежащих углов равна `180^@`.
Из этой теоремы следует:
a) из всех параллелограммов только около прямоугольника можно описать окружность;
б) около трапеции можно описать окружность только тогда, когда она равнобокая.
![]() |
Рис. 25 |
В треугольнике $$ ABC$$ биссектрисы $$ AD$$ и $$ BF$$ пересекаются в точке $$ O$$ (рис. 25). Известно, что точки $$ F, O, D$$, и `C` лежат на одной окружности и что $$ DF=\sqrt{3}.$$ Найти площадь треугольника $$ ODF$$.
Так как
$$ \angle BAO={\displaystyle \frac{1}{2}}\angle A$$ и $$ \angle ABO={\displaystyle \frac{1}{2}}\angle B$$, то
$$ \angle DOF=\angle AOB=\pi -{\displaystyle \frac{1}{2}}(\angle A+\angle B)$$.
Четырёхугольник $$ DOFC$$ вписан в окружность, по теореме 9:
$$ \angle DOF=\pi -\angle C$$, т. е. $$ \pi -{\displaystyle \frac{1}{2}}(\angle A+\angle B)=\pi -\angle C$$, откуда, учитывая, что $$ \angle A+\angle B+\angle C=\pi $$, находим $$ \angle С={\displaystyle \frac{\pi }{3}}$$.
Теперь заметим, что $$ O$$ - точка точка пересечения биссектрис, $$ CO$$ - биссектриса угла $$ C,$$ следовательно, углы $$ OCD$$ и $$ OCF$$ равны друг другу. Это вписанные углы, поэтому вписанные углы $$ ODF$$ и $$ OFD$$ равны им и равны друг другу. Таким образом,
$$ \angle ODF=\angle OFD={\displaystyle \frac{1}{2}}\angle C={\displaystyle \frac{\pi }{6}}$$.
Треугольник $$ DOF$$ равнобедренный с основанием $$ DF=\sqrt{3}$$ и углом при основании `30^@`. Находим его высоту, опущенную из вершины $$ O$$ и площадь треугольника $$ ODF: S={\displaystyle \frac{1}{2}}h·DF={\displaystyle \frac{\sqrt{3}}{4}}$$.
Как обычно, в треугольнике $$ ABC$$ стороны, противолежащие углам `A`, `B` и `C`, обозначим `a`, `b` и `c`. Справедливы две теоремы, устанавливающие соотношения между сторонами и углами треугольника, утверждения которых можно кратко записать так:
теорема косинусов: $$ {c}^{2}={a}^{2}+{b}^{2}-2ab\mathrm{cos}C;$$
теорема синусов: $$ {\displaystyle \frac{a}{\mathrm{sin}A}}={\displaystyle \frac{b}{\mathrm{sin}{\displaystyle B}}}={\displaystyle \frac{c}{\mathrm{sin}{\displaystyle C}}}=2R$$.
Покажем на примерах, как применяются эти теоремы.
![]() |
Рис. 26 |
Доказать, что в параллелограмме сумма квадратов диагоналей равна сумме квадратов всех его сторон.
Пусть в параллелограмме $$ ABCD$$ (рис. 26) длины сторон равны длины диагоналей равны $$ {d}_{1}$$ и $$ {d}_{2}: AC={d}_{2}$$, $$ AB=DC=a$$, $$ BD={d}_{1}$$.
Если то Из треугольников $$ ABD$$ и $$ ACD$$ по теореме косинусов будем иметь:
Складывая почленно эти равенства и учитывая, что получим требуемое равенство: .
![]() |
Рис. 26 |
Из решения данной задачи легко получить выражение медианы $$ {m}_{c}$$ треугольника через его стороны $$ a, b$$ и $$ c$$. Пусть в `ABD:AB=a`, `AD=b`, `BD=c`; `AM` - медиана, `AM=m_c` (рис. 26). Достроим этот треугольник $$ ABD$$ до параллелограмма $$ ABCD$$ и воспользуемся результатом задачи 11, получим:
$$ {c}^{2}+{\left(2{m}_{c}\right)}^{2}=2{a}^{2}+2{b}^{2}$$, откуда
.
![]() |
Рис. 27 |
На стороне $$ AD$$ ромба $$ ABCD$$ взята точка $$ M$$, при этом $$ MD={\displaystyle \frac{3}{10}}AD, BM=MC=11.$$ Найти площадь треугольника $$ BCM.$$
1. Обозначим длину стороны ромба $$ x, \angle BAD=\varphi $$
(рис. 27). По условию $$ MD={\displaystyle \frac{3}{10}}x\Rightarrow AM={\displaystyle \frac{7}{10}}x.$$ Из треугольников $$ ABM$$ и $$ MCD$$ по теореме косинусов получаем:
$$ B{M}^{2}={x}^{2}+{\left({\displaystyle \frac{7}{10}}x\right)}^{2}-2x{\displaystyle \frac{7}{10}}x\mathrm{cos}\varphi $$,
$$ M{C}^{2}={x}^{2}+{\left({\displaystyle \frac{3}{10}}x\right)}^{2}-2x{\displaystyle \frac{3}{10}}x\mathrm{cos}(180°-\varphi )$$.
Приравниваем правые части (по условию $$ BM=MC$$), подставляем сокращаем на $$ {x}^{2},$$ приводим подобные члены и получаем $$ \mathrm{cos}\varphi ={\displaystyle \frac{1}{5}}.$$ Подставляя найденное значение $$ \mathrm{cos}\varphi $$ и $$ BM=11$$ в первое равенство, находим $$ x=10$$.
2. В равнобедренном треугольнике $$ BMC$$ основание равно `10`, находим высоту $$ MK$$:
$$ MK=\sqrt{B{M}^{2}-B{K}^{2}}=\sqrt{B{M}^{2}-{\displaystyle \frac{1}{4}}B{C}^{2}}=\sqrt{96}$$,
тогда площадь треугольника `BMC` равна $$ {\displaystyle \frac{1}{2}}BC·MK=20\sqrt{6}$$.
![]() |
Рис. 28 |
В равнобедренном треугольнике $$ ABC (AB=BC)$$ проведена биссектриса $$ AD$$ (рис. 28). Найти радиус описанной около треугольника $$ ABC$$ окружности, если $$ AD=4$$ и $$ DC=\sqrt{6}.$$
1. Углы при основании $$ AC$$ в треугольнике $$ ABC$$ равны, обозначим $$ \angle BAC=2\alpha ,$$ тогда $$ \angle DAC=\alpha .$$ По теореме синусов из треугольника $$ ADC$$ следует $$ {\displaystyle \frac{4}{\mathrm{sin}2\alpha }}={\displaystyle \frac{\sqrt{6}}{\mathrm{sin}{\displaystyle \alpha }}}$$ откуда $$ \mathrm{cos}\alpha =\sqrt{{\displaystyle \frac{2}{3}}}$$. Находим: $$ \mathrm{cos}2\alpha =2{\mathrm{cos}}^{2}\alpha -1={\displaystyle \frac{1}{3}}$$ и $$ \mathrm{sin}2\alpha ={\displaystyle \frac{2\sqrt{2}}{3}}$$.
2. Вычисляем сторону $$ AC$$:
$$ AC=AK+KC=AD\mathrm{cos}\alpha +DC\mathrm{cos}2\alpha ={\displaystyle \frac{5}{3}}\sqrt{6}$$.
3. Как следует из теоремы синусов, радиус $$ R$$ описанной около треугольника `ABC` окружности может быть найден из равенства:
$$ R={\displaystyle \frac{AC}{2\mathrm{sin}B}}$$ т. е. $$ R={\displaystyle \frac{AC}{2\mathrm{sin}(180°-4\alpha )}}={\displaystyle \frac{AC}{4\mathrm{sin}2\alpha ·\mathrm{cos}2\alpha }}={\displaystyle \frac{15}{8}}\sqrt{3}$$.
В решении следующих задач существенно используется знание тригонометрических тождеств, умение решать тригонометрические уравнения. Подобные задачи не рассматривались в заданиях 9 - 10 классов, поскольку большинство учащихся в то время не обладало знаниями по тригонометрии в достаточном объёме.
В этих задачах в качестве неизвестной выбирается некоторый угол и по данным задачи и известным метрическим соотношениям составляется тригонометрическое уравнение или система уравнений. Их составление и решение является основным этапом всего решения задачи, а искомые элементы определяются через значения тригонометрических функций введённого угла.
![]() |
Рис. 29 |
Точки $$ K$$ и $$ M$$ расположены соответственно на стороне $$ BC$$ и высоте $$ BD$$ остроугольного треугольника $$ ABC$$. Треугольник $$ AMK$$ - равносторонний (рис. 29). Найти его площадь, если $$ AD=3$$, $$ DC={\displaystyle \frac{11}{2}}$$, $$ BK:KC=10:1$$.
1. Обозначим сторону правильного треугольника $$ AMK$$ через $$ x, \angle KAC=\varphi $$ (рис. 29). Пусть $$ FK\left|\right|AC$$ и $$ KN\perp AC$$. Из подобия треугольников $$ CKN$$ и $$ CBD$$ следует $$ NC={\displaystyle \frac{1}{11}}DC={\displaystyle \frac{1}{2}}$$. Тогда $$ DN=5, AN=8.$$
2. Заметим, что $$ \angle FKA=\varphi $$ и $$ \angle MKF={\displaystyle \frac{\mathrm{\pi }}{3}}-\varphi $$. Из прямоугольных треугольников $$ AKN$$ и $$ MKF$$ следует:
$$ AN=AK\mathrm{cos}\varphi $$ и $$ FK=MK\mathrm{cos}({\displaystyle \frac{\mathrm{\pi }}{3}}-\varphi )$$, т. е. $$ 8=x\mathrm{cos}\varphi $$ и $$ 5=x\mathrm{cos}({\displaystyle \frac{\mathrm{\pi }}{3}}-\varphi )$$. Из тригонометрического уравнения `5cosvarphi=8cos(pi/3-varphi)` получаем
$$ \mathrm{cos}\varphi =4\sqrt{3}\mathrm{sin}\varphi $$ и $$ \mathrm{tg}\varphi ={\displaystyle \frac{1}{4\sqrt{3}}}$$.
3. По формуле $$ \mathrm{cos}\varphi ={\displaystyle \frac{1}{\sqrt{1+\mathrm{tg}^{2}\varphi }}}$$ находим $$ \mathrm{cos}\varphi ={\displaystyle \frac{4\sqrt{3}}{7}}$$ и $$ x={\displaystyle \frac{8}{\mathrm{cos}\varphi }}={\displaystyle \frac{14}{\sqrt{3}}}$$. Площадь правильного треугольника со стороной $$ x$$ равна $$ {\displaystyle \frac{{x}^{2}\sqrt{3}}{4}}$$. Находим $$ {S}_{AMK}={\displaystyle \frac{49\sqrt{3}}{3}}$$.
Обратим внимание, что в этой задаче один треугольник повёрнут относительно другого. В качестве промежуточной переменной и был введён этот угол поворота.
![]() |
Рис. 30 |
Окружность проходит через вершины $$ A$$ и $$ B$$ треугольника $$ ABC,$$ пресекает стороны $$ BC$$ и $$ AC$$ в точках $$ M$$ и $$ N$$ соответственно (рис. 30). Известно, что `AB=4`, `MN=2`, $$ \angle ACB=\mathrm{arcsin}\frac{3}{5}$$. Найти радиус окружности.
1. Обозначим $$ \angle ACB=\varphi $$ тогда $$ \mathrm{sin}\varphi ={\displaystyle \frac{3}{5}}$$, $$ \varphi $$ - острый угол, $$ \mathrm{cos}\varphi ={\displaystyle \frac{4}{5}}$$.
Надо найти радиус окружности, поэтому разумно ввести вписанный угол: $$ \angle NMB=\alpha $$. Угол $$ ANB$$ - внешний для треугольника $$ BNC,$$ поэтому $$ \angle ANB=\alpha +\varphi $$.
2. Если $$ R$$ - радиус окружности, то $$ AB=2R\mathrm{sin}(\alpha +\varphi )$$, и $$ MN=2R\mathrm{sin}\alpha $$ т. е. получаем систему:
$$ \left\{\begin{array}{l}4=2R\mathrm{sin}(\alpha +\varphi ),\\ 2=2R\mathrm{sin}\alpha .\end{array}\right.$$
Исключая `R`, придём к уравнению $$ 2\mathrm{sin}\alpha =\mathrm{sin}(\alpha +\varphi )$$.
Так как $$ \mathrm{sin}(\alpha +\varphi )=\mathrm{sin}\alpha ·\mathrm{cos}\varphi +\mathrm{sin}\varphi ·\mathrm{cos}\alpha ={\displaystyle \frac{4}{5}}\mathrm{sin}\alpha +{\displaystyle \frac{3}{5}}\mathrm{cos}\alpha $$,
то уравнение приводится к виду
$$ 10\mathrm{sin}\alpha =4\mathrm{sin}\alpha +3\mathrm{cos}\alpha $$, `6sinalpha=3cosalpha`, `"tg"alpha=1/2`.
3. Находим: $$ \mathrm{sin}\alpha ={\displaystyle \frac{\mathrm{tg}\alpha }{\sqrt{1+\mathrm{tg}^{2}\alpha }}}={\displaystyle \frac{1}{\sqrt{5}}}$$ тогда $$ R={\displaystyle \frac{MN}{2\mathrm{sin}\alpha }}=\sqrt{5}$$.
В задаче 15 угловая величина была задана значением $$ \mathrm{arcsin}{\displaystyle \frac{3}{5}}$$. По определению функции $$ y=\mathrm{arcsin}x$$ это означало, что заданный угол острый и $$ \mathrm{sin}\varphi ={\displaystyle \frac{3}{5}}$$. Мы заменили условие $$ \varphi =\mathrm{arcsin}{\displaystyle \frac{3}{5}}$$ равносильным ему. Аналогично следует поступать во всех задачах, условия которых содержат значения обратных тригонометрических функций для величин углов. Например, если угол задан в виде $$ \alpha =\pi -\mathrm{arccos}\sqrt{{\displaystyle \frac{2}{3}}}$$, то это означает, что $$ \alpha $$ - тупой угол, $$ \mathrm{cos}\alpha =-\sqrt{{\displaystyle \frac{2}{3}} }$$, $$ \mathrm{sin}\alpha ={\displaystyle \frac{1}{\sqrt{3}}}$$ и могут быть найдены, если окажется необходимым, значения $$ \mathrm{cos}2\alpha $$, $$ \mathrm{sin}{\displaystyle \frac{\alpha }{2}}$$ и т. п.
Некоторые учащиеся, проводя решение задачи в общем виде и подставляя числовые данные лишь в конце (что, заметим, обычно делает решение громоздким), получают, например, ответ для длины стороны в виде $$ \alpha =3\mathrm{sin}\left(2\mathrm{arccos}{\displaystyle \frac{1}{\sqrt{3}}}\right)$$. Если далее это значение не записано в виде $$ a=2\sqrt{2}$$, то решение не считается доведённым до конца. Т. е. ответ задачи, когда угловая величина задана значением обратной тригонометрической функции, не должен содержать значения тригонометрических и обратных тригонометрических функций (если только сама искомая величина не является углом).
В заключение параграфа решим задачу об определении угла треугольника. Обратим внимание, что решение требует отбора в соответствии с условием задачи.
![]() |
Рис. 31 |
В треугольнике $$ ABC$$ высота $$ BD$$, медиана $$ CM$$ и биссектриса $$ AK$$ пересекаются в точке $$ O$$. (рис. 31). Найти угол $$ A$$, если известно, что он больше $$ 60°$$ и $$ AM=\sqrt{3}OM$$.
1. Обозначим
$$ AM=x$$ (тогда `AB=2x`), $$ \angle BAC=2\alpha $$ и $$ AO=y$$.
Из прямоугольных треугольников $$ AOD$$ и $$ ABD$$ имеем: $$ AD=y\mathrm{cos}\alpha $$ и $$ AD=2x\mathrm{cos}2\alpha $$. Выражаем $$ y={\displaystyle \frac{2x\mathrm{cos}2\alpha }{\mathrm{cos}\alpha }}$$.
2. Применяем теорему косинусов к треугольнику $$ AMO$$, учитывая, что $$ M{O}^{2}={\displaystyle \frac{1}{3}}{x}^{2}: {\displaystyle \frac{{x}^{2}}{3}}={x}^{2}+{y}^{2}-2xy·\mathrm{cos}\alpha $$.
Подставляем выражение для $$ y$$, сокращаем на $$ {x}^{2},$$ приводим уравнение к виду:
$$ 2{\mathrm{cos}}^{2}\alpha +12{\mathrm{cos}}^{2}2\alpha -12\mathrm{cos}2\alpha ·{\mathrm{cos}}^{2}\alpha =0$$.
Используем тождество: $$ 2{\mathrm{cos}}^{2}\alpha =1+\mathrm{cos}2\alpha ,$$ получаем уравнение:
$$ 6{\mathrm{cos}}^{2}2\alpha -5\mathrm{cos}2\alpha +1=0$$.
Находим: $$ \mathrm{cos}2\alpha ={\displaystyle \frac{1}{3}}$$ или $$ \mathrm{cos}2\alpha ={\displaystyle \frac{1}{2}}$$.
3. По условию: $$ 2\alpha =\angle BAC$$, $$ 2\alpha > {\displaystyle \frac{\mathrm{\pi }}{3}}$$, значит $$ \mathrm{cos}2\alpha < {\displaystyle \frac{1}{2}}$$, поэтому
$$ \mathrm{cos}2\alpha =\mathrm{cos}A={\displaystyle \frac{1}{3}}$$, $$ \angle A=\mathrm{arccos}{\displaystyle \frac{1}{3}}$$.
В заключении остановимся на ещё не обсуждавшийся в этом задании вопросе о роли рисунка в решении геометрических задач.
Некоторые учащиеся и абитуриенты ограничиваются небрежным мелким рисунком, на котором даже трудно разобрать, какие обозначения к чему относятся, какие прямые перпендикулярны или параллельны, в каких точках имеет место касание и т. п. Кое-кому из них всё же удаётся верно решить задачу, но в большинстве случаев, особенно в задачах, требующих ряда шагов рассуждений и вычислений, такой рисунок скорее мешает решению, а не способствует успеху.
Рисунок в геометрической задаче – это удобный для восприятия наглядный способ записи условий задачи, фиксирующий и удерживающий внимание решающего, он даёт повод к размышлению и может стать помощником в решении задачи, подсказать правильный путь в поисках решения. (Посмотрите, например, на рис. 27, 28, 29). Именно поэтому к построению рисунка полезно относиться вдумчиво. Сначала, чтобы понять задачу, её условия переводят на геометрический язык: делают от руки небольшой предварительный рисунок и отмечают на нём (если таковые есть) равные углы, пропорциональность отрезков, перпендикулярность и т. п. И лишь обдумав, как надо изменить рисунок, чтобы он соответствовал условиям задачи, делают аккуратный и достаточно большой рисунок, чтобы на нём уместились все введённые обозначения углов, отрезков и данные задачи. В ряде случаев «хороший» рисунок получается не с первой попытки и при его построении уже начинается процесс решения задачи, так как используются определения и известные геометрические факты относительно входящих в условие задачи элементов геометрической конфигурации.
Когда словами записываются геометрические свойства входящих в задачу элементов, устанавливаются метрические соотношения типа и т. п., проводятся некоторые вычисления, то охватить их взглядом, увидеть в целом, сделать нужный вывод бывает совсем непросто, а вот увидеть на рисунке след собственных рассуждений и не терять этого из виду обычно удаётся.
Мы говорим о работе с рисунком в процессе поиска решения. При окончательном изложении решения задачи каждое заключение должно быть обосновано (чаще всего ссылками на известные теоремы курса, реже – дополнительным доказательством). Сам по себе рисунок, даже самый аккуратный, выполненный циркулем и линейкой, ничего не доказывает, всё, что «увидено» из чертежа, должно иметь логическое обоснование.
И ещё одно замечание. Если задача не получается, «упирается», не достаёт ещё какого-то одного соотношения, связи элементов – вернитесь к условию задачи и вновь обсудите каждый входящий в него геометрический элемент. Скорее всего, вами использованы не все их свойства, сделаны не все возможные выводы.
Поясним наши рассуждения о рисунке и работе с ним примерами решения двух задач олимпиад МФТИ.
Продолжения медиан $$ AE$$ и $$ CF$$ треугольника $$ ABC$$ (рис. 32) пересекают описанную около него окружность в точках $$ D$$ и $$ N$$ соответственно так, что $$ AD:AE=2:1$$ и $$ CN:CF=4:3.$$ Найти углы треугольника.
![]() |
Рис. 32 |
Делаем предварительный рисунок (кстати, его удобнее всего рисовать, начиная с окружности), отмечаем, что (это следует из условия $$ AD=2AE$$). Две хорды $$ BC$$ и $$ AD,$$ пересекаясь, делятся пополам. По свойству пересекающихся хорд $$ AE·DE=BE·CE$$ откуда следует, что $$ AE=BE=DE=CE$$. Точка $$ E$$ одинаково удалена от точек `A`, `B`, `D` и `C` окружности, значит точка $$ E$$ - центр окружности. Отсюда следует, что $$ BC$$ и $$ AD$$ - диаметры, и - прямой (опирается на диаметр). Поскольку далее должна рассматриваться медиана $$ AE,$$ а нами установлено, что $$ AE=DE=BE=CE,$$ то удобно ввести обозначение $$ AE=R.$$
![]() |
Рис. 33 |
Обсудим следующие условия задачи: $$ FN={\displaystyle \frac{1}{3}}FC.$$ Обозначим $$ FN=x,$$ тогда $$ FC=3x.$$ Наконец обратим внимание, что в задаче есть две медианы треугольника, значит надо воспользоваться свойством медиан: пересекаясь, они делятся в отношении `2:1`, считая от вершины. Итак, если обозначить через $$ O$$ точку пересечения медиан, то
$$ AO={\displaystyle \frac{2}{3}}R, CO=2x, OF=x.$$
Выполняем хороший большой рисунок с учётом всех установленных фактов. Посмотрим внимательно на рис. 33 и подумаем, может быть, еще что-то можно установить? Да! Хорда $$ CN,$$ пересекая диаметр $$ AD,$$ делится пополам, значит Отразим и этот последний факт.
Теперь решение.
1. По свойству пересекающихся хорд:
$$ AO·OD=CO·ON$$, т. е. $$ {\displaystyle \frac{2}{3}}R\frac{4}{3}R=4{x}^{2}$$ откуда $$ {x}^{2}=\frac{2}{9}{R}^{2}$$.
2. Из прямоугольного треугольника $$ COA$$ по теореме Пифагора:
$$ AC=\sqrt{{\left(2x\right)}^{2}+{\left(\frac{2}{3}R\right)}^{2}}={\displaystyle \frac{2}{\sqrt{3}}}R$$.
3. Из прямоугольного треугольника $$ ABC$$ находим:
$$ \mathrm{sin}B={\displaystyle \frac{AC}{BC}}={\displaystyle \frac{1}{\sqrt{3}}}$$.
$$ \angle A={\displaystyle \frac{\mathrm{\pi }}{2}}$$, $$ \angle B=\mathrm{arcsin}{\displaystyle \frac{1}{\sqrt{3}}}$$, $$ \angle C={\displaystyle \frac{\mathrm{\pi }}{2}}-\mathrm{arcsin}{\displaystyle \frac{1}{\sqrt{3}}}$$.
Длина стороны ромба $$ ABCD$$ равна `4`. Расстояние между центрами окружностей, описанных около треугольников $$ ABD$$ и $$ ACD,$$ равно `3`. Найти радиусы окружностей.
Строим первый пробный рисунок (рис. 34) и начинаем рассуждать.
Поскольку в условии задачи задано расстояние между центрами, то необходимо установить их положение. Будем помнить, что четырёхугольник $$ ABCD$$ - ромб, характеризующее его свойство – диагонали, пересекаясь, делятся пополам и перпендикулярны друг другу. Центр окружности, описанной около треугольника, есть точка пересечения серединных перпендикуляров к его сторонам. Треугольники $$ ABD$$ и $$ ACD$$ имеют общую сторону $$ AD$$, следовательно, оба центра лежат на серединном перпендикуляре отрезка $$ AD$$.
Кроме того, центр $$ {O}_{1}$$ окружности, описанной около треугольника $$ ABD,$$ лежит на прямой $$ AC$$ (это серединный перпендикуляр отрезка $$ BD$$), а центр $$ {O}_{2}$$ окружности, описанной около треугольника $$ ACD,$$ лежит на прямой $$ BD$$ (это серединный перпендикуляр отрезка $$ AC$$). Итак, центры окружностей – это точки пересечения серединного перпендикуляра отрезка $$ AD$$ с прямыми $$ AC$$ и $$ BD.$$
![]() |
![]() |
Рис. 34 | Рис. 35 |
Вот теперь строим новый рисунок, на который наносим также числовые данные задачи. Обратим внимание, что окружности рисовать уже нет необходимости.
Обозначим $$ A{O}_{1}={R}_{1}$$ и $$ D{O}_{2}={R}_{2}$$ и, поскольку имеем несколько подобных треугольников, вводим ещё угол $$ \angle MA{O}_{1}=\alpha .$$ Записываем вполне очевидные выводы:
$$ 1. \overline{)\begin{array}{l}∆A{O}_{1}M, \angle M=90°,\\ \angle MA{O}_{1}=\alpha \end{array}}\Rightarrow \begin{array}{l}2={R}_{1}\mathrm{cos}\alpha ,\\ {O}_{1}M={R}_{1}\mathrm{sin}\alpha .\end{array}$$
$$ 2.\overline{)\begin{array}{l}△D{O}_{2}M: \angle M=90°,\\ \angle M{O}_{2}D=\alpha \end{array}} \Rightarrow \begin{array}{l}2={R}_{2}\mathrm{sin}\alpha ,\\ {O}_{2}M={R}_{2}\mathrm{cos}\alpha .\end{array}$$
$$ 3.\overline{)\begin{array}{l}\mathrm{По} \mathrm{условию} {O}_{1}{O}_{2}=3,\\ \mathrm{т}. \mathrm{е}. {O}_{2}M-{O}_{1}M=3\end{array}} \Rightarrow {R}_{2}\mathrm{cos}\alpha -{R}_{1}\mathrm{sin}\alpha =3.$$
Итак, получили систему из трёх уравнений с тремя неизвестными:
$$ {R}_{1}, {R}_{2}, \alpha : \left\{\begin{array}{l}2={R}_{1}\mathrm{cos}\alpha .\\ 2={R}_{2}\mathrm{sin}\alpha ,\\ 3={R}_{2}\mathrm{cos}\alpha -{R}_{1}\mathrm{sin}\alpha .\end{array}\right.\phantom{\rule{0ex}{0ex}}$$
Решать эту систему можно по-разному, например, исключив `R_1` и `R_2`, получить тригонометрическое уравнение
$$ 3=2{\displaystyle \frac{\mathrm{cos}\alpha }{\mathrm{sin}\alpha }}-2{\displaystyle \frac{\mathrm{sin}\alpha }{\mathrm{cos}\alpha }}$$, $$ 2{\mathrm{tg}}^{2}\alpha +3\mathrm{tg}\alpha -2=0$$, $$ \mathrm{tg}\alpha ={\displaystyle \frac{1}{2}}$$ (угол `alpha` - острый), тогда
$$ \mathrm{cos}\alpha ={\displaystyle \frac{1}{\sqrt{1+\mathrm{tg}^{2}\alpha }}}={\displaystyle \frac{2}{\sqrt{5}}}$$ и $$ {R}_{1}=\sqrt{5}, {R}_{2}=2\sqrt{5}$$
В этой задаче, оказавшейся совсем не простой для абитуриентов, трудность для многих была заключена в построении рисунка, обнажающего условие задачи и направляющего решение.
$$ S={\displaystyle \frac{1}{2}}ah$$ (`a` - основание, `h` - высота к `a`).
$$ S={\displaystyle \frac{1}{2}}ab·\mathrm{sin}C$$ (`a`, `b`- стороны, `C` - угол между ними).
$$ S=\sqrt{p(p-a)(p-b)(p-c)}$$ (формула Герона, $$ 2p=a+b+c)$$.
$$ S=pr$$ (`p` - полупериметр,`r` - радиус вписанной окружности).
$$ S={\displaystyle \frac{abc}{4R}}$$, где `R` - радиус описанной окружности).
$$ S=(p-a){r}_{a}$$, где `p` - полупериметр, `r_a` - радиус вневписанной окружности, касающейся стороны `a`.
$$ S={\displaystyle \frac{a+b}{2}}h$$ (`a`, `b` - основания, `h` - высота).
$$ S=c·m$$ (`c` - боковая сторона, `m` - расстояние до нее от середины другой боковой стороны).
$$ S=ah$$ (`a` - сторона, `h` - высота к `a`).
$$ S=ab·\mathrm{sin}\alpha $$ (`a`, `b` - стороны, `alpha` - величина угла между ними).
$$ S={\displaystyle \frac{1}{2}}{d}_{1}{d}_{2}\mathrm{sin}\varphi $$ (`d_1` и `d_2` - диагонали, `varphi` - величина угла между ними).
$$ {d}_{1}^{2}+{d}_{2}^{2}=2({a}^{2}+{b}^{2})$$ (`a` и `b` - стороны,`d_1`, `d_2` - диагонали).
$$ {m}_{c}^{2}={\displaystyle \frac{{a}^{2}+{b}^{2}}{2}}-{\displaystyle \frac{{c}^{2}}{4}}$$
1) $$ AD={\displaystyle \frac{2bc}{b+c}}\mathrm{cos}{\displaystyle \frac{A}{2}}, \left(b=AC, c=AB\right)$$.
2) $$ AD=\sqrt{bc-xy}, (x=BD, y=DC, {\displaystyle \frac{x}{y}}={\displaystyle \frac{c}{b}})$$.
$$ {d}^{2}={c}^{2}+ab$$ (`a`, `b` - основания, `c` - боковая сторона, `d` - диагональ).
В восьмом и девятом классах ЗФТШ было по два Задания по геометрии. Напомним, что были повторены темы: равенство и подобие треугольников, свойства параллелограммов, прямоугольный треугольник, свойства биссектрис, медиан и высот треугольника, теорема Менелая, свойства касательных хорд и секущих, площадь треугольника и четырёхугольника.
Как и раньше, основное внимание уделяется приёмам решения задач. Подробные решения 19 задач демонстрируют различные методы и подходы, по ходу решения напоминаются теоремы и свойства фигур, при этом отобраны в определённом смысле характерные задачи по каждой теме; в некоторых задачах доказаны новые утверждения и получены полезные формулы.
Задание оканчивается контрольными вопросами и задачами для самостоятельного решения. Приступая к решению задания, сначала ознакомьтесь с нашими пожеланиями и требованиями по его оформлению и с примерами ответов на контрольные вопросы (этот материал размещён перед контрольными вопросами). Вопросы и задачи оценены по трудности в очках, указанных в скобках после номера. За правильный ответ и верное решение ставится полное число очков, за недочёты или ошибки определённое число очков снимается. Знаком (`**`) звёздочка отмечены более трудные задачи и вопросы.
Для тех, кто лишь в этом году поступил в ЗФТШ, сделаем дополнительные замечания. Работа над заданием потребует определённого времени. Надо прочитать и проработать каждый параграф: разобрать приведённые доказательства, выучить формулировки теорем, выписать и запомнить формулы. И, что очень важно, понять и воспроизвести решения приведённых в тексте примеров. После этого вы легко ответите на большинство контрольных вопросов и решите предложенные задачи.
Кроме того, рекомендуем найти на сайте ЗФТШ Задания №1 и №5 для 9-го класса, прочитать их, разобрать новые для Вас утверждения, формулы, (которые выучить), методы. Именно для тех, кто поступил в ЗФТШ в этом году, данное Задание и Задание №5 для 9 класса имеют пересечение - т. е. некоторые части текста у них одинаковые.
Задачи для самостоятельного решения различной сложности. Если какую-либо задачу не удалось решить, найдите аналогичную в тексте задания, разберите её и сделайте ещё одну попытку. Либо подумайте, на какую тему задача и какой параграф следует ещё раз повторить из этого Задания или Заданий для 9-го класса.
Для произвольного треугольника, длины сторон которого, противолежащие вершинам `A`, `B` и `C`, обозначим `a`, `b` и `c`, справедливы две теоремы, устанавливающие соотношения между сторонами и углами треугольника. Утверждения этих теорем кратко можно записать так:
`c^2=a^2+b^2-2abcosC`
`a/(sinA)=b/(sinB)=c/(sinC)`
Напомним также, что
`a/(sinA)=b/(sinB)=c/(sinC)=2R` (1)
где `R` - радиус окружности, описанной около треугольника.
Покажем применение этих теорем.
В параллелограмме сумма квадратов диагоналей равна сумме квадратов всех его сторон.
Пусть `ABC` - параллелограмм и `AB=CD=a`, `AD=BC=b`, `BD=d_1`, `AC=d_2`, (рис. 1). Если `varphi=/_BAD`, то `/_ADC=180^@-varphi`. Из треугольников `ABD` и `ACD` по теореме косинусов будем иметь:
`d_1^2=a^2+b^2-2abcosvarphi`,
`d_2^2=a^2+b^2-2abcos(180^@-varphi)`.
Складывая почленно эти равенства и учитывая, что `cos(180^@-varphi)=-cosvarphi`, получим требуемое равенство:
`d_1^2+d_2^2=2a^2+2b^2`. |
Зная три стороны треугольника `a`, `b` и `c`, найти медиану `m_c` к стороне `c`.
Пусть в треугольнике `ABD` (рис. 1) `AB=a`, `AD=b`, `BD=c` и `AO` - медиана. Достроим треугольник `ABD` до параллелограмма (на прямой `AO` отложим `OC=AO` и соединим точки `B` с `C` и `D` с `C`; диагонали четырёхугольника `ABCD`, пересекаясь, делятся пополам, это параллелограмм). Так как `BD=c` и `AC=2m_c`, то по доказанному в теореме 1 имеем: `(2m_c)^2+c^2=2a^2+2b^2`; отсюда получаем формулу для медианы треугольника через его стороны:
`m_c=sqrt((a^2+b^2)/2-c^2/4)`. |
В треугольнике `ABC` точки `M` и `N` лежат на сторонах `AB` и `AC` (рис. 2), при этом `BM=MN=NC`. Найти отношение `MN:BC`, если `AC:AB = 3:2`, и угол `A` равен `60^@`.
Обозначим `x=MN`, `2a=AB`, тогда `AC=3a`, `ul(AM=2a-x)` и `ul(AN=3a-x)`. Применим теорему косинусов к треугольнику `AMN`, в котором стороны выражены через `a` и `x` и известен угол `/_MAN=60^@`, получим `x^2=(2a-x)^2+(3a-x)^2-(2a-x)(3a-x)`, откуда находим `x=7/5 a`. По теореме косинусов выразим сторону `BC` через `a`:
`BC=sqrt(AB^2+AC^2-2AB*ACcos60^@)=sqrt7a`.
Теперь находим `(MN)/(BC)=x/(BC)=(sqrt7)/5`.
`(MN)/(BC)=(sqrt7)/5`.
Обратим внимание на применение теоремы косинусов. При доказательстве теоремы 1 использовался тот факт, что в фигуре (параллелограмме) есть дополнительные углы `/_A=varphi`, `/_D=180^@-varphi`, а `cos(180^@-varphi)=-cosvarphi`,
В примере 2 теорема косинусов применялась к треугольнику `AMN` с заданным углом `60^@`, стороны которого выражались через заданную величину `a` и неизвестную `x`.
В примере 5 (см. далее) Теорема косинусов позволяет найти косинус угла треугольника по трём известным его сторонам.
Следующие два примера на применение теоремы синусов.
В равнобедренном треугольнике `ABC` длины боковых сторон `AB` и `AC` равны `b`, а угол при вершине `A` равен `30^@` (рис. 3). Прямая, проходящая через вершину `B` и центр `O` описанной окружности, пересекает сторону `AC` в точке `D`. Найти длину отрезка `BD`.
Центр описанной около треугольника окружности лежит на серединном перпендикуляре `OK`, но т. к. высота равнобедренного треугольника является и медианой, то т. `O` лежит на высоте `AK`, которая является также и биссектрисой угла `A`. Таким образом,
`/_BAK=/_CAK=15^@`.
Треугольник `AOB` равнобедренный: `(AO=OB)` следовательно, `/_ABO=/_BAO=15^@`. Итак, в треугольнике `ABD` известны два угла, а т. к. сумма углов треугольника равна `180^@`, то `/_BDA=135^@`. По теореме
синусов из треугольника `ABD` имеем: `(BD)/(sin/_BAD)=(AB)/(sin/_BDA)`, откуда, учитывая, что `sin135^@=sin45^@`, находим:
`BD=b(sin30^@)/(sin45^@)=b/(sqrt2)`.
Точка `M` лежит на окружности с диаметром `BD`; точки `A` и `C` лежат на прямой `BD`, точка `C` лежит внутри окружности, а точка `B` - между точками `A` и `C`. Известно, что `AB=a`, `BC=b` и `/_AMB=/_BMC` (рис. 4). Найти радиус окружности.
1. Обозначим равные углы `AMC` и `BMC` через `alpha`, `BD=2R`, проведём хорду `MD` и обозначим `/_ADM=varphi`.
Угол `BMD` прямой (опирается на диаметр), тогда `/_AMD=90^@+alpha`, а `/_CMD=90^@-alpha`.
Применим теорему синусов к треугольникам `AMD` и `CMD`:
$$ \begin{array}{l}{\displaystyle \frac{AM}{\mathrm{sin}}}={\displaystyle \frac{AD}{\mathrm{sin}{\displaystyle \left(90°+\alpha \right)}}}\iff {\displaystyle \frac{AM}{\mathrm{sin}{\displaystyle \phi }}}={\displaystyle \frac{2R+a}{\mathrm{cos}{\displaystyle \alpha }}}\\ {\displaystyle \frac{CM}{\mathrm{sin}}}={\displaystyle \frac{CD}{\mathrm{sin}{\displaystyle \left(90°-\alpha \right)}}}\iff {\displaystyle \frac{CM}{\mathrm{sin}{\displaystyle \phi }}}={\displaystyle \frac{2R-b}{\mathrm{cos}{\displaystyle \alpha }}}\end{array}>\iff {\displaystyle \frac{AM}{CM}}={\displaystyle \frac{2R+a}{2R-b}}.$$
2. По условию отрезок `MB` - биссектриса угла `AMC`, по свойству биссектрисы `(AM)/(CM)=(AB)/(BC)=a/b`.
Из равенства
`(2R+a)/(2R-b)=a/b iffR=(ab)/(a-b)`.
`R=(ab)/(a-b)`.
Заметим, что из формулы (1) следует тот факт, что радиус окружности, описанной около треугольника, определяется одной из сторон и величиной противолежащего угла, а именно
`R=a/(2sinA)`. |
Это замечание поможет нам решить следующую задачу.
Из одной точки окружности проведены две хорды `AB` и `BC` длиной `9` и `17`. Отрезок `MN`, соединяющий середины этих хорд, равен `5` (рис. 5). Найти радиус окружности.
По теореме косинусов из треугольника `MBN` найдём
`cos/_B:(MB=9//2, BN=17//2):` `MN^2=MB^2+BN^2-2BM*BNcosB`,
откуда `cosB=(BM^2+BN^2-MN^2)/(2BM*BN)=15/17`.
Значит, `sin/_B=sqrt(1-cos^2B)=8/17`. Далее, т. к. `MN` - средняя линия треугольника `ABC`, то `AC=10` и `R=(AC)/(2sinB)=85/8`.
`10,625`.
В школьном курсе геометрии доказано несколько формул площади треугольника. Напомним их.
Пусть `A`, `B` и `C` - углы треугольника`ABC`; `a`, `b` и `c` - противолежащие этим углам стороны; `h_a`, `h_b` и `h_c` - высоты к этим сторонам; `r` - радиус вписанной окружности;`R` - радиус описанной окружности; `2p=(a+b+c)` - периметр треугольника; `S` - площадь треугольника
`S=1/2ah_a=1/2bh_b=1/2ch_c`, | (1) |
`S=1/2 ab sinC=1/2acsinB=1/2bcsinA`, | (2) |
`S=pr`, | (3) |
``S=sqrt(p(p-a)(p-b)(p-c))` - формула Герона, | (4) |
`S=(abc)/(4R)`. | (5) |
При вычислении площади из этих формул следует выбрать ту, которая в условиях конкретной задачи приводит к более простому решению.
Для примера, рассмотрим два треугольника:
|
`DeltaABC:` `AB=13`, `BC=14`, `AC=15`;
`DeltaKML:` `KL=sqrt(13)`, `LM=sqrt(14)`, `KM=sqrt(15)`;
Надо найти площадь и радиус описанной окружности.
Для треугольника `ABC` удобен ход решения такой:
`p=1/2(AB+BC+AC)=21`, по формуле Герона
`S_(ABC)=sqrt(21*6*7*8)= ul(84)` и по формуле (5)
`R=(abc)/(4S)=(13*14*15)/(4*84)=65/8=ul(8,125)`.
Для треугольника `KLM` вычисленная по формуле Герона затруднительны, более простой путь - найти косинус, например, угла `M`. По теореме косинусов
`13=14+15-2sqrt(14)*sqrt(15)cosM iffcosM=8/(sqrt(14)*sqrt(15))`,
тогда `sinM=sqrt(1-64/(210))=(sqrt(146))/(sqrt(14)*sqrt(15))` и по формуле (2):
`S_(KML)=1/2KM*LMsinM=1/2*(sqrt(14)*sqrt(15)*sqrt(146))/(sqrt(14)*sqrt(15))=(sqrt(146))/2`,
тогда `R=(KL)/(2sinM)=ul((sqrt(13)*sqrt(14)*sqrt(15))/(2*sqrt(146)))=(sqrt(13)*sqrt7*sqrt(15))/(2*sqrt(73))` (точно также по формуле 5).
Сравнение площадей треугольников обычно опирается на одно из следующих утверждений:
$$ 2.{1}^{○}$$. Площади треугольников с одинаковой высотой относятся как длины соответствующих оснований. В частности, если точка `D` лежит на основании `AC` (рис. 6а), то
`(S_(DBC))/(S_(ABC))=(DC)/(AC)`.
$$ 2.{2}^{○}$$. Площади треугольников с общим углом относятся как произведения сторон, заключающих этот угол (см. рис. 6б):
`(S_(KBL))/(S_(ABC))=(BK*BL)/(BA*BC)`.
$$ 2.{3}^{○}$$. Площади подобных треугольников относятся как квадраты их
сходственных сторон, т. е. если `Delta ABC~DeltaA_1B_1C_1`, то `(S_(A_1B_1C_1))/(S_(ABC))=((A_1B_1)/(AB))^2`.
Все эти утверждения легко доказываются с использованием соответственно формул площади (1) и (2).
Обратим внимание на важное свойство медиан треугольника.
Три медианы треугольника разбивают его на `6` треугольников с общей вершиной и равными площадями.
Известно, что три медианы треугольника пересекаются в одной точке и делятся в отношении `2:1`, считая от вершины. Пусть `O` - точка пересечения медиан треугольника `DeltaABC` площади `S` (рис. 7а). Надо доказать, что площади всех шести треугольников с верш иной в точке `O`, составляющих треугольник `ABC`, равны между собой, т. е. равны `1/6S`.
Докажем, например, для треугольника `BOM`, что `S_(BOM)=1/6S_(ABC)`.
Точка `M` - середина стороны `BC` (рис. 7б), по утверждению $$ 2.{1}^{○}$$ о сравнении площадей `S_(ABM)=1/2S`. Медиана `BN`, пересекая медиану `AM` в точке `O` (рис. 7в), делит её в отношении `AO:OM=2:1`, т. е. `OM=1/3AM`. По тому же утверждению $$ 2.{1}^{○}$$ площадь треугольника `BOM` составляет `1//3` площади треугольника `ABM`, т. е.
`S_(BOM)=1/3(1/2S)=1/6S`.
Дан треугольник `ABC`. Точка `D` лежит на стороне `AB`, `AD:DB=1:2`, точка `K` лежит на стороне `BC`, `BK:KC=3:2` (рис. 8а). Отрезки `AK` и `CD` пересекаются в точке `O`. Найти отношение площади четырёхугольника `DBKO` к площади треугольника `ABC`.
1. Обозначим `S_(ABC)=S`, `S_(DBKO)=sigma` и `S_(ADO)=a`. По утверждению $$ 2.{1}^{○}$$ имеем `S_(ABK)=a+sigma=3/5S` (так как `BK:BC=3:5`). Площадь `a` треугольника `ADO` найдём как часть площади треугольника `ADC`, зная, что `S_(ADC)=1/3S` (так как `AD:AB=1:3`).
2. Через точку `D` проведём прямую `DL``|\|``AK`. По теореме о пересечении сторон угла параллельными прямыми (`/_ABC`, `DL``|\|``AK`) имеем `(BL)/(LK)=(BD)/(AD)`, откуда `LK=y`.
По той же теореме (`/_DCB`, `OK``|\|``DL`) получим `(DO)/(DC)=(LK)/(LC)`, `DO=1/3DC`.
3. Теперь находим `S_(ADO):S_(ADC)=DO:DC`, `a=1/3(1/3S)=1/9S`.
(Можно по теореме Менелая для треугольника `BCD` и секущей `CD:`
`(BK)/(KC)*(CO)/(OD)*(DA)/(AB)=1 iff 3/2*(CO)/(OD)*1/3=1 iff CO=2OD=>OD=1/3DC`).
Находим площадь: `sigma=3/5S-a=(3/5-1/9)S=22/45S`.
`22/45`.
Найти площадь треугольника, две стороны которого равны `3` и `7`, а медиана к третьей стороне равна `4` (рис. 9).
Пусть `AB=3`, `BC=7`, `AM=MC` и `BM=4`. Достроим треугольник `ABC` до параллелограмма, для этого на прямой `BM` отложим отрезок `MD=BM` и соединим точки: `A` с `D` и `C` с `D`. Противоположные стороны параллелограмма равны: `(DC=AB)` и равны площади треугольников `ABC` и `DBC` (общее основание `BC` и равные высоты из вершин `A` и `D`).
В треугольнике `DBC` известны все три стороны: `BC=7`, `DC=3`, `BD=2BM=8`.
Находим его площадь по формуле Герона: `p=9`, `S_(BCD)=6sqrt3`.
Значит и `S_(ABC)=6sqrt3`.
В решении этой задачи дополнительным построением получен треугольник, площадь которого равна площади заданного и легко вычисляется по данным задачи. Приведём ещё одну задачу, где сначала вычисляется площадь дополнительно построенной фигуры, а затем легко находится искомая площадь.
Найти площадь треугольника, если его медианы равны `3`, `4` и `5`.
Пусть `O` - точка пересечения медиан треугольника `ABC` (рис. 10) и пусть `m_a=AM=3`, `m_b=BN=4` и `m_c=CP=5`.
По свойству медиан `AO=2/3m_a`, `CO=2/3m_c` и `ON=1/3m_b`. В треугольнике `AOC` известны две стороны `AO` и `CO` и медиана третьей стороны `ON`. Площадь этого треугольника найдём как в предыдущей задаче.
Достроим треугольник `AOC` до параллелограмма `AOCD`, `S_(AOC)=S_(DOC)`, в треугольнике `DOC` известны три стороны:
`DO=2ON=2/3m_b`, `OC=2/3m_c`, `DC=AO=2/3m_a`.
Площадь треугольника `DOC` вычисляем по формуле Герона `S_1=S_(AOC)=S_(DOC)=8/3`. Сравним теперь площадь треугольника `ABC` (обозначим её `S`) с площадью треугольника `AOC`. Из теоремы 2 о медианах и площадях следует `S_(AOC)=S_(AON)+S_(NOC)=2*1/6S=1/3S`.
Итак, `S=3`, `S_1=8`.
В следующей задаче докажем лемму об отношении площади треугольника к площади другого треугольника, построенного из медиан первого.
Найти отношение площади `S` треугольника к площади `S_0` треугольника, составленного из медиан первого.
Рассмотрим рис. 10. В построенном треугольнике `OCD` стороны таковы: `OC=2/3m_c`, `OD=2/3m_b`, `CD=2/3m_a`. Очевидно, что треугольник со сторонами `m_a`, `m_b`, `m_c` подобен (по третьему признаку) треугольнику со сторонами `2/3m_a`, `2/3m_b`, `2/3m_c`.
Из решения предыдущей задачи следует, что `S_(OCD)=S_1=1/3S` (здесь `S` - площадь треугольника `ABC`). Кроме того, площади подобных треугольников относятся как квадраты сходственных сторон, поэтому `(S_1)/(S_0)=(2/3)^2`. Таким образом, имеем `S_0=9/4S_1=3/4S`, т. е.
`S_(m_am_bm_c)=3/4S_(abc)`. |
Из рассуждений в решении Примера 9 следует, что всегда существует треугольник со сторонами, равными медианам данного треугольника, поскольку всегда существует подобный ему треугольник со сторонами `2/3m_a`, `2/3m_b`, `2/3m_c`. Кроме того, становится ясным план построения треугольника по трём отрезкам, равным его медианам: сначала строится треугольник `OCD` (см. рис. 10) со сторонами `2/3m_a`, `2/3m_b`, `2/3m_c`, затем точка `N` - середина отрезка `OD`, потом точка `A` (из `AN=NC`) и точка `B` (из `OB=OD`). Это построение осуществимо, если существует треугольник `OCD`, т. е. если существует треугольник со сторонами `m_a`, `m_b`, `m_c`. Итак, вывод: три отрезка могут быть медианами некоторого треугольника тогда и только тогда, когда из них можно составить треугольник.
Около окружности радиуса `sqrt3` описан треугольник. Найти его площадь, если одна из его сторон точкой касания делится на отрезки `9` и `5`.
Пусть `AP=9`, `PC=5` (рис. 11) и пусть `BM=x`. По свойству касательных `AM=AP`, `CN=CP` и `BN=BM`, поэтому стороны треугольника таковы: `AC=14`, `AB=9+x`, `BC=5+x`, тогда `p=14+x`. (Заметим, что `p=AC+BM`!). По формулам площади (3) и (4) имеем: `S=pr=(14+x)sqrt3` и `S=sqrt((14+x)x*5*9)`. Приравниваем правые части, возводим в квадрат, приводим подобные члены, получаем `x=1`. Вычисляем площадь треугольника:
`S=pr=(14+1)*sqrt3=15sqrt3`.
Приём, применённый в решении этой задачи, когда площадь фигуры выражается двумя различными способами, часто используется в задачах на доказательство.
Проведём два примера, в каждом выведем полезную формулу.
В треугольнике `ABC` угол `C` равен `varphi`, `AC=b`, `BC=a` (рис. 12). Доказать, что биссектриса `CD` равна `(2ab)/(a+b) cos varphi/2`.
Обозначим `CD=x`. Очевидно, что `S_(ABC)=S_(ACD)+S_(DCB)`. По формуле (2) `S_(ABC)=1/2 ab sin varphi`, `S_(ACD)=1/2 bx sin varphi/2`, `S_(BDC)=1/2 ax sin varphi/2`. Таким образом, имеем: `1/2 ab sin varphi=1/2(a+b)x sin varphi/2`. Используем формулу синуса двойного угла `sin varphi=2sin varphi/2 cos varphi/2`, получим:
`x=(2ab)/(a+b)cos varphi/2`. |
называется окружность, касающаяся одной из сторон треугольника и продолжений двух других сторон. Таких окружностей, очевидно, три (рис. 13). Их радиусы обычно обозначаются `r_a`, `r_b`, `r_c` в зависимости от того, какой стороны окружность касается.
Вневписанная окружность касается стороны `a=BC` треугольника `ABC` (рис. 14). Доказать, что `S_(ABC)=r_a(p-a)`, где `2p=a+b+c`.
Центр окружности `I_a` лежит на пересечении биссектрисы угла `A` и биссектрис внешних углов при вершинах `B` и `C`. Легко видеть, что если `D`, `F` и `E` - точки касания, то `I_aD=I_aF=I_aE=r_a`.
Считаем площадь `S_0` четырёхугольника `ABI_aC`:
`S_0=S_(ABC)+S_(BCI_a)` и `S_0=S_(ABI_a)+S_(ACI_a)`, откуда
`S_(ABC)=S_(ABI_a)+S_(ACI_a)-S_(BCI_a)=1/2 cr_a+1/2br_a-1/2ar_a=`
`=r_a (c+b-a)/2=r_a(2p-2a)/2=r_a(p-a)`.
Итак,
`S_(ABC)=r_a(p-a)`. |
В школьном учебнике выведены следующие формулы площади параллелограмма:
`S=a*h_a=b*h_b`, (6)
`S=a*bsinvarphi` (7)
Где `a` и `b` - стороны параллелограмма, `h_a` и `h_b` - высоты к ним, `varphi` - величина угла между сторонами параллелограмма.
Докажем теорему о площади четырёхугольника.
Площадь выпуклого четырёхугольника равна половине произведения диагоналей на синус угла между ними, т. е
`S=1/2d_1d_2sinalpha` (8)
где `d_1` и `d_2` - диагонали четырёхугольника, `alpha` - величина угла между ними.
`ABCD` - выпуклый четырёхугольник, диагонали которого `AC` и `BD` пересекаются в точке `O` под углом `alpha` (рис. 15). Через вершины `A` и `C` проведём прямые, параллельные диагонали `BD`, а через вершины `B` и `D` проведём прямые, параллельные диагонали `AC`. Проведённые прямые в пересечении образуют параллелограмм со сторонами, равными диагоналям `BD` и `AC`, и углом `alpha`. Площадь параллелограмма равна `AC*BD*sinalpha`, а площадь четырёхугольника `ABCD` равна, как легко видеть, половине его площади, т. е.
`S_(ABCD)=1/2AC*BD*sinalpha`.
Площадь ромба равна половине произведения его диагоналей. Это сразу следует из доказанной формулы, т. к. диагонали ромба перпендикулярны.
Найти площадь параллелограмма, стороны которого равны `a` и `b` `(a!=b)`, а угол между диагоналями равен `alpha(alpha<90^@)`.
Пусть `O` - точка пересечения диагоналей параллелограмма `ABCD` (рис. 16), `AB=a`, `AD=b`. Обозначим `BD=2x`, `AC=2y`.
Применим теорему косинусов к треугольникам`AOB` и `AOD` (заметим, что `/_AOD=180^@-alpha)`, будем иметь: `a^2=x^2+y^2-2xycosalpha`, `b^2=x^2+y^2+2xycosalpha`. По теореме 3 площадь `S` параллелограмма `ABCD` будет равна `1/2AC*BDsinalpha=2xysinalpha`. Заметим, что это выражение легко можно найти, не определяя `x` и `y` из системы. Действительно, из двух уравнений для `x` и `y` получим `b^2-a^2=4xycosalpha`. По условию `b!=a`, следовательно, `cosa!=0` и `xy=(b^2-a^2)/(4cosalpha)`. Выражаем площадь параллелограмма по формуле (8):
`S=2xysinalpha=(b^2-a^2)/2 "tg"alpha`.
Середины сторон выпуклого четырёхугольника `ABCD` являются вершинами другого четырёхугольника (четырёхугольника Вариньона). Доказать, что четырёхугольник Вариньона - параллелограмм и его площадь равна половине площади `S` четырёхугольника `ABCD`.
1. Проведём диагонали `AC` и `BD`. Середины сторон обозначим `K`, `L`, `M` и `N` (рис. 17). По определению `KL` - средняя линия треугольника `ABC`, по теореме о средней линии `KL``|\|``AC`, `KL=1/2AC`.
Аналогично, `NM` - средняя линия треугольника `ADC`, `NM``|\|``AC`, `NM=1/2AC`.
В четырёхугольнике `KLMN` противоположные стороны `KL` и `NM` равны и параллельны, по признаку `KLMN` - параллелограмм.
Если рассмотреть стороны `LM` и `KN`, то точно также установим, что `LM``|\|``BD``|\|``KN` и `LM=KN=1/2BD`.
2. Из параллельности `KL``|\|``AC` и `KN``|\|``BD` следует, что угол `LKN` параллелограмма `KLMN` равен углу между диагоналями четырёхугольника `ABCD` (обозначим угол `alpha`).
Имеем `S_(KLMN)=KL*KNsinalpha=1/2AC*1/2BDsinalpha`, а по теореме 3
`S_(ABCD)=1/2AC*BD*sinalpha`.
Из этого следует `S_(KLMN)=1/2S_(ABCD)`, ч. т. д.
Рассмотрим несколько задач, где определяется или используется площадь трапеции. Напомним,
что площадь трапеции равна произведению полусуммы оснований на её высоту, т. е.
`S=(a+b)/2h`. (9)
Найти площадь трапеции, если её основания равны `16` и `44`, а боковые стороны равны `17` и `25`.
Через вершину `C` проведём `CK``|\|``BA` (рис. 18). `ABCK` - параллелограмм, его противоположные стороны равны, поэтому в треугольнике `KCD` определяются все стороны: `KC=AB=25`, `CD=17`, `KD=AD-BC=28`.
По формуле Герона вычисляем площадь этого треугольника: `p=36`, `S_(KCD)=210`.
С другой стороны, `S_(KCD)=1/2KD*CF`, если `CF_|_AD`. Отсюда находим `CF=(2S_(KCD))/(KD)=15` и вычисляем площадь трапеции
`S_(ABCD)=1/2(BC+AD)CF=450`.
Отрезок длины `m`, параллельный основаниям трапеции, разбивает её на две трапеции (рис. 19). Найти отношение площадей этих трапеций, если основания трапеции равны `a` и `b` `(b < a)`.
Пусть `BC=b`, `AD=a` и `MN=m`, и `MN``|\|``AD`. Проведём `CE``|\|``BA` и `NF``|\|``BA`, а также `CK_|_MN` и `NP_|_AD`. Обозначим `CK=h_1`, `NP=h_2`. Далее, т. к. `CE``|\|``NF`, то `/_ECN=/_FND`, а из `MN``|\|``AD` следует `/_ENC=/_FDN`. Следовательно, треугольники `ECN` и `FND` имеют по два равных угла, они подобны. Из подобия имеем `(EN)/(FD)=(CN)/(ND)`. Прямоугольные треугольники `KCN` и `PND` также подобны и `(CK)/(NP)=(CN)/(ND)`, поэтому `(EN)/(FD)=(CK)/(NP)`, т. е. `(m-b)/(a-m)=(h_1)/(h_2)`. Если `S_1` и `S_2` - площади трапеций `MBCN` и `AMND`, то
`S_1=1/2(b+m)h_1`, `S_2=1/2(a+m)h_2`
и
`(S_1)/(S_2)=((m+b)h_1)/((a+m)h_2)=(m^2-b^2)/(a^2-m^2`.
Напомним свойства трапеции, которые часто используются при решении задач. Некоторые из этих свойств были доказаны в заданиях для 9-го класса, другие попробуйте доказать самостоятельно. Приведённые рисунки напоминают ход доказательства.
$$ 4.{1}^{○}$$. Диагонали трапеции разбивают её на четыре треугольника с общей вершиной (рис. 20). Площади треугольников, прилежащих к боковым сторонам, равны, а треугольники прилежащие к основаниям - подобны.
$$ 4.{2}^{○}$$. В любой трапеции середины оснований, точка пересечения диагоналей и точка пересечения продолжении боковых сторон, лежат на одной прямой (на рис. 21 точки `M`, `N`, `O` и `K`).
$$ 4.{3}^{○}$$. В равнобокой трапеции углы при основании равны (рис. 22).
$$ 4.{4}^{○}$$. В равнобокой трапеции прямая, проходящая через середины оснований, перпендикулярна основаниям и является осью симметрии трапеции (рис. 23).
$$ 4.{5}^{○}$$. В равнобокой трапеции диагонали равны (рис. 24).
$$ 4.{6}^{○}$$. В равнобокой трапеции высота, опущенная на большее основание из конца меньшего основания, делит его на два отрезка, один из которых равен полуразности оснований, а другой – их полусумме
(рис. 25, основания равны `a` и `b`, `a>b`).
$$ 4.{7}^{○}$$. Во всякой трапеции середины боковых сторон и середины диагоналей лежат на одной прямой (рис. 26).
$$ 4.{8}^{○}$$. Во всякой трапеции отрезок, соединяющий середины диагоналей, параллелен основаниям и равен полуразности оснований (рис. 27).
$$ 4.{9}^{○}$$.В равнобокой трапеции `d^2=c^2+ab`, где `d` - диагональ, `c` - боковая сторона, `a` и `b` основания.
Во всякой трапеции сумма квадратов диагоналей равна сумме квадратов боковых сторон и удвоенного произведения оснований, т. е. `d_1^2+d_2^2=c_1^2+c_2^2+2*ab`.
$$ 4.{10}^{○}$$. Во всякой трапеции с основаниями `a` и `b` отрезок с концами на боковых сторонах, проходящий через точку пересечения диагоналей параллельно основаниям, равен `(2ab)/(a+b)` (на рис. 28 отрезок `MN`).
$$ 4.{11}^{○}$$. Трапецию можно вписать в окружность тогда и только тогда, когда она равнобокая.
Докажем, например, утверждение $$ 4.{9}^{○}$$.
Применяем теорему косинусов (см. рис. 29а и б):
`ul(DeltaACD):` `d_1^2=a^2+c_2^2-2a*c_2*cos varphi`,
`ul(DeltaBCD):` `d_2^2=b^2+c_2^2+2b*c_2*cos varphi` (т. к. `cos(180^@-varphi)=-cos varphi`).
Складывая, получаем
`d_1^2+d_2^2=a^2+b^2+c_2^2+(c_2^2-2(a-b)c_2cosvarphi)`. (2)
Проводим `CK``|\|``BA` (рис. 29в), рассматриваем треугольник `ul(KCD):` `c_1^2=c_2^2+(a-b)^2-2c_2*(a-b)*cos varphi`. Используя последнее равенство, заменяем выражение в скобках в (2), получаем:
`d_1^2+d_2^2=a^2+b^2+c_2^2+(c_1^2-(a-b)^2)=`
`=(a^2+b^2+c_2^2)+(c_1^2-a^2-b^2+2ab)`.
Окончательно имеем
`d_1^2+d_2^2=c_1^2+c_2^2+2ab`. |
В случае равнобокой трапеции `d_1=d_2`, `c_1=c_2=c`, поэтому получаем
`d^2=c^2+ab`. |
.
Отрезок, соединяющий середины оснований трапеции, равен `5`, одна из диагоналей равна `6`. Найти площадь трапеции, если её диагонали перпендикулярны.
`AC=6`, `BM=MC`, `AN=ND`, `MN=5` (рис. 30а). Во всякой трапеции середины оснований и точка пересечения диагоналей лежат на од-ной прямой (свойство $$ 4.{2}^{○}$$). Треугольник `BOC` прямоугольный (по условию `AC_|_BD`), `OM` - его медиана, проведённая из вершины прямого угла, она равна половине гипотенузы: `OM=1/2BC`. Аналогично устанавливается `ON=1/2AD`, поэтому `MN=1/2(BC+AD)`. Через точку `D` проведём прямую, параллельную диагонали `AC`, пусть `K` - её точка пересечения с прямой `BC` (рис. 30б).
По построению `ACKD` - параллелограмм, `DK=AC`, `CK=AD` и `/_BDK=90^@`
(т. к. угол `BDK` - это угол между диагоналями трапеции).
Прямоугольный треугольник `ul(BDK)` с гипотенузой `BK=BC+AD=2MN=10` и катетом `DK=6` имеет площадь `S=1/2DK*BD=1/2DKsqrt(BK^2-DK^2)=24`. Но площадь треугольника `BDK` равна площади трапеции, т. к. если `DP_|_BK`, то
`S_(BDK)=1/2BK*DP=1/2(BC+AD)DP=S_(ABCD)`.
Итак, `S_(ABCD)=S=24`.
Диагонали трапеции, пересекаясь, разбивают её на четыре треугольника с общей вершиной. Найти площадь трапеции, если площади треугольников, прилежащих к основаниям, равны `S_1` и `S_2`.
Пусть `BC=a`, `AD=b`, и пусть `h` - высота трапеции (рис. 31). По свойству $$ 4.{1}^{○}$$ `S_(ABO)=S_(CDO)`, обозначим эту площадь `S_0` (действительно, `S_(ABD)=S_(ACD)`, т. к. у них общие основания и равные высоты, т. е. `S_(AOB)+S_(AOD)=S_(COD)+S_(AOD)`, откуда следует `S_(AOB)=S_(COD)`). Так как `S_(ABC)=S_0 + S_1=1/2ah` и `S_(ACD)=S_0+S_2=1/2bh`, то `(S_0+S_1)/(S_0 + S_2)=a/b`.
Далее, треугольники `BOC` и `DOA` подобны, площади подобных треугольников относятся как квадраты соответствующих сторон, значит, `(S_1)/(S_2)=(a/b)^2`. Таким образом, `(S_0+S_1)/(S_0+S_2)=sqrt((S_1)/(S_2))`.Отсюда находим `S_0=sqrt(S_1S_2)`, и поэтому площадь трапеции будет равна
`S_1+S_2+2S_0=(sqrt(S_1)+sqrt(S_2))^2`.
Основания равнобокой трапеции равны `8` и `10`, высота трапеции равна `3` (рис. 32).
Найти радиус окружности, описанной около этой трапеции.
Трапеция равнобокая, по свойству $$ 4.{11}^{○}$$ около этой трапеции можно описать окружность. Пусть `BK_|_AD`, по свойству $$ 4.{6}^{○}$$
`AK=(AD-BC)/2=1`, `KD=(AD+BC)/2=9`.
Из прямоугольного треугольника `ABK` находим `AB=sqrt(1+9)=sqrt(10)` и `sinA=(BK)/(AB)=3/(sqrt10)`. Окружность, описанная около трапеции `ABCD`, описана и около треугольника `ABD`, значит (формула (1), § 1), `R=(BD)/(2sinA)`. Отрезок `BD` находим из прямоугольного треугольника `KDB:` `BD=sqrt(BK^2+KD^2)=3sqrt(10)` (или по формуле `d^2=c^2+ab`), тогда
`R=(3sqrt(10))/(2*3//sqrt(10)) =5`.
$$ 4.{12}^{○}$$. Площадь трапеции равна площади треугольника, две стороны которого равны диагоналям трапеции, а третья равна сумме оснований.
$$ 4.{13}^{○}$$. Если `S_1` и `S_2` - площади треугольников, прилежащих к основаниям, то площади треугольников, прилежащих к боковым сторонам равны `sqrt(S_1S_2)`, а площадь всей трапеции равна `(sqrt(S_1) +sqrt(S_2))^2`.
$$ 4.{14}^{○}$$. Радиус окружности, описанной около трапеции, находится по формуле `R+a/(2sin alpha)`, где `a` - какая-то сторона (или диагональ трапеции), `alpha` - смотрящий на неё вписанный угол.