Все статьи » ЗФТШ Математика

Статьи , страница 135

  • § 2. Площадь треугольника
    Просмотр текста ограничен правами статьи
  • §3. Площадь четырёхугольника
    Просмотр текста ограничен правами статьи
  • §1. Иррациональные уравнения
    Просмотр текста ограничен правами статьи
  • 1. Системы линейных уравнений
    Просмотр текста ограничен правами статьи
  • 2. Нелинейные системы уравнений
    Просмотр текста ограничен правами статьи
  • 3. Системы, сводящиеся к решению однородного уравнения
    Просмотр текста ограничен правами статьи
  • 4. Симметрические системы
    Просмотр текста ограничен правами статьи
  • §1. Множество. Подмножество. Равенство множеств. Числовые множества и множества точек
    Просмотр текста ограничен правами статьи
  • §2. Операции над множествами: объединение, пересечение, дополнение
    Просмотр текста ограничен правами статьи
  • §3. Конечные множества
    Просмотр текста ограничен правами статьи
  • *§4. Эквивалентность множеств. Счётные и несчётные множества
    Просмотр текста ограничен правами статьи
  • §5. Высказывания. Операции над высказываниями
    Просмотр текста ограничен правами статьи
  • §9. Биссектор
    Просмотр текста ограничен правами статьи
  • §10. Сфера, вписанная в многогранник
    Просмотр текста ограничен правами статьи
  • §11. Объём тетраэдра
    Просмотр текста ограничен правами статьи
  • §12. Задачи на комбинации многогранников с круглыми телами
    Просмотр текста ограничен правами статьи
  • Текстовые задачи
    Просмотр текста ограничен правами статьи
  • Введение

    Цель нашего задания - вспомнить основные правила и приемы решения алгебраических неравенств и систем уравнений. Многие из них  вам хорошо известны, некоторые покажутся новыми и, с первого взгляда, даже лишними, но не спешите их отбросить сразу - решите известную вам задачу разными способами и выберите сами тот способ, который вам больше нравится.

  • §1. Равносильность уравнений и неравенств

    В нашем задании большую роль  будет играть понятие  равносильности.

    Два неравенства    

    `f_1 (x) > g_1 (x)`   и   `f_2 (x) > g_2 (x)` (1)

    или два уравнения

    `f_1 (x) = g_1 (x)`   и   `f_2 (x) = g_2 (x)`       (2)

    называются равносильными на множестве `X`, если каждое решение первого неравенства (уравнения), принадлежащее множеству `X`, является решением второго и, наоборот, каждое решение второго, принадлежащее `X`, является решением первого, или, если, ни одно из неравенств (уравнений) на `X` не имеет решений. Т. е. два неравенства (уравнения) равносильны, по определению, если множества решений этих неравенств (уравнений) на `X` совпадают.

    Отсюда следует, что вместо того, чтобы решать данное неравенство (уравнение), можно решать любое другое, равносильное данному. Замену одного неравенства (уравнения) другим, равносильным данному на `X`, называют равносильным переходом на `X`. Равносильный переход обозначают двойной стрелкой `hArr`. Если уравнение `f(x) = 0`  (или неравенство) `f(x) > 0`) равносильно уравнению `g(x) = 0` (или неравенству `g(x) > 0`), то это мы будем обозначать так:  

    `f(x) = 0 hArr g(x) = 0`   (или `f(x) > 0 hArr g(x) > 0`).

    Пример 1

    `sqrt(x^2 -4) = 1 - x^2 hArr sqrt(sin ^2 x - 2) = 0`, т. к. ни то, ни другое не имеет решения.

    Важно понимать, что для доказательства неравносильности двух неравенств (уравнений) нет необходимости решать каждое из неравенств (уравнений), а затем убеждаться в том, что множества их решений не совпадают - достаточно указать одно решение одного из неравенств (уравнений), которое не является решением другого неравенства (уравнения).

    Пример 2

    При каких значениях параметра  `a` системы

    ax+3y=6a-4,x+y=2a\left\{\begin{array}{l}ax+3y=6a-4,\\x+y=2a\end{array}\right. и   x2-2y4-6x+8=0,x2+y2-2a+4x+2(a2+a+2)=0\left\{\begin{array}{l}x^2-2y^4-6x+8=0,\\x^2+y^2-\left(2a+4\right)x+2(a^2+a+2)=0\end{array}\right.

    равносильны?


    Решение

    Решим сначала первую, более простую систему  

    ax+3y=6a-4,x+y=2ay=2a-x,ax+3(2a-x)=6a-4x(a-3)=-4\left\{\begin{array}{l}ax+3y=6a-4,\\x+y=2a\end{array}\Leftrightarrow\left\{\begin{array}{l}y=2a-x,\\ax+3(2a-x)=6a-4\Leftrightarrow x(a-3)=-4\end{array}\Leftrightarrow\right.\right.

    a3,x=-4a-3,y=2a+4a-3=2a2-6a+4a-3;a=3,0·x=-4.\Leftrightarrow\left[\begin{array}{l}\left\{\begin{array}{l}a\neq3,\\x=-\dfrac4{a-3},\\y=2a+\dfrac4{a-3}=\dfrac{2a^2-6a+4}{a-3};\end{array}\right.\\\left\{\begin{array}{l}a=3,\\0\cdot x=-4\Leftrightarrow\varnothing.\end{array}\right.\end{array}\right.

    Подставим  `a = 3` во вторую систему

    a=3:x2-2y4-6x+8=0,x2+y2-10x+28=0x-52+y2+3=0.a=3:\left\{\begin{array}{l}{x}^{2}-2{y}^{4}-6x+8=0,\\ {x}^{2}+{y}^{2}-10x+28=0\iff {\left(x-5\right)}^{2}+{y}^{2}+3=0\iff \varnothing .\end{array}\right.

    Следовательно, при `a = 3` системы  равносильны,  т. к. при этом значении параметра обе системы не имеют решений.

    При `a != 3` первая система имеет единственное решение. Заметим, что во второй системе `y` входит только в чётной степени, значит, если решением является пара `(x_0, y_0)`,  то пара `(x_0 , -y_0)` тоже будет решением. При этом если `y_0 != - y_0 iff y_0 != 0`, то решений будет два. Следовательно, единственным решением может быть только пара `(x_0 , 0)`. Посмотрим, при каких `a` такое решение у системы есть. Подставим эту пару в систему

    x02-6x0+8=0x0=3±1,x02-2a+4x0+2a2+a+2=0\left\{\begin{array}{l}x_0^2-6x_0+8=0\Leftrightarrow x_0=3\pm1,\\x_0^2-\left(2a+4\right)x_0+2\left(a^2+a+2\right)=0\end{array}\right.x0=2,a2-a=0a=0,1;x0=4,a2-3a+2=0a=2,1.\Leftrightarrow\left[\begin{array}{l}\left\{\begin{array}{l}x_0=2,\\a^2-a=0\Leftrightarrow a=\left[\begin{array}{l}0,\\1;\end{array}\right.\end{array}\right.\\\left\{\begin{array}{l}x_0=4,\\a^2-3a+2=0\Leftrightarrow a=\left[\begin{array}{l}2,\\1.\end{array}\right.\end{array}\right.\end{array}\right.

    Итак, таких  `a` три: `0, 1, 2`. Но при этих `a`  вторая система может иметь и другие решения, а если у неё других решений нет, то её единственное решение может не совпадать с решением первой системы, и тогда такое  `a` не удовлетворяет условию задачи. Проверим эти значения параметра.

    1. `a=0`: Первая система имеет решение: `x = 4/3` и `y = - 4/3 != 0`. Следовательно, системы не равносильны, т. к. решения систем не совпадают (у второй `y=0`).

    2. `a=1`: Вторая  система  имеет  вид 

    x2-2y4-6x+8=0,x2+y2-6x+8=0y=0,x=3±1=4;2.\left\{\begin{array}{l}x^2-2y^4-6x+8=0,\\x^2+y^2-6x+8=0\end{array}\Leftrightarrow\left\{\begin{array}{l}y=0,\\x=3\pm1=4;2.\end{array}\right.\right.

    Следовательно, системы не равносильны, т. к. вторая имеет два решения.

    3. a=2:ax+3y=6a-4,x+y=2ax=4,y=0a=2:\left\{\begin{array}{l}ax+3y=6a-4,\\x+y=2a\end{array}\Leftrightarrow\left\{\begin{array}{l}x=4,\\y=0\end{array}\right.\right.

    и x2-2y4-6x+8=0,x2+y2-2a+4x+2a2+a+2=0\left\{\begin{array}{l}x^2-2y^4-6x+8=0,\\x^2+y^2-\left(2a+4\right)x+2\left(a^2+a+2\right)=0\end{array}\right.\Leftrightarrow

    x2-2y4-6x+8=0,x-42+y2=0x=4,y=0x=4,y=0.\Leftrightarrow\left\{\begin{array}{l}x^2-2y^4-6x+8=0,\\\left(x-4\right)^2+y^2=0\Leftrightarrow\left\{\begin{array}{l}x=4,\\y=0\end{array}\right.\end{array}\Leftrightarrow\left\{\begin{array}{l}x=4,\\y=0.\end{array}\right.\right.

    Следовательно, системы при этом значении `a` равносильны – они имеют единственное решение `(4; 0)`.


    Ответ

    `2; 3`.

    При решении неравенств и уравнений  часто используются следующие равносильные переходы.

    1. Если  функции  `f(x)`, `g(x)`, `h(x)` определены на множестве `X` , то на этом множестве 

    а) `f(x) < g(x) iff f(x) + h(x) < g(x) + h(x)`.  (УР 1)
    б)  `f(x) = g(x) iff f(x) + h(x) = g(x) + h(x)`.  (УР 2)

                                                                                                                                           

    2. Если `h(x) > 0` на `X`, то на `X`

    `f(x) < g(x) iff f(x) h(x) < g(x) h(x)`,   (УР 3)

     т. е. умножение неравенства на положительную функцию приводит к равносильному неравенству с тем же знаком.

    3. Если `h(x) < 0` на `X`, то на `X`

    `f(x) < g(x) iff f(x) h(x) > g(x) h(x)`, (УР 4)

     т. е. при умножении неравенства на отрицательную функцию знак неравенства меняется на противоположный.

    4. Если `h(x) != 0` на `X`, то на `X`

    `f(x) = g(x) iff f(x) h(x) = g(x) h(x)`. (УР 5)

    5. Если обе части неравенства неотрицательны на `X`, то возведение в квадрат обеих частей  приводит к равносильному неравенству, т. е.

    `f(x) < g(x) iff f^2 (x) < g^2 (x)`.   (УР 6)

                                                                                       

    Если обе  части  неравенства отрицательны, то  умножив обе части на `(­–1)`, придём к неравенству противоположного знака, но с положительными частями, и к нему применим (УР 6).

    Если левая и правая части неравенства имеют разные знаки, то возведение в квадрат может привести как к верному, так и к неверному неравенству: `-4<5`; `16<25`; `-7<5`, но `49>25`, поэтому в этом случае нельзя возводить неравенство в квадрат.

    6. Если обе части уравнения неотрицательны, то

     

    `f(x) = g(x) iff f^2 (x) = g^2 (x)`.   (УР 7)

    7. Для любых  `f(x)` и `g(x)` на `X` и любого натурального  `n`

    `f(x) = g(x) iff f^(2n + 1) (x) = g^(2n + 1) (x)`. (УР 8)


    8. Неравенство вида `f(x)>=0(<=0)` называется нестрогим. По определению,

    $$f\left(x\right)\geq0\left(\leq0\right)\Leftrightarrow\left[\begin{array}{l}f\left(x\right)=0,\\f\left(x\right)>0\left(<0\right).\end{array}\right.$$ (УР 9) 


  • §2. Иррациональные неравенства

    Иррациональными называют неравенства, в которых переменные входят под знаком корня. Так как корень чётной степени существует только у неотрицательных чисел, то при решении неравенств, содержащих такое выражение, прежде всего удобно найти ОДЗ.

    Пример 3 (МГУ, 1998)

    Решите неравенство `sqrt(x + 3) > x + 1`.

    Решение

    Это неравенство можно решить несколькими способами. Решим его графически.

    Рис. 1

    Построим графики функций `y = sqrt(x + 3)`,  `y = x + 1` и  посмотрим, где первый график расположен выше второго. Для нахождения решения останется решить только уравнение `sqrt(x + 3) = x + 1` (и не надо рассматривать случаи разных знаков для `x + 1`!).

    x+3=x+1x+10,x+3=x2+2x+1x=1x[-3;1).\sqrt{x+3}=x+1\Leftrightarrow\left\{\begin{array}{l}x+1\geq0,\\x+3=x^2+2x+1\end{array}\Leftrightarrow x=1\Rightarrow x\in\lbrack-3;1).\right.

    Ответ

    `[- 3; 1)`.

    Сначала приведём уже выведенные в 10-ом классе условия равносильности для уравнений (в частности, для того, чтобы была понятна приведённая уже здесь нумерация условий равносильности для корней `(`УР К`)`):

    `sqrt(f(x)) = a^2 iff f(x) = a^4`. (УР К1)
    fx=gxgx0,f(x)=g2(x).\sqrt{f\left(x\right)}=g\left(x\right)\Leftrightarrow\left\{\begin{array}{l}g\left(x\right)\geq0,\\f(x)=g^2(x).\end{array}\right. (УР К2)
    f(x)=g(x)ОДЗf(x)=g(x).\sqrt{f(x)}=\sqrt{g(x)}\overset{\mathrm{ОДЗ}}\Leftrightarrow f(x)=g(x). (УР К3)
    f(x)=g(x)f(x)=g(x),f(x)0,g(x)0.\begin{array}{l}\sqrt{f(x)}=\sqrt{g(x)}\Leftrightarrow\left\{\begin{array}{l}f(x)=g(x),\\\left[\begin{array}{l}f(x)\geq0,\\g(x)\geq0.\end{array}\right.\end{array}\right.\\\end{array} (УР К4)


    ПУНКТ 1. НЕРАВЕНСТВА ВИДА `sqrt(f(x)) >= g(x)` и `sqrt(f(x)) <= g(x)` 

    ОДЗ: `f(x) >= 0`.

    Рассмотрим неравенство

    `sqrt(f(x)) >= g(x)`.

    Докажем, что

    `sqrt(f(x))>=g(x)`$$\Leftrightarrow\left[\begin{array}{l}\left\{\begin{array}{l}g\left(x\right)<0,\\f\left(x\right)\geq0;\end{array}\right.\\\left\{\begin{array}{l}g\left(x\right)\geq0,\\f\left(x\right)\geq g^2\left(x\right).\end{array}\right.\end{array}\right.$$

    (УР К5)

    Доказательство

    1. Если `x` является решением неравенства `sqrt(f(x)) >= g(x)`, то `f(x) >= 0` и `sqrt(f(x))` существует. При этом неравенство заведомо выполнено при `g(x) < 0`.  Если же `g(x) >= 0`, то возведение в квадрат обеих частей неравенства приводит к равносильному неравенству `f^2 (x) >= g^2 (x)`. 

    2. Пусть теперь `x` является решением совокупности неравенств       

    $$\left[\begin{array}{l}\left\{\begin{array}{l}g\left(x\right)<0,\\f\left(x\right)\geq0;\end{array}\right.\\\left\{\begin{array}{l}g\left(x\right)\geq0,\\f\left(x\right)\geq g^2\left(x\right).\end{array}\right.\end{array}\right.$$

    Тогда:

    а) если `g(x) < 0`  и  `f(x) >= 0`, то существует `sqrt(f(x))` и заведомо выполнено неравенство `sqrt(f(x)) >= g(x)`:

    б) если `g(x) >= 0`  и

    `f(x) - g^2 (x) >= 0 iff (sqrt(f(x)) - g(x)) (sqrt(f(x)) + g(x)) >= 0`,

    то

    `f(x) - g^2 (x) >= 0 iff sqrt(f(x)) - g(x) >= 0`.

    Можно ОДЗ неравенства найти отдельно, тогда условие равносильности примет вид:

    `sqrt(f(x))>=g(x)`$$\overset{\mathrm{ОДЗ}}\Leftrightarrow\left[\begin{array}{l}g\left(x\right)<0,\\\left\{\begin{array}{l}g\left(x\right)\geq0,\\f\left(x\right)\geq g^2\left(x\right).\end{array}\right.\end{array}\right.$$ (УР К6)

                                                                

    Теперь рассмотрим неравенство вида

    `sqrt(f(x)) <= g(x)`.  

    Докажем, что

    f(x)g(x)g(x)0,f(x)g2(x),f(x)0.\sqrt{f(x)}\leq g(x)\Leftrightarrow\left\{\begin{array}{l}g(x)\geq0,\\f(x)\leq g^2(x),\\f(x)\geq0.\end{array}\right. (УР К7)

                                                                                                                                

    Доказательство
    1. Если `x` является решением неравенства `sqrt(f(x)) <= g(x)`,
    то  `f(x) >= 0` и существует `sqrt(f(x))`, а тогда `g(x) >= 0`, и возведение в квадрат обеих частей неравенства приводит к равносильному неравенству `f(x) <= g^2 (x)`.
    2.  Если `x` является решением системы неравенств   g(x)0,f(x)g2(x),f(x)0,\left\{\begin{array}{l}g(x)\geq0,\\f(x)\leq g^2(x),\\f(x)\geq0,\end{array}\right.   
    то `f(x) >= 0` и существует `sqrt(f(x))`,     а тогда `f(x) - g^2 (x) <= 0 iff (sqrt(f(x)) - g(x))(sqrt(f(x)) + g(x)) <= 0`. 
    Но, по условию, `g(x) >= 0`, поэтому `f(x) - g^2 (x) <= 0 iff sqrt(f(x)) - g(x) <= 0`.
    Пример 4 (МФТИ, 1998)

    Решите неравенство `3 sqrt(3x^2 -8x - 3) > 1 - 2x`.


    Решение

    Первый способ

    Воспользуемся (УР К5): 

    `3sqrt(3x^2-8x-3)>1-2x iff`$$\left[\begin{array}{l}\left\{\begin{array}{l}1-2x<0,\\3x^2-8x-3\geq0;\end{array}\right.\\\left\{\begin{array}{l}1-2x\geq0,\\9\left(3x^2-8x-3\right)>\left(1-2x\right)^2\end{array}\right.\end{array}\right.\Leftrightarrow$$

    $$\begin{array}{l}\Leftrightarrow\left[\begin{array}{l}\left\{\begin{array}{l}x>0,5,\\x\in\left(-\infty;\dfrac{-1}3\right]\cup\left[3;+\infty\right);\end{array}\right.\\\left\{\begin{array}{l}x\leq0,5,\\x\in\left(-\infty;\dfrac{34-30\sqrt2}{23}\right)\cup\left(\dfrac{34+30\sqrt2}{23};+\infty\right)\end{array}\right.\end{array}\right.\Leftrightarrow\\\Leftrightarrow\left[\begin{array}{l}x\in\left[3;+\infty\right)\\x\in\left(-\infty;\dfrac{34-30\sqrt2}{23}\right)\end{array}\right.\Leftrightarrow\end{array}$$

    `iff x in (- oo ;  (34 - 30 sqrt2)/(23)) uu [3; + oo)`.

    Ответ

    `(- oo ;  (34 - 30 sqrt2)/(23)) uu [3; + oo)`.


    Второй способ

    Можно оформить решение неравенства и несколько по – другому. Найдём сначала ОДЗ:

    `3x^2 - 8x - 3 >= 0 iff (x - 3)(x+1/3) >= 0 iff x in (-oo; - 1/3] uu [3; + oo)`.

    Теперь неравенство перепишем в виде `3sqrt(3x^2 - 8x - 3) -(1 - 2x) > 0`.

    1. Если `1 - 2x < 0`, т. е. `x > 1/2`, то неравенство выполнено в ОДЗ, т. е. `x in [3; + oo)`.

    2. Если `1 - 2x>= 0`, т. е. `x <= 1/2`, то `3sqrt(3x^2 - 8x - 3) > 1 - 2x iff`

    `iff 9(3x^2 - 8x - 3) > 1 - 4x + 4x^2 iff 23x^2 - 68x - 28 > 0 iff`

    `iff x in (- oo; (34-30sqrt2 )/(23)) uu ((34+30 sqrt2)/(23); + oo)`.

    Заметим, что ОДЗ в этом случае выполнилось автоматически.

    Учтём, что `x <= 1/2` - тогда `x in (- oo; (34-30sqrt2)/(23))`.

    Объединяя 1 и 2, получаем

    Ответ

    `(- oo ;  (34 - 30 sqrt2)/(23)) uu [3; + oo)`.

    ПУНКТ 2. НЕРАВЕНСТВО ВИДА `sqrt(f(x)) <= sqrt(g(x))`

    Рассмотрим неравенство вида `sqrt(f(x)) <= sqrt(g(x))`.

    Докажем, что

    fxgxfxgx,fx0.\sqrt{f\left(x\right)}\leq\sqrt{g\left(x\right)}\Leftrightarrow\left\{\begin{array}{l}f\left(x\right)\leq g\left(x\right),\\f\left(x\right)\geq0.\end{array}\right. (УР К8)

    1. Если `sqrt(f(x)) <= sqrt(g(x))`, то `f(x) >= 0`, `g(x) >= 0` и `f(x) <= g(x)`, т. е. `x` является решением системы неравенств fxgx,fx0.\left\{\begin{array}{l}f\left(x\right)\leq g\left(x\right),\\f\left(x\right)\geq0.\end{array}\right.

    2. Если `x` является решением системы неравенств fxgx,fx0,\left\{\begin{array}{l}f\left(x\right)\leq g\left(x\right),\\f\left(x\right)\geq0,\end{array}\right. 

    то `f(x) >= 0`, `g(x) >= 0`, `sqrt(f(x))` и `sqrt(g(x))` существуют.

    При этом `f(x) <= g(x) iff sqrt(f(x)) <= sqrt(g(x))`, т. е. неравенство выполнено.

    Замечание

    Для строгих неравенств в условиях равносильности надо просто заменить значок `«>=»` или `«<=»` на `«>»` или `«<»` соответственно.

    Пример 5

    Решите неравенство `sqrt(2x + 1) <= sqrt(x^3 - 4x^2 + x + 5)`.

    Решение

    `sqrt(2x + 1) <= sqrt(x^3 - 4x^2 + x + 5) iff`

    2x+1x3-4x2+x+5x3-4x2-x+40,2x+10\Leftrightarrow\left\{\begin{array}{l}2x+1\leq x^3-4x^2+x+5\Leftrightarrow x^3-4x^2-x+4\geq0,\\2x+1\geq0\end{array}\right.\Leftrightarrow

    x-1x+1x-40x-1;14;+,x-12\Leftrightarrow\left\{\begin{array}{l}\left(x-1\right)\left(x+1\right)\left(x-4\right)\geq0\Leftrightarrow x\in\left[-1;1\right]\cup\left[4;+\infty\right),\\x\geq-\dfrac12\end{array}\right.\Leftrightarrow

    x-12;14;+.\Leftrightarrow x\in\left[-\dfrac12;1\right)\cup\left[4;+\infty\right].

    Ответ

    `[- 1/2;1] uu [4; + oo)`.

    ПУНКТ 3. НЕРАВЕНСТВА ВИДА `(sqrtf(x) - g(x))/(h(x))>=0` `(<= 0)`

    Роль сопряжённых выражений

    Обычно  при  решении неравенств, имеющих  ОДЗ,  надо сначала найти ОДЗ.  При  нахождении   ОДЗ   такого   сложного   неравенства,   как `(sqrtf(x) - g(x))/(h(x)) >= 0`,  учителя  и   школьники    обычно   решают   систему fx0,hx0\left\{\begin{array}{l}f\left(x\right)\geq0,\\h\left(x\right)\neq0\end{array}\right.. Затем школьники иногда ошибочно опускают знаменатель и решают неравенство `sqrt(f(x)) - g(x) >= 0`.

    Мы в ОДЗ дроби не будем записывать условие `h(x) != 0`, и тем более не будем тратить время и силы на решение  этого неравенства. Оправдывается это тем,  что в дальнейшем используем только классический метод интервалов для рациональных функций, в котором условие  `h(x) != 0` автоматически выполняется, ибо нули знаменателя наносятся на числовую ось кружочками («дырками»), т. е. ограничение `h(x) != 0` заложено в самом методе. Это ОДЗ, которое отличается от привычного школьного (с `h(x) != 0`), по предложению самих учителей, будем обозначать не ОДЗ, а ОДЗ*. Итак, например, для неравенств вида `(sqrtf(x) - g(x))/(h(x)) >= 0` будем искать ОДЗ*: `f(x) >= 0`.

    Рассмотрим довольно часто встречающееся неравенство вида

    `(sqrt(f(x)) - g(x))/(h(x)) >= 0 (<= 0)`.

    В методической литературе предлагается рассмотреть две системы в зависимости от знака знаменателя `h(x)`, причём в каждой есть неравенство с корнем. Энтузиазм решать задачу при этом быстро «испаряется».

    Мы поступим иначе: рассмотрим два случая в зависимости не от знака `h(x)`, а от знака  `g(x)`, и неравенств с корнем решать не придётся.             

    Рассмотрим отдельно разность `sqrt(f(x)) - g(x)`. Отметим две особенности поведения этой разности:

    1) если `g(x) < 0`, то разность `sqrt(f(x)) - g(x)` положительна в ОДЗ;

    2) если `g(x) >= 0`, то разность `sqrt(f(x)) - g(x)`  может быть как положительной, так и отрицательной в ОДЗ. Заметим, однако, что в этом случае сумма `sqrt(f(x)) + g(x)` всегда неотрицательна в ОДЗ, а умножение разности `(sqrt(f(x)) - g(x))` на неотрицательное выражениене  `(sqrt(f(x)) + g(x))` не изменит знака разности, т. е. выражение

    `(sqrt(f(x)) - g(x))(sqrt(f(x)) + g(x)) -= f(x) - g^2 (x)`

    имеет тот же знак, что и `(sqrt(f(x)) - g(x))` в ОДЗ. Новое выражение уже не содержит радикалов (корней), а выражение `(sqrt(f(x)) + g(x))` называется сопряжённым для `(sqrt(f(x)) - g(x))` выражением. Отсюда следует важное правило   П К1:

    Если `g(x)>=0`, то  знак разности `sqrt(f(x)) - g(x)` совпадает со знаком  разности  `f(x) - g^2 (x)` в ОДЗ. (П К1)

    Теперь используем эти свойства для решения довольно сложных неравенств вида

    `(sqrt(f(x)) - g(x))/(h(x)) >= 0` или `(sqrt(f(x)) - g(x))h(x) >=0`.

    Сейчас мы покажем, что можно обойтись, хотя и  двумя случаями, но без корней.

    Рассмотрим, для определённости, неравенство `(sqrt(f(x)) - g(x))/(h(x)) >= 0`.

    1. Мы уже заметили, что, если `g(x) < 0`, то числитель положителен  в ОДЗ. Но тогда fx-gxhx0ОДЗhx>0\dfrac{\sqrt{f\left(x\right)}-g\left(x\right)}{h\left(x\right)}\geq0\overset{\mathrm{ОДЗ}}\Leftrightarrow h\left(x\right)>0.

    2. Если  же `g(x) >= 0`, то разность может менять знак в зависимости от значений `x`, но сумма `sqrt(f(x)) + g(x)` всегда неотрицательна в ОДЗ, и умножение обеих частей неравенства на это сопряжённое выражение приводит к равносильному неравенству, т. е. в этом случае

    fx-gxhx0ОДЗfx-g2xhx0\dfrac{\sqrt{f\left(x\right)}-g\left(x\right)}{h\left(x\right)}\geq0\overset{\mathrm{ОДЗ}}\Leftrightarrow\dfrac{f\left(x\right)-g^2\left(x\right)}{h\left(x\right)}\geq0.

    Для неравенства другого знака меняется лишь знак неравенства. Объединив оба условия, получаем новое замечательное условие равносильности в ОДЗ:

    fx-gxhx00ОДЗgx<0,hx>0<0,gx0,fx-g2xhx00.\dfrac{\sqrt{f\left(x\right)}-g\left(x\right)}{h\left(x\right)}\geq0\left(\leq0\right)\overset{\mathrm{ОДЗ}}\Leftrightarrow\left[\begin{array}{l}\left\{\begin{array}{l}g\left(x\right)<0,\\h\left(x\right)>0\left(<0\right),\end{array}\right.\\\left\{\begin{array}{l}g\left(x\right)\geq0,\\\dfrac{f\left(x\right)-g^2\left(x\right)}{h\left(x\right)}\geq0\left(\leq0\right).\end{array}\right.\end{array}\right. (УР К9)

    Найденные в результате исследования совокупности (УР К9) решения следует сравнить с ОДЗ.

    Пример 6 (МГУ, 1995) 

    Решите неравенство `(4x+15-4x^2)/(sqrt(4x+15) +2x) >=0`.

    Решение

    ОДЗ*. `4x+15>=0 iff x>=-(15)/4`. 

    Теперь в ОДЗ  преобразуем неравенство:

    4x+15-4x24x+15+2x=4x+15+2x4x+15-2x4x+15+2x04x+15-2x0,4x+15+2x0.\dfrac{4x+15-4x^2}{\sqrt{4x+15}+2x}=\dfrac{\left(\sqrt{4x+15}{\displaystyle+}{\displaystyle2}{\displaystyle x}\right){\displaystyle\left(\sqrt{4x+15}-2x\right)}}{\sqrt{4x+15}{\displaystyle+}{\displaystyle2}{\displaystyle x}}\geq0\Leftrightarrow\left\{\begin{array}{l}\sqrt{4x+15}-2x\geq0,\\\sqrt{4x+15}+2x\neq0.\end{array}\right.

    Попробуем решить эту систему графически. Из графика на рисунке 2 видно, что неравенство выполнено от точки `x=-(15)/4` до абсциссы точки пересечения кривой `y=sqrt(4x+15)` и прямой `y=2x`.               

    Рис. 2

                                                           

    Найдём эту абсциссу:

    4x+15=2x2x0,4x+15=4x22x0,x=-32,x=52x=52.\sqrt{4x+15}=2x\Leftrightarrow\left\{\begin{array}{l}2x\geq0,\\4x+15=4x^2\end{array}\right.\Leftrightarrow\left\{\begin{array}{l}2x\geq0,\\\left[\begin{array}{l}x=-\dfrac32,\\x=\dfrac52\end{array}\right.\Leftrightarrow x=\dfrac52.\end{array}\right.

    Заметим, что для решения  уравнения мы возводили обе части в квадрат, а, значит, одновременно с нашим решили «чужое» уравнение:

    4x+15+2x=04x+15=-2x2x0,4x+15=4x2.\sqrt{4x+15}+2x=0\Leftrightarrow\sqrt{4x+15}=-2x\Leftrightarrow\left\{\begin{array}{l}2x\leq0,\\4x+15=4x^2.\end{array}\right.

    А в нашей системе решение этого уравнения `x=-3/2` как раз нам надо исключить. Главное в том, что для решения всей системы, оказалось достаточно решить единственное уравнение

    4x+15=4x2x=-32,x=52.4x+15=4x^2\Leftrightarrow\left[\begin{array}{l}x=-\dfrac32,\\x=\dfrac52.\end{array}\right.

    Теперь можно записать

    Ответ

    x-154;-32-32;52x\in\left[-\dfrac{15}4;-\dfrac32\right)\cup\left[-\dfrac32;\dfrac52\right).

    Пример 7

    Решите неравенство `(sqrt(2-x) +4x-3)/x >= 2`.

    Решение

    Найдём сначала ОДЗ*: `2-x>=0 iff x<=2`. 

    Теперь воспользуемся (УР К9):

    2-x+4x-3x22-x+2x-3x02-x-3-2xx0ОДЗ*\dfrac{\sqrt{2-x}+4x-3}x\geq2\Leftrightarrow\dfrac{\sqrt{2-x}{\displaystyle+}{\displaystyle\left(2x-3\right)}}x\geq0\Leftrightarrow\dfrac{\sqrt{2-x}{\displaystyle-}{\displaystyle\left(3-2x\right)}}x\geq0\overset{\mathrm{ОДЗ}\ast}\Leftrightarrow

    $$\Leftrightarrow\left[\begin{array}{l}\left\{\begin{array}{l}3-2x<0,\\x>0;\end{array}\right.\\\left\{\begin{array}{l}3-2x\geq0,\\\dfrac{2-x-\left(2x-3\right)^2}x\geq0\end{array}\right.\end{array}\right.\Leftrightarrow\left[\begin{array}{l}x>\dfrac32,\\\left\{\begin{array}{l}x\leq\dfrac32,\\\dfrac{4x^2-11x+7}x\leq0\end{array}\right.\end{array}\right.\Leftrightarrow$$

    $$\Leftrightarrow\left[\begin{array}{l}x>\dfrac32,\\\left\{\begin{array}{l}x\leq\dfrac32,\\\dfrac{\left(x-{\displaystyle\dfrac74}\right)\left(x-1\right)}x\leq0\end{array}\right.\end{array}\right.\Leftrightarrow$$

    x>32,x-;01;32с учётом ОДЗ*x-;01;2.\Leftrightarrow\left[\begin{array}{l}x>\dfrac32,\\x\in\left(-\infty;0\right)\cup\left[1;\dfrac32\right]\end{array}\right.\overset{\mathrm с\;\mathrm{учётом}\;\mathrm{ОДЗ}\ast}\Leftrightarrow x\in\left(-\infty;0\right)\cup\left[1;2\right].

    Систему неравенств x32,x-74x-1x0\left\{\begin{array}{l}x\leq\dfrac32,\\\dfrac{\left(x-{\displaystyle\dfrac74}\right)\left(x-1\right)}x\leq0\end{array}\right. решили классическим методом интервалов - рис. 3.

    Рис. 3

    Ответ

    `(- oo; 0) uu [1; 2]`.

    Пример 8

    `(sqrt(x^2 -4x+3) -2(x+7))/(x^2 -x-72) <= 0`.

    Решение

    Неравенство довольно громоздкое и сложное.

    Найдём сначала ОДЗ*:

    `x^2 -4x+3>=0 iff (x-1)(x-3)>=0 iff x in (- oo; 1] uu [3; +oo)`. 

    Затем рассмотрим отдельно два случая в зависимости от знака `(x+7)`.

    1. Если `x+7<0 iff x< -7`, то числитель положителен в ОДЗ* и  

    $$\dfrac{\sqrt{x^2-4x+3}-2\left(x+7\right)}{x^2-x-72}\leq0\overset{\mathrm{ОДЗ}\ast}\Leftrightarrow x^2-x-72<0\Leftrightarrow\left(x+8\right)\left(x-9\right)<0\Leftrightarrow $$

    $$\Leftrightarrow x\in\left(-8;9\right)$$.

    Учитывая ограничение `x< -7`, получаем, что `x in (-8;-7)`. Оказалось, что этот промежуток принадлежит ОДЗ*

    2. Если `x+7>=0 iff x>= -7`, то воспользуемся правилом П К1. Тогда  

    x2-4x+3-2x+7x2-x-720ОДЗ*x2-4x+3-2x+72x-9x+80\dfrac{\sqrt{x^2-4x+3}-2\left(x+7\right)}{x^2-x-72}\leq0\overset{\mathrm{ОДЗ}\ast}\Leftrightarrow\dfrac{\left(x^2-4x+3\right){\displaystyle-}{\displaystyle\left(2\left(x+7\right)\right)^2}}{\left(x-9\right){\displaystyle\left(x+8\right)}}\leq0\Leftrightarrow

    3x2+60x+193x+8x-90x--30-3213x--30+3213x+8x-90x-7\Leftrightarrow\dfrac{3x^2+60x+193}{\left(x+8\right){\displaystyle\left(x-9\right)}}\geq0\Leftrightarrow\dfrac{\left(x-{\displaystyle\dfrac{-30-\sqrt{321}}3}\right)\left(x-{\displaystyle\dfrac{-30+\sqrt{321}}3}\right)}{\left(x+8\right)\left(x-9\right)}\geq0\overset{x\geq-7}\Leftrightarrow

    x-7-7;-30+32139;+\overset{x\geq-7}\Leftrightarrow\left[-7;\dfrac{-30+\sqrt{321}}3\right]\cup\left(9;+\infty\right)

    с учётом ограничения `x>= -7`. Оказалось, что и эти промежутки принадлежат ОДЗ*. Поэтому `x in (-8; (-30+sqrt(321))/3 ] uu (9; + oo)`.

    Ответ

    `(-8; (-30+sqrt(321))/3 ] uu (9; + oo)`.

    ПУНКТ 4. НЕРАВЕНСТВО ВИДА `(sqrt(f(x)) - sqrt(g(x)))/(h(x)) >= 0 (<= 0)`.

    Роль сопряжённых выражений

    Теперь рассмотрим неравенство вида `(sqrt(f(x)) - sqrt(g(x)))/(h(x)) >= 0 (<= 0)`.

    На вид довольно сложное неравенство. Разность `sqrt(f(x)) - sqrt(g(x))` где-то на числовой оси положительна, где-то отрицательна, но сумма корней  `sqrt(f(x)) + sqrt(g(x))` всегда неотрицательна в ОДЗ. Поэтому умножение обеих частей неравенства на это сопряжённое выражение приводит к равносильному в ОДЗ неравенству, и  имеет место условие равносильности в ОДЗ

    fx-gxhx0ОДЗfx-gxhx0\dfrac{\sqrt{f\left(x\right)}-\sqrt{g\left(x\right)}}{h\left(x\right)}\geq0\overset{\mathrm{ОДЗ}}\Leftrightarrow\dfrac{f\left(x\right)-g\left(x\right)}{h\left(x\right)}\geq0 (УР К10)

    или полное условие равносильности, включающее ОДЗ:

    fx-gxhx0fx0,gx0,fx-gxhx0\dfrac{\sqrt{f\left(x\right)}-\sqrt{g\left(x\right)}}{h\left(x\right)}\geq0\Leftrightarrow\left\{\begin{array}{l}f\left(x\right)\geq0,\\g\left(x\right)\geq0,\\\dfrac{f\left(x\right)-g\left(x\right)}{h\left(x\right)}\geq0\end{array}\right. (УР К11)

    Отсюда, в частности, следует полезное правило (П К2):

    Знак разности  `sqrt(f(x)) - sqrt(g(x))` совпадает со знаком разности `f(x) - g(x)`  в ОДЗ.  (П К2)
    Пример 9 (Демоверсия ЕГЭ - 2010) 

    Решите неравенство `(sqrt(1-x^3) -1)/(x+1) <= x` 

    и найдите наименьшую длину промежутка,  который содержит все его решения.


    Решение

    Замечательный пример на применение (УР К11)!

    Приведём всё к общему знаменателю, затем разложим разность кубов на множители. При этом учтём, что неполный квадрат суммы `x^2 +x+1` никогда в `0` не обращается - он всегда положителен, потому что его дискриминант отрицателен. Поэтому на `sqrt(x^2 +x+1)` можно сократить. Затем воспользуемся (УР К11), или, что то же, тем, что умножение неравенства на положительное сопряжённое выражение приводит к равносильному неравенству. Тогда

    `(sqrt(1-x^3 ) -1)/(1+x) <= x iff (sqrt(1-x^3) -1-x-x^2 )/(1+x) <= 0 iff`

    `iff (sqrt((1-x)(x^2 +x+1)) - (sqrt(x^2 +x+1))^2)/(1+x) <= 0 iff`

    `iff (sqrt(1-x) - sqrt(x^2 +x+1))/(1+x) <= 0 iff`

    `iff ((sqrt(1-x) - sqrt(x^2 +x+1))(sqrt(1-x) + sqrt(x^2 +x+1)))/(1+x) <= 0 iff`

    1-x0,1-x-x2+x+11+x0x1,xx+21+x0x-2;-10;+\Leftrightarrow\left\{\begin{array}{l}1-x\geq0,\\\dfrac{\left(1-x\right)-\left(x^2+x+1\right)}{1+x}\leq0\end{array}\right.\Leftrightarrow\left\{\begin{array}{l}x\leq1,\\\dfrac{x\left(x+2\right)}{1+x}\geq0\Leftrightarrow x\in\left[-2;-1\right)\cup\left[0;+\infty\right)\end{array}\right.\Leftrightarrow

    `iff x in [-2; -1) uu [0; 1]`.

    Неравенство решено методом интервалов - рис. 4.

    Рис. 4

    Наименьшая длина промежутка, который содержит все решения, равна `3`.

    Ответ

    `[-2; -1) uu [0; 1], 3`.

    Пример 10

    Решите неравенство `(sqrt(4x^2 - 3x+2) - sqrt(4x-3))/(x^2 -5x+6) <=0`

    и найдите наименьшую длину промежутка, который содержит все его решения.

    Решение

    Найдём сначала ОДЗ*: 4x2-3x+20,4x-30x34\left\{\begin{array}{l}4x^2-3x+2\geq0,\\4x-3\geq0\end{array}\right.\Leftrightarrow x\geq\dfrac34.

    Теперь можно решить неравенство, применив правило (П К2) :

    4x2-3x+2-4x-3x2-5x+60ОДЗ4x2-3x+2-4x+3x2-5x+60\dfrac{\sqrt{4x^2-3x+2}-\sqrt{4x-3}}{x^2-5x+6}\leq0\overset{\mathrm{ОДЗ}}\Leftrightarrow\dfrac{4x^2-3x+2-4x+3}{x^2-5x+6}\leq0\Leftrightarrow

    4x2-7x+5x2-5x+601x-2x-30x2;3\Leftrightarrow\dfrac{4x^2-7x+5}{x^2-5x+6}\leq0\Leftrightarrow\dfrac1{\left(x-2\right)\left(x-3\right)}\leq0\Leftrightarrow x\in\left(2;3\right).

    Промежуток принадлежит ОДЗ*. Наименьшая длина промежутка, который содержит все решения, равна `1`.

    Ответ

    `(2; 3), 1`.

    ПУНКТ 5. НЕСТРОГОЕ НЕРАВЕНСТВО `(sqrt(f(x)))/(g(x)) >= 0 (<= 0)`.

    Воспользуемся определением нестрогого неравенства и особенностью иррациональных неравенств.      

    Получим

    fxgx00fx=0,gx0;fx>0,gx>0<0.\dfrac{\sqrt{f\left(x\right)}}{g\left(x\right)}\geq0\left(\leq0\right)\Leftrightarrow\left\{\begin{array}{l}\left\{\begin{array}{l}f\left(x\right)=0,\\g\left(x\right)\neq0;\end{array}\right.\\\left\{\begin{array}{l}f\left(x\right)>0,\\g\left(x\right)>0\left(<0\right).\end{array}\right.\end{array}\right. (УР10)
    Пример 11

    Решите неравенство `(sqrt(6-x-x^2))/(x^2 -1) <= 0`.

    Решение

    Воспользуемся (УР10): `(sqrt(6-x-x^2))/(x^2 -1) <= 0 iff`

    $$\begin{array}{l}\Leftrightarrow\left[\begin{array}{l}\left\{\begin{array}{l}6-x-x^2=0,\\x^2-1\neq0;\end{array}\right.\\\left\{\begin{array}{l}6-x-x^2>0,\\x^2-1<0\end{array}\right.\end{array}\right.\Leftrightarrow\left[\begin{array}{l}x=-3,\\x=2,\\\left\{\begin{array}{l}x\in\left(-3;2\right),\\x\in\left(-1;1\right)\end{array}\right.\end{array}\right.\Leftrightarrow\\\\\end{array}$$

    `iff x in {-3} uu (-1; 1) uu {2}`.

    Ответ

    `{-3} uu (-1; 1) uu {2}`.