В физике под столкновениями понимают процессы взаимодействия между телами (частицами) в широком смысле слова, а не только в буквальном - как соприкосновение тел. Сталкивающиеся тела на большом расстоянии являются свободными. Проходя друг мимо друга, тела взаимодействуют между собой, в результате могут происходить различные процессы - тела могут соединиться в одно тело (абсолютно неупругий удар), могут возникать новые тела и, наконец, может иметь место упругое столкновение, при котором тела после некоторого сближения вновь расходятся без изменения своего внутреннего состояния. Столкновения, сопровождающиеся изменением внутреннего состояния тел, называются неупругими. Тела (частицы), участвующие в столкновении, характеризуются (до и после столкновения) импульсами и энергиями. Процесс столкновения сводится к изменению этих величин в результате взаимодействия. Законы сохранения энергии и импульса позволяют достаточно просто устанавливать соотношения между различными физическими величинами при столкновении тел. Особенно ценным здесь является то обстоятельство, что зачастую законы сохранения могут быть использованы даже в тех случаях, когда действующие силы неизвестны. Так обстоит дело, например, в физике элементарных частиц.
Происходящие в обычных условиях столкновения макроскопических тел почти всегда бывают в той или иной степени неупругими – уже хотя бы потому, что они сопровождаются некоторым нагреванием тел, т. е. переходом части их кинетической энергии в тепло. Тем не менее, в физике понятие об упругих столкновениях играет важную роль. С такими столкновениями часто приходится иметь дело в физическом эксперименте в области атомных явлений, да и обычные столкновения можно часто с достаточной степенью точности считать упругими.
Сохранение импульса тел (частиц) при столкновении обусловлено тем, что совокупность тел, участвующих в столкновении, составляет либо изолированную систему, т. е. на тела, входящие в систему, не действуют внешние силы, либо замкнутую: внешние силы отличны от нуля, а сумма внешних сил равна нулю. Несколько сложнее обстоит дело с применением закона сохранения энергии при столкновениях. Обращение к сохранению энергии требует порой учёта различных форм внутренней энергии.
Можно сказать, что действие законов сохранения импульса и энергии в процессах столкновения подтверждено широким спектром опытных данных.
Неупругие столкновения
Два куска пластилина массами `m_1` и `m_2`, летящие со скоростями `vecv_1` и `vecv_2` слипаются. Найдите наибольшее `Q_max` и наименьшее количество `Q_min` теплоты, которое может выделиться в результате абсолютно неупругого соударения.
Рассмотрим абсолютно неупругое соударение («слипание») тел, движущихся в ЛСО скоростями `vecv_1` и `vecv_2` соответственно. В процессе абсолютно неупругого соударения импульс системы сохраняется.
`m_1vecv_1+m_2vecv_2=(m_1+m_2)vecv`.
Отсюда находим скорость составного тела
`vecv=(m_1vecv_1+m_2vecv_2)/(m_1+m_2)`.
Закон сохранения энергии принимает вид
`(m_1vecv_1^2)/2+(m_2vecv_2^2)/2=((m_1+m_2)*vecv)/2+Q`.
Из приведенных соотношений находим убыль кинетической энергии
`Q=(m_1*m_2*(vecv_2-vecv_1)^2)/(2(m_1+m_2))=1/2 mu(vecv_2-vecv_1)^2`,
здесь `mu=(m_1m_2)/(m_1+m_2)` - приведенная масса системы тел.
Итак, при абсолютно неупругом соударении во внутреннюю энергию переходит кинетическая энергия тела приведенной массы, движущегося с относительной скоростью.
Убыль механической энергии достигает наибольшей величины
`Q_max=(m_1*m_2*(vecv_2-vecv_1)^2)/(2(m_1+m_2))=1/2 mu(v_1+v_2)^2`
при `vecv_1 uarr darr vecv_2`.
Убыль механической энергии будет наименьшей
`Q_min=(m_1*m_2*(vecv_2-vecv_1)^2)/(2(m_1+m_2))=1/2 mu(v_2-v_1)^2`
при `vecv_1 uarr uarr vecv_2`.
Упругие столкновения
На гладкой горизонтальной поверхности лежит гладкая шайба массой `M`. На него налетает гладкая шайба массой `m`, движущийся со скоростью `vec v`. Происходит упругий центральный удар шайб. Найдите скорости `vecv_1` и `vecv_2` шайб после соударения. При каком условии налетающая шайба будет двигаться после соударения в прежнем направлении?
Задачу рассмотрим в ЛСО, ось `Ox` которой направим по линии центров шайб в момент соударения. Внешние силы, действующие на шайбы в процессе соударения, это силы тяжести и силы нормальной реакции опоры. Их сумма равна нулю. Следовательно, импульс системы шайб в процессе взаимодействия не изменяется. По закону сохранения импульса `m vec v = m vecv_1 + M vecv_2`.
Переходя к проекциям на ось `Ox`, получаем `mv = mv_(1x) + Mv_2`, здесь учтено, что направление скорости `vecv_1` налетающей шайбы после соударения не известно. По закону сохранения энергии
`(mv^2)/2 = (mv_(1x)^2)/2 + (Mv_2^2)/2`.
Полученные соотношения перепишем в виде
`m(v - v_(1x)) = Mv_2`,
`m(v^2 - v_(1x)^2) = Mv_2^2`.
Разделив второе равенство на первое `(v != v_(1x))`, приходим к линейной системе `v_2 = v + v_(1x)`, `m(v - v_(1x)) = Mv_2`, решение которой имеет вид
`v_(1x) = (m - M)/(m + M) v`, `v_2 = (2m)/(m + M) v`.
Налетающая шайба будет двигаться после соударения в прежнем направлении `(v_(1x) > 0)` при `m > M`, т. е. если масса налетающей шайбы больше массы покоящейся шайбы.
Две гладкие упругие круглые шайбы движутся поступательно по гладкой горизонтальной поверхности со скоростями `vecv_1` и `vecv_2`. Найдите скорости `vecv_1^'` и `vecv_2^'` шайб после абсолютно упругого нецентрального соударения. Массы шайб `m_1` и `m_2`.
Задачу рассмотрим в ИСО, оси координат `Ox` и `Oy` которой лежат в горизонтальной плоскости, при этом ось `Ox` направлена по линии центров шайб в момент соударения (рис. 16).
В течение времени соударения на систему шайб действуют только вертикальные внешние силы: это силы тяжести и силы нормальной реакции. Их сумма равна нулю. Тогда импульс системы шайб в процессе взаимодействия сохраняется
`vecp_1 + vecp_2 = vecp_1^' + vecp_2^'`,
здесь `vecp_1 = m_1 vecv_1`, `vecp_2 = m_2 vecv_2`, `vecp_1^' = m_1 vecv_1^'`, `vecp_2^' = m_2 vecv_2^'` - импульсы шайб до и после соударения.
Так как шайбы идеально гладкие, то в процессе соударения внутренние силы -силы упругого взаимодействия - направлены только по оси `Ox`. Эти силы не изменяют `y`-составляющие импульсов шайб. Тогда из `p_(1y) = p_(1y)^'`, `p_(2y) = p_(2y)^'` находим `y`-составляющие скоростей шайб после соударения
`vecv_(1y)^' = v_(1y)`, `v_(2y)^' = v_(2y)`,
т. е. в проекции на ось `Oy` скорости шайб в результате соударения не изменились.
Найдём `x`-составляющие скоростей шайб после упругого соударения. При таком соударении сохраняется кинетическая энергия
`(m_1 (v_(1x)^2 + v_(1y)^2))/2 + (m_2 (v_(2x)^2 + v_(2y)^2))/2 = (m_1 ((v_(1x)^')^2 + (v_(1y)^')^2))/2 + (m_2 ((v_(2x)^')^2 + (v_(2y)^')^2))/2`.
С учётом равенства `y`-составляющих скоростей шайб до и после соударения последнее равенство принимает вид
`(m_1 v_(1x)^2)/2 + (m_2 v_(2x)^2)/2 = (m_1 (v_(1x)^')^2)/2 + (m_2 (v_(2x)^')^2)/2`.
Обратимся к закону сохранения импульса и перейдём к проекциям импульсов шайб на ось `Ox`
`m_1 v_(1x) + m_2 v_(2x) = m_1 v_(1x)^' + m_2 v_(2x)^'`.
Таким образом, исходная задача сведена к задаче об абсолютно упругом центральном ударе: именно такой вид приняли бы законы сохранения энергии и импульса, если бы скорости шайб были направлены по линии центров. Полученную нелинейную систему уравнений можно свести к линейной. Для этого следует (как и в предыдущей задаче) в обоих уравнениях по одну сторону знака равенства объединить слагаемые, относящиеся к первой шайбе, а по другую - ко второй, и разделить `(v_(1x) != v_(1x)^')` полученные соотношения. Это приводит к линейному уравнению
`v_(1x) + v_(1x)^' = v_(2x) + v_(2x)^'`.
Решая систему из двух последних уравнений, находим
`v_(1x)^' = ((m_1 - m_2) v_(1x) + 2m_2 v_(2x))/(m_1 + m_2)`,
`v_(2x)^' = (2m_1 v_(1x) + (m_2 - m_1) v_(2x))/(m_1 + m_2)`.
Полученные соотношения для `v_(1x)^'`, `v_(1y)^'` и `v_(2x)^'`, `v_(2y)^'` решают вопрос о проекциях и величинах скоростей шайб после соударения
`v_1^' = sqrt((v_(1x)^')^2 + (v_(1y)^')^2)`, `v_2^' = sqrt((v_(2x)^')^2 + (v_(2y)^')^2)`,
а также об углах `alpha_1` и `alpha_2`, которые векторы скорости `vecv_1^'` и `vecv_2^'` образуют с положительным направлением оси `Ox`:
`bbb"tg" alpha_1 = (v_(1y)^')/(v_(1x)^')`, `bbb"tg" alpha_2 = (v_(2y)^')/(v_(2x)^')`.
Построенное в общем виде решение задач упругого центрального и нецентрального соударений открывает дорогу к анализу целого ряда задач, для которых рассмотренная модель соответствует характеру взаимодействия тел (частиц).
Напомним вывод этой теоремы. По второму закону Ньютона
`m Delta vec v = vec F Delta t`.
Умножим обе части этого равенства скалярно на `vec v`, получим
`m (vec v * Delta vec v) = (vec F * vec v Delta t)`.
Это соотношение устанавливает равенство `Delta K = Delta A` на каждом элементарном перемещении приращения кинетической энергии
`Delta K = m ((vec v + Delta vec v)^2)/2 - m ((vec v)^2)/2 ~~ m(vec v * Delta vec v)`
и работы равнодействующей
`Delta A = (vec F * Delta vec r) = (vec F * vec v Delta t)`
на этом перемещении.
Суммируя такие равенства вдоль произвольной траектории, приходим к теореме об изменении кинетической энергии на конечных перемещениях:
На любых перемещениях приращение кинетической энергии материальной точки равно сумме работ всех сил
`K_2 - K_1 = sum_i A_i`.
Если среди сил есть потенциальные, то работа такой силы традиционно принимается равной взятому с обратным знаком приращению потенциальной энергии $$ A=-\left({П}_{2}-{П}_{1}\right)$$.
Из этих соотношений получаем теорему об изменении полной механической энергии (суммы кинетической и потенциальной энергий) материальной точки
$$ \left({П}_{2}+{K}_{2}\right)-\left({П}_{1}+{K}_{1}\right)=$$`sum_i A_(i sf"непотенц")`,
т. е. на любых перемещениях приращение полной механической энергии материальной точки равно сумме работ всех не потенциальных сил.
Отсюда следует: если не потенциальные силы отсутствуют или их работа равна нулю, то полная механическая энергия материальной точки, сохраняется.
Это утверждение - закон сохранения полной механической энергии материальной точки.
На заснеженном склоне с углом наклона `alpha` к горизонту коэффициент трения скольжения лыжника на высотах меньших `h` равен `mu_1 (mu_1 > "tg" alpha)`, на больших высотах коэффициент трения скольжения лыжника равен `mu_2 (mu_2 < "tg" alpha)`. С какой высоты `H` следует стартовать лыжнику с нулевой начальной скоростью, чтобы доехать до основания склона с нулевой конечной скоростью?
По условию `mu_2 < "tg" alpha`, `mu_1 > "tg" alpha`. Тогда при спуске лыжника на верхнем участке склона `F_(sf"тр"2) = mu_2 mg cos alpha < mg sin alpha`, лыжник движется равноускорено. На нижнем участке склона
`F_(sf"тр"1) = mu_1 mg cos alpha > mg sin alpha`,
лыжник движется равнозамедленно. При движении лыжника по склону от старта до финиша:
приращение потенциальной энергии, отсчитанной от нуля у основания склона, равно $$ {П}_{2}-{П}_{1}=-mgH$$,
приращение кинетической энергии `K_2 - K_1 = 0`, работа силы трения скольжения
`A_12 =- mu_2 mg cos alpha * (H - h)/(sin alpha) - mu_1 mg cos alpha h/(sin alpha) =`
`=- (mg)/("tg" alpha) (mu_2 H + (mu_1 - mu_2) h)`.
По теореме об изменении полной механической энергии
$$ \left({K}_{2}+{П}_{2}\right)-\left({K}_{1}+{П}_{1}\right)={A}_{12}$$.
В рассматриваемом случае `- mgH =- (mg)/("tg" alpha) (mu_2 H + (mu_1 - mu_2 )h)`.
Отсюда `H = (mu_1 - mu_2)/("tg" alpha - mu_2) h`.
Опытным путём установлен закон Кулона:
сила взаимодействия двух точечных неподвижных зарядов в вакууме пропорциональна произведению модулей зарядов, обратно пропорциональна квадрату расстояния между ними и направлена вдоль прямой, проходящей через эти заряды:
$$ F=k{\displaystyle \frac{\left|{q}_{1}\right|\left|{q}_{2}\right|}{{r}^{2}}} $$. (2.1)
Здесь `F` - модуль силы, `k` - коэффициент пропорциональности, зависящий от выбора системы единиц, `q_1` и `q_2` - величины зарядов, `r` - расстояние между зарядами.
Обратите внимание, что нарушение в конкретных условиях опыта точечности зарядов, их неподвижности или нахождение зарядов не в вакууме может привести к невыполнению соотношения (2.1).
Основной единицей в любой системе единиц называется единица, для которой существует установленная по договорённости принципиальная возможность создания эталона этой единицы. Напомним, что основными единицами системы СИ являются единицы длины метр (м), массы килограмм (кг), времени секунда (с), силы электрического тока ампер (А), термодинамической температуры кельвин (К), количества вещества моль (моль), силы света кандела (кд). Остальные единицы в системе СИ производные, их размерность (выраженная через основные или другие единицы системы) даётся через определения и физические законы, устанавливающие связь между различными физическими величинами. Единицей заряда в системе СИ является кулон (Кл) – заряд, проходящий за `1` с через поперечное сечение проводника при силе тока `1` А.
Найдём размерность (обозначается квадратными скобками) коэффициента `k` в формуле (2.1) закона Кулона. Для размерностей физических величин в (2.1) выполняется соотношение, аналогичное соотношению (2.1) между самими величинами: $$ \left[F\right]=\left[k\right]{\displaystyle \frac{\left[{q}_{1}\right]\left[{q}_{2}\right]}{\left[{r}^{2}\right]}}$$.
Поскольку $$ \left[F\right]=H=\mathrm{кг}·\mathrm{м}/{\mathrm{с}}^{2}, \left[{q}_{1}\right]=\left[{q}_{2}\right]=\mathrm{Кл}=\mathrm{А}·\mathrm{с}, \left[{r}^{2}\right]={\mathrm{м}}^{2}$$, то
$$ \left[k\right]={\displaystyle \frac{\left[F\right]\left[{r}^{2}\right]}{\left[{q}_{1}\right]\left[{q}_{2}\right]}}={\displaystyle \frac{\mathrm{Н}·{\mathrm{м}}^{2}}{{\mathrm{Кл}}^{2}}}={\displaystyle \frac{\mathrm{кг}·{\mathrm{м}}^{3}}{{\mathrm{А}}^{2}·{\mathrm{с}}^{4}}}$$.
Запоминать выражение для размерности `k` необязательно, но уметь выводить, используя (2.1), надо.
Приведём значение коэффициента `k` в (2.1) для системы СИ:
$$ k=9·{10}^{9}{\displaystyle \frac{\mathrm{кг}·{\mathrm{м}}^{3}}{{\mathrm{А}}^{2}·{\mathrm{с}}^{4}}}=9·{10}^{9} \mathrm{ед}. \mathrm{СИ}$$.
Заметим, что вместо выражения для размерности после численного значения можно писать «ед. СИ» (единицы СИ). Иногда в системе СИ коэффициент `k` в (2.1) записывают в форме $$ k={\displaystyle \frac{1}{4\pi {\epsilon }_{0}}}$$.
Здесь $$ {\epsilon }_{0}=\mathrm{8,85}·{10}^{-12}$$ ед. СИ называется электрической постоянной.
Найдём напряжённость электрического поля, созданного точечным зарядом `Q` на расстоянии `r` от заряда. Для этого поместим мысленно на расстоянии `r` от `Q` пробный заряд `q`. По закону Кулона на `q` действует сила $$ F=\left|\overrightarrow{F}\right|=k\left|Q\right|\left|q\right|/{r}^{2}$$. Напряжённость поля (созданного зарядом `Q`) в месте расположения `q` равна `vecE=vecF//q`. Отсюда `E=|vecE|=|vecF|//|q|`. С учётом выражения для `F` напряженность поля точечного заряда `Q` на расстоянии `r` от него
$$ E=k{\displaystyle \frac{\left|Q\right|}{{r}^{2}}}$$. (2.2)
![]() |
![]() |
| Рис. 2.1 | Рис. 2.2 |
На рисунках 2.1 и 2.2 показаны случаи для `Q > 0` и `Q < 0`. Знак пробного заряда `q` выбран положительным из соображений удобства, т. к. при таком выборе направление силы, действующей на `q`, совпадает с направлением напряжённости.
Формулу (2.2) можно обобщить, избавившись от знака модуля:
$$ {E}_{x}=k{\displaystyle \frac{Q}{{r}^{2}}}$$ (2.3)
Здесь $$ {E}_{x}$$ – проекция напряжённости на ось `x`, направленную от заряда `Q` и проходящую через исследуемую точку. Справедливость (2.3) при любом знаке `Q` проверяется непосредственно (см. рис. 2.1, 2.2).
Силовой линией (линией напряжённости) электрического поля называется непрерывная линия, касательная в каждой точке которой совпадает с направлением вектора напряжённости электрического поля в этой точке.Наглядно электрические поля изображают с помощью силовых линий.
На рис. 2.3 приведена картина силовых линий электрического поля положительного точечного заряда.
![]() |
| Рис. 2.3 |
Стрелкой на каждой силовой линии указывается её направление, т. е. направление вектора напряжённости в каждой точке силовой линии. Полезно посмотреть и нарисовать самим картины силовых линий полей из школьного учебника.
Все свойства силовых линий как электрического поля, так и электростатического поля, следуют из определения силовых линий и из законов электродинамики. Приведём некоторые свойства.
1. Силовые линии электрического поля не пересекаются. В противном случае в точках пересечения была бы неопределённость в направлении напряжённости поля.
2. Густота силовых линий электрического поля в пространстве пропорциональна напряжённости электрического поля.
3. Силовые линии электростатического поля не замкнуты. Они начинаются на положительных зарядах (или в бесконечности) и заканчиваются на отрицательных зарядах (или в бесконечности). При этом некоторая группа силовых линий (лучевая трубка) связывает равные по модулю заряды и число силовых линий, выходящих (входящих) из заряженного тела, не зависит от формы тела, а зависит только от величины заряда (пропорционально заряду).
Обратите внимание, что первые два свойства справедливы и для электростатического поля, как частного случая электрического. Третье же свойство справедливо только для электростатического поля, а для произвольного электрического поля выполняется не всегда.
![]() |
| Рис. 2.4 |
В двух вершинах равностороннего треугольника со стороной `a=1` м расположены точечные заряды $$ {q}_{1}=Q=1.4·{10}^{-7}\mathrm{Кл}$$, $$ {q}_{2}=-2Q$$. Найти напряжённость (модуль) электрического поля в третьей вершине треугольника.
Пусть напряженность полей, созданных зарядами `Q` и `-2Q` в третьей вершине треугольника $$ \overrightarrow{{E}_{1}}, \overrightarrow{{E}_{2}}$$ (рис. 2.4). По принципу суперпозиции полей напряжённость результирующего поля $$ \overrightarrow{E}=\overrightarrow{{E}_{1}}+\overrightarrow{{E}_{2}}.$$ Используя теорему косинусов для треугольника, составленного из векторов $$ \overrightarrow{E}, \overrightarrow{{E}_{1}}, \overrightarrow{{E}_{2}}$$, получаем $$ {E}^{2}={{E}^{2}}_{1}+{{E}^{2}}_{2}-2{E}_{1}{E}_{2}\mathrm{cos}60°. $$ Поскольку `E_1=kQ//a^2`, `E_2=2kQ//a^2`, `cos60^@=1//2`, то `E=sqrt3k Q/q^2~~2,2*10^3` Н/Кл.
Многочисленные опытные факты подтверждают, что большой круг явлений природы можно описать, введя понятия электрического заряда и электрического поля. Единицу электрического заряда можно ввести разными путями в зависимости от выбора системы единиц. Сейчас нет возможности на этом останавливаться, поэтому будем считать, что уже есть принципиальный способ измерять заряд количественно. Пойдём дальше.
При всех взаимодействиях в макромире и микромире выполняется закон сохранения электрического заряда:
алгебраическая сумма зарядов системы сохраняется, если через границы системы не проходят электрические заряды.
Следует ещё раз отметить, что закон сохранения заряда справедлив не только при взаимодействии макроскопических тел, но и при взаимодействии элементарных частиц, когда в результате ядерных реакций одни частицы исчезают, а другие появляются.
Важным понятием является точечный заряд, то есть заряженное тело, размерами которого можно пренебречь по сравнению с другими характерными расстояниями, например – расстоянием до других зарядов (заряженных тел).
Опыт показывает, что характеристикой электрического поля в каждой его точке является векторная величина $$ \overrightarrow{E}$$, называемая напряжённостью электрического поля и определяемая из равенства:
$$ \overrightarrow{E}={\displaystyle \frac{\overrightarrow{F}}{q}}$$.
Здесь $$ \overrightarrow{F}$$- сила, действующая на неподвижный точечный заряд, помещённый в исследуемую точку поля. При этом знак заряда `q` любой, а сам заряд называется пробным, т. к. им «пробуют» поле. Напряжённость поля от величины пробного заряда не зависит, как не зависит температура воды в озере от вида термометра, которым её измеряют. Следует, однако, заметить, что для измерения напряжённости поля, которое было до (а не после) внесения пробного заряда, следует брать заряд `q` настолько малым, чтобы он не вызывал заметного перераспределения зарядов, создающих поле, и не вызывал существенных изменений в других возможных источниках электрического поля. Источниками электрического поля являются электрические заряд и изменяющееся магнитное поле. И ещё одно замечание по записанному выше равенству для $$ \overrightarrow{E}$$$$ .$$ Точечный заряд `q` создаёт вокруг себя собственное электрическое поле, но это поле никак не входит в равенство для определения напряжённости $$ \overrightarrow{E}$$, поскольку $$ \overrightarrow{E}$$ есть напряжённость внешнего поля, т. е. поля, созданного всеми зарядами (или другими источниками), кроме заряда `q`. Заряд `q` служит лишь инструментом для измерения напряжённости этого внешнего поля. И это принципиально.
Частным случаем электрического поля является электростатическое поле, т. е. поле, созданное неподвижными зарядами.
Из опыта известно, что для электрического поля справедлив принцип суперпозиции:
в каждой точке напряжённость $$ \overrightarrow{E}$$ электрического поля равна векторной сумме напряжённостей полей, созданных в этой точке всеми источниками электрических полей:
$$ \overrightarrow{E}=\overrightarrow{{E}_{1}}+\overrightarrow{{E}_{2}}+...=\sum _{i}\overrightarrow{{E}_{i}} .$$
Самый простой способ создать равномерное распределение заряда по сферической поверхности – это зарядить проводящий шарик и уединить его. Заряд, в силу равноправности всех направлений из центра шарика, распределится по поверхности равномерно.
Сравним поле искомого заряда `Q` на сфере радиуса `R` и поле точечного заряда, равного заряду сферы. На рис. 3.1 показаны картины силовых линий полей этих зарядов для случая `Q > 0`.
![]() |
| Рис. 3.1 |
Число силовых линий, выходящих из зарядов сферы и точечного заряда, одинаково, т. к. заряды равны (свойство 3 предыдущего параграфа). Это означает, что картины силовых линий обоих полей (а значит, и напряжённости) совпадают на расстояниях `r >R`, считая от центра сферы или от точечного заряда. Внутри сферы силовых линий нет, нет и поля. В противном случае силовые линии, начавшись на сфере, могли бы идти в силу симметрии только к центру сферы. Но в центре нет заряда, на котором они могли бы закончиться. Итак,
вне сферы напряжённость поля заряда `Q`, равномерно распределённого по сферической поверхности (сфере) радиуса `R`, совпадает с напряжённостью поля точечного заряда, равного заряду сферы и помещённого в центре сферы, а внутри сферы поля нет:
$$ E=k{\displaystyle \frac{\left|Q\right|}{{r}^{2}}}$$ при $$ r>R, E=0$$ при `r<R`.
Здесь `r` – расстояние от центра сферы. Для записи выражения напряжённости вне сферы можно применить и формулу (2.3).
Говорить о напряжённости поля при `r=R` нет смысла, т. к. в рамках теории, когда не рассматриваются размеры конкретных носителей заряда на атомном уровне, напряжённость при `r = R` не определена.
В центре сферы радиусом `R` находится точечный заряд `Q>0`. По сфере распределён равномерно заряд `-4Q<0`. Найти напряжённости $$ {E}_{1}, {E}_{2}$$ на расстояниях `R//2` и `2R` от центра сферы.
![]() |
| Рис. 3.2 |
В любой точке напряжённость равна векторной сумме напряжённостей полей, созданных зарядами `Q` и `-4Q`:
$$ \overrightarrow{E}=\overrightarrow{{E}_{Q}}+{\overrightarrow{E}}_{-4Q}.$$
Это векторное равенство можно записать в проекциях на ось `x`, проведённую из центра сферы через исследуемую точку: $$ {E}_{x}={E}_{Qx}+{E}_{-4Qx}.$$
Для точек `A` и `C` (рис. 3.2) на расстояниях `R//2` и `2R` от центра сферы проекция напряжённости на ось `x` (свою для каждой точки): $$ {E}_{2x}=k{\displaystyle \frac{Q}{{\left(2R\right)}^{2}}}+k{\displaystyle \frac{-4Q}{{\left(2R\right)}^{2}}}=-{\displaystyle \frac{3}{4}}k{\displaystyle \frac{Q}{{R}^{2}}}.$$
$$ {E}_{1}=\left|{E}_{1x}\right|=4k{\displaystyle \frac{Q}{{R}^{2}}}$$, напряженность направлена от центра сферы.
$$ {E}_{2}=\left|{E}_{2x}\right|={\displaystyle \frac{3}{4}}k{\displaystyle \frac{Q}{{R}^{2}}}$$, напряженность направлена к центру сферы.
Пусть поверхностная плотность заряда (заряд единицы поверхности) равна . Силовые линии перпендикулярны плоскости, густота их везде одинакова.
Это следует из соображений симметрии. На рис. 4.1 показано поле для
Напряжённость поля по каждую сторону плоскости одна и та же, независимо от расстояния до плоскости (поле однородно). Приведём без доказательства выражение для модуля напряжённости электрического поля по любую сторону плоскости:
| . | (4.1) |
Эту формулу можно обобщить. Пусть произвольного знака. Направим ось `x` перпендикулярно плоскости (рис. 4.2). Можно убедиться непосредственной проверкой, что при , при при любом знаке . Здесь проекция напряжённости на ось `x`. Для запоминания обобщённых формул можно формально считать и писать выражение для при и . Полученные формулы окажутся справедливыми и при . Обобщение полезно тем, что нет знака модуля.
![]() |
![]() |
| Рис. 4.1 | Рис. 4.2 |
Равномерно заряженные пластины параллельны и находятся на расстоянии друг от друга много меньшем их размеров. Найти плотности зарядов и на пластинах, зная, что напряжённость поля в точках `A` и `B` вблизи пластин Н/Кл, Н/Кл (рис. 4.3).
Направим ось `x` на рис. 4.3 перпендикулярно пластинам, от первой ко второй. В любой точке по принципу суперпозиции полей напряжённость , где - напряжённости полей, созданных первой и второй пластинами. Запишем последнее равенство в проекциях на ось `x`:
.
Это равенство справедливо для любой точки. Для точек `A` и `B` оно имеет более конкретный вид:
Для т. ,
Для т. .
![]() |
| Рис. 4.3 |
Решая систему из последних двух уравнений, находим:
Заметим, что для решения задачи с использованием для напряжённости формулы с модулем пришлось бы перебрать возможные случаи для знаков зарядов пластин, поскольку знаки заранее неизвестны. Это усложнило бы решение. Попробуйте решить задачу вторым способом и сравните его с первым.
| Рис. 5.1 |
Пусть пробный заряд `q` перемещается в электростатическом поле из точки `1` в точку `2` по некоторой траектории под действием нескольких сил (рис. 5.1). Каждая сила совершает над зарядом работу. Нас интересует работа, совершённая над зарядом силами электростатического поля. Оказывается (доказательства не приводим), – что эта работа не зависит от формы траектории. Например, работы на траекториях `1-3-2` и `1-4-2` равны. Из независимости работы от формы траектории следует равенство нулю работы по замкнутой траектории. Например, работа сил электростатического поля над перемещаемым по замкнутой траектории `BCDB` (рис. 5.1) зарядом `q` равна нулю:
.
Поля, для которых работа сил поля не зависит от формы траектории, называются потенциальными. В таких полях можно ввести понятие потенциальной энергии `"П"` и потенциала . Для электростатического поля работа сил поля над перемещаемым из точки `1` в точку `2` зарядом равна убыли (приращению с обратным знаком) потенциальной энергии заряда в поле:
.
Потенциал данной точки поля вводится как отношение потенциальной энергии пробного заряда в поле к величине заряда: .
это энергетическая характеристика поля, не зависящая от величины пробного заряда. С введением потенциала для работы `A_12` можно записать:
| . | (5.1) |
Разность потенциалов (напряжение) зависит только от положения точек `1` и `2`.
Потенциальная энергия и потенциал определены с точностью до произвольной постоянной. Потенциал (и потенциальную энергию) можно отсчитывать от некоторой точки, положив в ней потенциал равным нулю. Обычно полагают равным нулю потенциал бесконечно удалённой точки поля (бесконечности) или потенциал Земли.
Перенесём мысленно пробный заряд из данной точки электростатического поля с потенциалом в бесконечность. Силы поля совершат над зарядом работу `A`. Согласно (5.1) Если принять , то
| . | (5.2) |
Равенство (5.2) удобно для нахождения потенциала данной точки поля.
Из принципа суперпозиции электрических полей и (5.2) можно вывести, что потенциал поля, созданного несколькими зарядами, равен сумме потенциалов полей, созданных отдельными зарядами:
.
Единицей потенциала (разности потенциалов) в системе СИ служит вольт (В):
`1"В"=1"Дж"//"Кл"`.
Не следует забывать, что независимость работы сил поля над перемещаемым зарядом от формы траектории и понятие потенциала справедливы только для электростатического поля и могут не иметь места для произвольного электрического поля.
В неоднородном электростатическом поле электрону сообщили в точке `B` скорость км/с. Электрон, двигаясь свободно в поле по криволинейной траектории, достиг точки `C` со скоростью км/с. Какую разность потенциалов прошёл электрон?
Работа сил электростатического поля над электроном равна изменению кинетической энергии электрона:
.
Здесь - модуль заряда электрона, - масса электрона.
Имеем:
Примем потенциал бесконечности равным нулю. Тогда, используя (5.2), можно вывести, что на расстоянии $$ r$$ от точечного заряда $$ Q$$ потенциал электростатического поля:
| $$ \varphi =k{\displaystyle \frac{Q}{r}}$$. | (6.1) |
![]() |
| Рис. 6.1 |
Возьмём теперь заряд $$ Q$$, равномерно распределённый по сфере радиуса $$ R$$ (рис. 6.1).
Для нахождения потенциала на расстоянии $$ r$$ от центра сферы перенесём мысленно пробный заряд $$ q$$ из исследуемой точки в бесконечность и применим формулу (5.2). Для произвольной точки $$ K$$ вне сферы $$ {\varphi }_{K}={A}_{K\infty }/q$$, где $$ {A}_{K\infty }$$ – работа сил поля над $$ q$$ при его перемещении из т. $$ K$$ в бесконечность. Эта работа не изменится, если весь заряд $$ Q$$ сферы поместить в центр сферы, т. к. поля обоих зарядов $$ Q$$ при $$ r>R$$ совпадают (см. §3). Для точечного заряда $$ Q$$ отношение $$ {A}_{K\infty }/q$$ есть потенциал его поля в т. $$ K$$, который находится по формуле (6.1). Итак, для сферы $$ {\varphi }_{K}=kQ/r$$. В предельном случае при $$ r=R$$ получим потенциал сферы, равный `kQ//R`.
Для произвольной точки $$ B$$ внутри сферы $$ {\varphi }_{B}={A}_{BC\infty }/q={A}_{BC}+{A}_{C\infty }/q$$.
Здесь $$ {A}_{B\infty }$$, $$ {A}_{BC}$$ и $$ {A}_{C\infty }$$ – работа сил поля над зарядом $$ q$$ на участках $$ BC\infty $$, `BC` и $$ C\infty .$$ Внутри сферы поля нет, сила на $$ q$$ со стороны поля не действует и $$ {A}_{BC}=0$$. Тогда $$ {\varphi }_{B}={A}_{C\infty }/q$$. Но правая часть последнего равенства есть потенциал т. $$ C$$, т. е. потенциал сферы, равный `kQ//R`. Значит, потенциал любой точки внутри сферы равен потенциалу сферы: $$ {\varphi }_{B}=kQ/R$$.
Итак, для заряда $$ Q$$, равномерно распределённого по сфере радиуса $$ R$$ потенциал поля вне сферы равен потенциалу точечного заряда, равного заряду сферы и помещённого в центре сферы (как и для напряжённости), а потенциал внутри сферы один и тот же и равен потенциалу сферы:
$$ \varphi =k{\displaystyle \frac{Q}{r}}$$ при $$ r>R, \varphi =k{\displaystyle \frac{Q}{R}}$$ при $$ r\le R$$.
В двух вершинах прямоугольника со сторонами $$ a$$ и $$ 2a$$ (рис. 6.2) закреплены точечные заряды $$ Q$$ и $$ 3Q$$. Какую минимальную работу надо совершить, чтобы переместить точечный заряд $$ 4Q$$ из состояния покоя из вершины $$ B$$ в вершину $$ C$$?
![]() |
| Рис. 6.2 |
Здесь идёт речь о работе $$ A$$, которую необходимо совершить нам против электрических сил при переносе заряда $$ 4Q$$. Работа $$ A$$ в сумме с работой $$ {A}_{1}$$ сил электростатического поля над зарядом $$ 4Q$$ равна изменению кинетической энергии перемещаемого заряда:
$$ A+{A}_{1}=∆K$$
Отсюда $$ A=-{A}_{1}+∆K$$.
Работа $$ A$$ будет минимальной, если величина $$ ∆K$$ минимальна, т. е. заряд $$ 4Q$$ придёт в вершину $$ C$$ с нулевой скоростью, т. е. $$ ∆K=0.$$ Итак, $$ A=-{A}_{1}.$$ Работа сил поля над зарядом $$ {A}_{1}=4Q({\varphi }_{B}-{\varphi }_{C}), $$ где
$$ {\varphi }_{B}=k{\displaystyle \frac{Q}{a}}+k{\displaystyle \frac{3Q}{a\sqrt{5}}}, {\varphi }_{C}=k{\displaystyle \frac{Q}{a\sqrt{5}}}+k{\displaystyle \frac{3Q}{a}}$$
- потенциалы результирующего поля, созданного зарядами $$ Q$$ и $$ 3Q$$ в вершинах $$ B$$ и $$ C$$.
Окончательно
$$ A={\displaystyle \frac{8(\sqrt{5}-1)}{\sqrt{5}}}{\displaystyle \frac{k{Q}^{2}}{a}}>0$$.
В центре сферы радиусом $$ R$$ находится точечный заряд $$ Q>0$$. По сфере равномерно распределён заряд $$-4Q<0$$. Найти потенциалы $$ {\varphi }_{A}, {\varphi }_{C}$$ на расстояниях $$ R/2$$ и $$ 2R$$ от центра сферы (рис. 6.3).
![]() |
| Рис. 6.3 |
Потенциал в любой точке равен сумме потенциалов полей, созданных в этой точке зарядами $$ Q$$ и $$ -4Q$$. Для точек $$ A$$ и $$ C$$ :
$$ {\varphi }_{A}=k{\displaystyle \frac{Q}{R/2}}+k{\displaystyle \frac{-4Q}{R}}=-2k{\displaystyle \frac{Q}{R}}$$,
$$ {\varphi }_{C}=k{\displaystyle \frac{Q}{2R}}+k{\displaystyle \frac{-4Q}{2R}}=-{\displaystyle \frac{3}{2}}k{\displaystyle \frac{Q}{R}}$$.
Пусть имеется однородное электростатическое поле с напряжённостью $$ E$$ (рис. 7.1). Возьмём точки `1` и `2` на силовой линии на расстоянии $$ d$$ друг от друга так, чтобы направление `1-2` совпадало с направлением силовой линии. Можно показать, что разность потенциалов (напряжение) $$ {\varphi }_{1}-{\varphi }_{2}$$ между точками `1` и `2`, напряжённость поля $$ E$$ и расстояние $$ d$$ связаны уравнением
| $$ {\varphi }_{1}-{\varphi }_{2}=Ed$$. | (7.1) |
![]() |
![]() |
| Рис. 7.1 | Рис. 7.2 |
Зависимость (7.1) можно обобщить. Пусть в однородном поле есть произвольные точки `1` и `2` (рис. 7.2). Проведём через эти точки в направлении `1-2` ось $$ x$$. Можно показать, что
$$ {\varphi }_{1}-{\varphi }_{2}={E}_{x}d$$,
где $$ {E}_{x}$$ – проекция напряжённости поля на ось $$ x$$.
Соотношение (7.2) можно применить и для неоднородного поля, если только $$ d$$ настолько мало, что поле в окрестности точек `1` и `2` можно считать однородным.
Проанализировав (7.1), можно заключить, что потенциал убывает в направлении силовой линии поля. Это утверждение справедливо и для неоднородного поля.
Проводниками называют тела, в которых находится достаточно много заряженных частиц, имеющих возможность перемещаться по всему проводнику под действием электрического поля. Эти частицы называются свободными зарядами, так как могут относительно свободно перемещаться по телу проводника. В металлах такими частицами являются электроны, в электролитах – ионы.
Пусть имеется заряженный проводник, помещённый во внешнее электростатическое поле. Под действием внешнего поля и собственного поля свободных зарядов свободные заряды будут перемещаться по телу проводника, и перераспределяться до тех пор, пока не наступит равновесие и движение зарядов не прекратится.
называется явление перераспределения зарядов проводника, вызванное влиянием внешнего электростатического поля.
Для заряженных проводников во внешнем электростатическом поле в равновесном состоянии справедливы следующие утверждения:
1. Электростатическое поле внутри проводника отсутствует. Доказательство от противного: при наличии поля свободные заряды придут в движение, и нарушится равновесие.
2. Напряжённость поля вблизи поверхности проводника и снаружи проводника перпендикулярна поверхности. Другими словами, силовые линии входят в проводник и выходят из него перпендикулярно поверхности проводника. Доказательство от противного: в противном случае появится составляющая силы вдоль поверхности, действующая на свободные заряды на поверхности проводника, заряды придут в движение и равновесие нарушится.
3. Плотность объёмного заряда (объёмная плотность заряда), т. е. заряд единицы объёма, внутри проводника равна нулю. Доказательство от противного: пусть сколь угодно малый макроскопический объём внутри проводника заряжен положительно (отрицательно), тогда из него выходят (входят) силовые линии, т. е. вблизи этого объёма есть электрическое поле – противоречие с тем, что поле внутри проводника отсутствует.
4. Внутренность проводника не заряжена, весь заряд проводника сосредоточен на его поверхности. Это утверждение следует из равенства нулю плотности объёмного заряда.
5. Разность потенциалов любых двух точек проводника, включая точки поверхности, равна нулю. Это значит, что потенциал всех точек проводника один и тот же. Поэтому говорят о потенциале проводника, не указывая конкретной точки проводника.
Для доказательства возьмём две произвольные точки проводника и перенесём пробный заряд из одной точки в другую по произвольной траектории, лежащей внутри проводника. Поля внутри проводника нет, на пробный заряд со стороны поля сила не действует, работа сил поля над зарядом равна нулю. Тогда, согласно (5.1), разность потенциалов между этими точками тоже равна нулю.
6. Сделаем внутри проводника полость, изъяв содержимое. Изъятие нейтрального содержимого полости не вызовет изменения поля во всех точках вне и внутри проводника и в полости. Значит, не изменится распределение зарядов по поверхности проводника, а напряжённость поля внутри проводника и в полости будет равна нулю. Итак, полые проводники ведут себя точно так же, как и сплошные.
Снаружи проводящего шара с зарядом $$ Q>0$$ находится точечный заряд $$q>0$$ на расстоянии $$ R$$ от центра шара. Можно ли найти силу взаимодействия зарядов по формуле $$ F=kQq/{R}^{2}$$ ?
Из-за явления электростатической индукции заряды на поверхности шара перераспределятся, удалившись от $$ q$$. Сила станет меньше, чем рассчитанная по предложенной формуле! Этой формулой можно было бы воспользоваться, если бы заряд на поверхности шара остался равномерно распределённым.
Две проводящие пластины с зарядами $$ Q$$ и $$ 3Q$$ расположены параллельно и напротив друг друга. Площади пластин одинаковы, их размеры велики по сравнению с расстоянием между ними и можно считать, что заряды распределены по каждой поверхности пластин равномерно. Найти заряды на поверхностях пластин.
![]() |
| Рис.8.1 |
Пусть площадь пластин `S`, а заряды на поверхностях пластин $$ {q}_{1,} {q}_{2,} {q}_{3,} {q}_{4}$$ (рис. 8.1). Внутри проводящих пластин зарядов нет, заряды $$ Q$$ и $$ 3Q$$ распределены по поверхностям пластин:
$$ {q}_{1}+{q}_{2}=Q$$, $$ {q}_{3}+{q}_{4}=3Q$$.
Направим ось `x` перпендикулярно пластинам. Для любой точки вне и внутри пластин сумма напряжённостей полей, созданных зарядами $$ {q}_{1,} {q}_{2,} {q}_{3}$$ и $$ {q}_{4}$$ равна напряженности `vecE` результирующего поля:
$$ \overrightarrow{{E}_{1}}+\overrightarrow{{E}_{2}}+\overrightarrow{{E}_{3}}+\overrightarrow{{E}_{4}}=\overrightarrow{E}$$.
Для точек $$ A$$ и $$ C$$, в которых напряжённость поля равна нулю, последнее векторное равенство, записанное в проекциях на ось $$ x$$, принимает вид:
$$ {\displaystyle \frac{{q}_{1}}{2{\varepsilon }_{0}S}}-{\displaystyle \frac{{\displaystyle {q}_{2}}}{{\displaystyle 2{\varepsilon }_{0}S}}}-{\displaystyle \frac{{\displaystyle {q}_{3}}}{{\displaystyle 2{\varepsilon }_{0}S}}}-{\displaystyle \frac{{\displaystyle {q}_{4}}}{{\displaystyle 2{\varepsilon }_{0}S}}}=0$$,
$$ {\displaystyle \frac{{\displaystyle {q}_{1}}}{{\displaystyle 2{\varepsilon }_{0}S}}}+{\displaystyle \frac{{\displaystyle {q}_{2}}}{{\displaystyle 2{\varepsilon }_{0}S}}}+{\displaystyle \frac{{\displaystyle {q}_{3}}}{{\displaystyle 2{\varepsilon }_{0}S}}}-{\displaystyle \frac{{\displaystyle {q}_{4}}}{{\displaystyle 2{\varepsilon }_{0}S}}}=0$$.
Решая систему из четырёх записанных скалярных уравнений, находим
$$ {q}_{1}={q}_{4}=2Q$$, $$ {q}_{2}=-Q$$, $$ {q}_{3}=Q$$.
Полученный ответ справедлив при любом знаке $$ Q$$. На рис. 8.1 показана картина силовых линий и распределение зарядов для случая $$ Q>0$$.
![]() |
| Рис. 8.2 |
Проводящий полый шар (рис. 8.2) с радиусами сферических поверхностей $$ R$$ и $$ 2R$$ имеет заряд $$ 2Q$$ ($$ Q>0$$). В центре шара находится точечный заряд $$ Q$$. Найти напряжённость и потенциал в точках $$ A$$ и $$ C$$ на расстояниях $$ R/2$$ и $$ 3R$$ от центра шара. Найти потенциал полого шара.
![]() |
| Рис.8.3 |
Все силовые линии, вышедшие из точечного заряда $$ Q$$, заканчиваются на внутренней поверхности полого шара (на рис. 8.3 показана только часть силовых линий). Поэтому заряд на внутренней поверхности равен по модулю и противоположен по знаку заряду $$ Q$$, т. е. равен $$ -Q$$. Так как заряд проводника может располагаться только на его поверхностях и суммарный заряд равен $$ 2Q$$, то заряд внешней поверхности шара составит $$ 3Q$$. Итак, имеем систему зарядов, состоящую из точечного заряда $$ Q$$ и зарядов $$ -Q$$ и $$ 3Q$$ на сферах радиусами $$ R$$ и $$ 2R$$.
Для точек $$ A$$ и $$ C$$ по принципу суперпозиции полей проекция напряжённости результирующего поля на ось $$ x$$, проведённую из центра шара через исследуемую точку (для точек $$ A$$ и $$ C$$ оси $$ x$$ различны), равна сумме проекций напряжённостей полей, созданных зарядами $$ Q$$, $$ -Q$$, $$ 3Q$$:
$$ {E}_{Ax}=k{\displaystyle \frac{Q}{{\left(R/2\right)}^{2}}}+0+0=4k{\displaystyle \frac{Q}{{R}^{2}}}>0$$,
$$ {E}_{Cx}=k{\displaystyle \frac{Q}{{\left(3R\right)}^{2}}}+k{\displaystyle \frac{-Q}{{\left(3R\right)}^{2}}}+k{\displaystyle \frac{3Q}{{\left(3R\right)}^{2}}}={\displaystyle \frac{1}{3}}k{\displaystyle \frac{Q}{{R}^{2}}}>0$$.
Проекции получились положительные. Это значит, что напряжённости поля в точках $$ A$$ и $$ C$$ направлены от центра шара и равны
$$ {E}_{A}=4k{\displaystyle \frac{Q}{{R}^{2}}}$$, $$ {E}_{C}={\displaystyle \frac{1}{3}}k{\displaystyle \frac{Q}{{R}^{2}}}$$.
Найдём потенциалы. По принципу суперпозиции полей потенциал в т. `A` равен сумме потенциалов в этой точке от полей, созданных зарядами $$ Q$$, $$ -Q$$, $$ 3Q$$:
$$ {\varphi }_{A}=k{\displaystyle \frac{Q}{R/2}}+k{\displaystyle \frac{-Q}{R}}+k{\displaystyle \frac{3Q}{2R}}={\displaystyle \frac{5}{2}}k{\displaystyle \frac{Q}{R}}$$.
Аналогично потенциал в т. $$ C$$ :
$$ {\varphi }_{C}=k{\displaystyle \frac{Q}{3R}}+k{\displaystyle \frac{-Q}{3R}}+k{\displaystyle \frac{3Q}{3R}}=k{\displaystyle \frac{Q}{R}}$$.
Потенциал шара проще всего найти, определив потенциал наружной
поверхности шара:
$$ \varphi =k{\displaystyle \frac{Q}{2R}}+k{\displaystyle \frac{-Q}{2R}}+k{\displaystyle \frac{3Q}{2R}}={\displaystyle \frac{3}{2}}k{\displaystyle \frac{Q}{R}}$$.
это вещества, не содержащие свободных зарядов.
В куске незаряженного диэлектрика, помещённого в электростатическое поле, появляются так называемые связанные заряды. В результате напряжённость поля внутри и вне диэлектрика изменяется по модулю и направлению по сравнению с тем, что было в соответствующих точках пространства до внесения диэлектрика. Природа возникновения связанных зарядов связана с явлением поляризации.
ориентация нейтральных молекул по полю из-за того, что молекулы были или стали под действием внешнего поля диполями.
Связанные заряды, возникшие в поляризованном диэлектрике, создают собственное электростатическое поле, которое накладывается на внешнее, противодействуя ему и пытаясь ослабить. Результирующее поле внутри диэлектрика становится отличным от внешнего.
Характеристикой однородного изотропного диэлектрика является диэлектрическая проницаемость $$ \varepsilon $$. Если граница такого диэлектрика перпендикулярна внешнему электрическому полю, то напряжённость поля в диэлектрике будет в $$ \varepsilon $$ раз меньше, чем в вакууме.
Напряжённость поля равномерно распределённого по сфере заряда, точечного заряда и бесконечной равномерно заряженной плоскости, помещённых в диэлектрик с диэлектрической проницаемостью $$ \varepsilon $$, будет в $$ \varepsilon $$ раз меньше, чем в вакууме. Для точечного заряда и сферы (при $$ r>R$$ ) вместо (2.2) и (2.3) справедливы формулы $$ E=k{\displaystyle \frac{\left|Q\right|}{\varepsilon {r}^{2}}}, {E}_{x}=k{\displaystyle \frac{Q}{\varepsilon {r}^{2}}}.$$
Для плоскости вместо (4.1) справедливо $$ E={\displaystyle \frac{\left|\sigma \right|}{2\varepsilon {\varepsilon }_{0}}}.$$
В бесконечном однородном и изотропном диэлектрике вместо формулы (2.1) закона Кулона можно записать
$$ F=k{\displaystyle \frac{\left|{q}_{1}\right|\left|{q}_{2}\right|}{\varepsilon {r}^{2}}}$$.
![]() |
| Рис. 9.1 |
Точечный заряд $$ Q$$ находится в центре полого шара с диэлектрической проницаемостью $$ \varepsilon $$ (рис. 9.1). Найти напряжённость электрического поля в точках `1`, `2` и `3` на расстояниях $$ {r}_{1}$$, $$ {r}_{2}$$ и $$ {r}_{3}$$ от точечного заряда.
Пусть есть заряд $$ Q$$ в вакууме. С появлением слоя из диэлектрика напряжённость поля, перпендикулярная границам диэлектрика, изменяется только в диэлектрике, причём уменьшается в $$ \varepsilon $$ раз.
Поэтому
$$ {E}_{1}=k{\displaystyle \frac{\left|Q\right|}{{r}_{1}^{2}}}$$, $$ {E}_{2}=k{\displaystyle \frac{\left|Q\right|}{\varepsilon {r}_{2}^{2}}}$$, $$ {E}_{3}=k{\displaystyle \frac{\left|Q\right|}{{r}_{3}^{2}}}$$.
Конденсатором называется система, состоящая из двух проводников, расположенных достаточно близко друг от друга. Проводники называют обкладками конденсатора. Если на обкладки конденсатора поместить равные по модулю и противоположные по знаку заряды, то разность потенциалов (напряжение) между обкладками будет пропорциональна заряду обкладок, т. е. отношение заряда к напряжению не будет зависеть от заряда. На основании этого утверждения, которое приводим без доказательства, вводится понятие электроёмкости (ёмкости конденсатора).
Ёмкостью конденсатора называется отношение заряда $$ Q$$ одной из обкладок к разности потенциалов $$ U$$ между этой обкладкой и соседней:
| $$ C={\displaystyle \frac{Q}{U}}$$. | (10.1) |
Если взят заряд на положительно заряженной обкладке, то $$ Q>0, U>0$$ и получится $$ C>0$$. Если заряд взят на отрицательной обкладке, то и опять будет $$ C>0$$. Итак, из определения ёмкости следует, что ёмкость величина положительная. В системе СИ ёмкость измеряется в фарадах: `1"Ф"=1` Кл/В.
Требование близости обкладок друг к другу связано с тем, что для независимости $$ C$$ от $$ Q$$ в (10.1) нужно, чтобы поле от зарядов на обкладках было сосредоточено практически полностью между обкладками, т. е. все силовые линии, начинающиеся на одной обкладке, заканчивались только на другой и не уходили на окружающие тела. В этом случае окружающие тела не будут влиять на ёмкость конденсатора.
Можно вывести, что ёмкость плоского конденсатора
| $$ C={\displaystyle \frac{\varepsilon {\varepsilon }_{0}S}{d}}$$. | (10.2) |
Здесь $$ S$$ - площадь обкладок, $$ d$$ - расстояние между ними, $$ \varepsilon $$ - диэлектрическая проницаемость диэлектрика между обкладками.
При последовательном соединении изначально не заряженных конденсаторов с ёмкостями $$ {C}_{1}, {C}_{2}, ...$$, общий заряд равен заряду каждого конденсатора, общее напряжение равно сумме напряжений на отдельных конденсаторах, общая ёмкость определяется из формулы: $$ {\displaystyle \frac{1}{C}}={\displaystyle \frac{1}{{C}_{1}}}+{\displaystyle \frac{1}{{C}_{2}}}+...$$
Полезно помнить формулу для частного случая последовательного соединения двух конденсаторов: $$ C={\displaystyle \frac{{C}_{1}{C}_{2}}{{C}_{1}+{C}_{2}}}$$.
Для последовательно соединённых n одинаковых конденсаторов ёмкостью $$ {C}_{1}$$ каждый $$ C={C}_{1}/n.$$
Если последовательно соединены предварительно заряженные конденсаторы, то применение перечисленных выше свойств и формул может привести к неправильному результату!
При параллельном соединении конденсаторов с емкостями $$ {C}_{1,} {C}_{2}, ...$$ общий заряд равен сумме зарядов отдельных конденсаторов, общее напряжение равно напряжению на каждом, общая ёмкость равна сумме ёмкостей:
$$ C={C}_{1}+{C}_{2}+...$$
![]() |
| Рис. 10.1 |
В плоский конденсатор параллельно его обкладкам вставлена пластина из диэлектрика с диэлектрической проницаемостью $$ \varepsilon $$ (рис. 10.1). Площадь обкладок конденсатора и пластины $$ S$$, толщина пластины $$ d$$, расстояние между обкладками $$ 3d$$. Найти ёмкость такого конденсатора.
Пусть расстояние от пластины до левой обкладки конденсатора $$ x$$. Наклеим мысленно на обе стороны пластины тонкую проводящую и незаряженную фольгу. От этого ничего не изменится. Обе фольги можно рассматривать как своеобразные провода, соединяющие три последовательно соединённых конденсатора с расстояниями $$ x$$, $$ d$$ и $$ 2d-x$$. Для общей ёмкости $$ C$$:
$$ {\displaystyle \frac{1}{C}}={\displaystyle \frac{x}{{\varepsilon }_{0}S}}+{\displaystyle \frac{d}{\varepsilon {\varepsilon }_{0}S}}+{\displaystyle \frac{2d-x}{{\varepsilon }_{0}S}}$$.
Окончательно $$ C={\displaystyle \frac{\varepsilon {\varepsilon }_{0}S}{d(2\varepsilon +1)}}.$$ Заметим, что не заданная в условии величина $$ x$$ «исчезла» в процессе решения.
![]() |
| Рис. 10.2 |
В плоский конденсатор ёмкостью $$ C$$ вставлена параллельно обкладкам плоская проводящая пластина с зарядом $$ Q$$ (рис. 10.2). Конденсатор подсоединён к источнику с ЭДС $$ \mathcal{E}$$. Площади пластины и обкладок конденсатора равны. Толщина пластины равна расстоянию от неё до правой обкладки и составляет четверть от расстояния между обкладками. Найти заряд конденсатора.
Пусть $$ d$$ – расстояние между обкладками, $$ S$$ – их площадь. Пусть $$ q$$ заряд правой обкладки. Тогда заряд левой будет $$ -q$$, т. к. заряд в значительных количествах не может накапливаться на соединительных проводах и в источнике. Направим ось $$ x$$ влево (рис. 10.3).
![]() |
| Рис. 10.3 |
Заметим, что поле внутри пластины отсутствует и разность потенциалов $$ {\varphi }_{N}-{\varphi }_{F}$$ между точками $$ N$$ и $$ F$$ равна нулю. Кроме того, заряды на поверхностях пластины создают вне пластины такое же поле, как и заряд $$ Q$$, если бы его расположить на любой из двух поверхностей пластины. Это легко показать отдельно.
Разность потенциалов $$ {\varphi }_{M}-{\varphi }_{P}$$ между точками $$ M$$ и $$ P$$ равна $$ \mathcal{E}$$. Поэтому
$$ ({\varphi }_{M}-{\varphi }_{N})+({\varphi }_{N}-{\varphi }_{F})+({\varphi }_{F}-{\varphi }_{P})=\mathcal{E}$$.
У нас $$ {\varphi }_{M}-{\varphi }_{N}={E}_{A}{\displaystyle \frac{d}{4}}, {\varphi }_{N}-{\varphi }_{F}=0, {\varphi }_{F}-{\varphi }_{P}={E}_{K}{\displaystyle \frac{d}{2}}$$.
Здесь - $$ {E}_{A}$$ и $$ {E}_{K}$$ - проекции напряжённости результирующего поля на ось `x`. По принципу суперпозиции полей
$$ {E}_{A}={\displaystyle \frac{q}{2{\varepsilon }_{0}S}}-{\displaystyle \frac{Q}{2{\varepsilon }_{0}S}}-{\displaystyle \frac{-q}{2{\varepsilon }_{0}S}}={\displaystyle \frac{1}{2{\varepsilon }_{0}S}}\left(2q-Q\right)$$,
$$ {E}_{K}={\displaystyle \frac{q}{2{\varepsilon }_{0}S}}+{\displaystyle \frac{Q}{2{\varepsilon }_{0}S}}-{\displaystyle \frac{-q}{2{\varepsilon }_{0}S}}={\displaystyle \frac{1}{2{\varepsilon }_{0}S}}\left(2q+Q\right)$$.
Подставляя выражения для $$ {E}_{A}$$, $$ {E}_{K}$$ и разностей потенциалов в первое
уравнение, получим после упрощений $$ 6q+Q=8\mathcal{E}{\displaystyle \frac{{\varepsilon }_{0}S}{d}}$$.
Так как $$ {\displaystyle \frac{{\varepsilon }_{0}S}{d}}=C$$, то $$ q=(8C\mathcal{E}-Q)/6$$.
Следует заметить, что знак найденного заряда правой обкладки зависит от соотношения заданных в условии задачи величин.
![]() |
| Рис. 10.4 |
На схему (рис. 10.4) подано напряжение `U=24` В. Ёмкости конденсаторов `C_1=1` мкФ, $$ {C}_{2}=2$$ мкФ, $$ {C}_{3}=3$$ мкФ. Найти напряжения на конденсаторах.
В задачах, где есть схемы с конденсаторами, обычно предполагается, что схемы собраны из первоначально незаряженных конденсаторов.
Ёмкость между точками $$ B$$ и $$ K$$:
$$ {C}_{BK}={C}_{2}+{C}_{3}=5$$ мкФ.
Общая емкость: $$ {C}_{AK}={\displaystyle \frac{{C}_{1}{C}_{BK}}{{C}_{1}+{C}_{BK}}}={\displaystyle \frac{5}{6}}$$ мкФ.
Общий заряд всей батареи конденсаторов $$ {q}_{AK}={C}_{AK}U=20·{10}^{-6 }\mathrm{Кл}.$$
Так как заряд $$ {q}_{1}$$ конденсатора $$ {C}_{1}$$ равен заряду батареи, то напряжение на этом конденсаторе $$ {U}_{1}={q}_{1}/{C}_{1}={q}_{AK}/{C}_{1}=20$$ В. Напряжения на конденсаторах $$ {C}_{2}$$ и $$ {C}_{3}$$ равны напряжению между точками $$ B$$ и $$ K$$ и в сумме с $$ {U}_{1}$$ дают $$ U$$.
Поэтому $$ {U}_{2}={U}_{3}={U}_{BK}=U-{U}_{1}=4$$ В.
Приведённая в задаче схема негромоздкая, и ответ легко получить в общем виде:
$$ {U}_{1}={\displaystyle \frac{{C}_{2}+{C}_{3}}{{C}_{1}+{C}_{2}+{C}_{3}}}U=20$$ B,
$$ U2=U3={\displaystyle \frac{{C}_{1}}{{C}_{1}+{C}_{2}+{C}_{3}}}U=4$$ B.
Слово «электричество» может вызвать представление о сложной современной технике: компьютерах, телевизорах, электродвигателях и т. д. Но электричество играет в нашей жизни гораздо более серьёзную роль. Действительно, согласно современной теории строения вещества, силы, действующие между атомами и молекулами, в результате чего образуются жидкие и твёрдые тела, – это электрические силы. Они ответственны и за обмен веществ, происходящий в человеческом организме. Даже когда мы что-нибудь тянем или толкаем, это оказывается результатом действия электрических сил между молекулами руки и того предмета, на который мы воздействуем. И вообще, большинство сил (например, силы упругости, силы реакции опоры) сегодня принято считать электрическими силами, действующими между атомами. Сила тяжести, однако, не относится к электрическим силам.
Электрические явления известны с древних времён, но лишь в последние два столетия они были досконально изучены. По современным представлениям вся совокупность электрических и магнитных явлений есть проявление существования, движения и взаимодействия электрических зарядов. В настоящем Задании мы познакомимся с основными понятиями, определениями и законами, утвердившимися при описании электрических явлений.
По современным представлениям атом состоит из массивного положительно заряженного ядра, состоящего из протонов и нейтронов, и движущихся вокруг ядра отрицательно заряженных электронов. В нормальном состоянии положительный заряд ядра (его носителями являются находящиеся в ядре протоны) равен по величине (т. е. по модулю) отрицательному заряду электронов, и атом в целом электрически нейтрален. Однако атом может терять или приобретать один или несколько электронов. Тогда его заряд будет положительным или отрицательным, и такой атом называется ионом.
В твёрдом теле ядра атомов могут колебаться, оставаясь вблизи фиксированных положений, в то время как часть электронов движется свободно. Электризацию трением можно объяснить тем, что в различных веществах ядра удерживают электроны с различной силой. Когда пластмассовая линейка, которую натирают бумажной салфеткой, приобретает отрицательный заряд, это означает, что электроны в бумажной салфетке удерживаются слабее, чем в пластмассе, и часть их переходит с салфетки на линейку. Положительный заряд салфетки равен по величине отрицательному заряду, приобретённому линейкой. Таким образом, при электризации тел заряды не создаются, а перераспределяются. Этим и объясняется явление электризации: электроны удаляются из тела или заимствуются у атомов другого тела, но не уничтожаются и не создаются вновь. Следует заметить, что при описанном способе электризации трение не играет принципиальной роли: сдавливая тела, мы просто сближаем их поверхности, которые без этого соприкасались бы в немногих точках вследствие неровностей и выступов.
Наэлектризовать тело можно и другими способами. Например, приведя незаряженное тело в соприкосновение с заряженным. Возможна электризация через влияние, т. е. без непосредственного контакта. Опыт показывает, что под действием заряженного тела на незаряженном может происходить перераспределение электронов или упорядочение молекул (или атомов), вследствие чего части незаряженного тела оказываются наэлектризованными. Это явление получило название электризации через влияние, или электростатической индукции, а заряды, возникающие вследствие перераспределения (упорядочения), индуцированными.
Электризация у некоторых веществ может происходить под действием электромагнитных волн: электроны покидают облучаемую поверхность, в результате тело заряжается положительно. Это явление называется фотоэлектрическим эффектом, или кратко фотоэффектом.
В результате действия ультрафиолетового электромагнитного излучения на первоначально незаряженное тело его поверхность покинуло `N=4,0*10^(10)` электронов. Найдите заряд `Q` тела? Элементарный заряд `e=1,6*10^(-19)`Кл.
Положительный заряд тела будет обусловлен некомпенсированным электронами зарядом `Q=N*e=4,0*10^(10)*1,6*10^(-19)=6,4*10^(-9)`Кл.
Слово электричество происходит от греческого названия янтаря – ελεκτρον. Янтарь – это окаменевшая смола хвойных деревьев; древние заметили, что если натереть янтарь куском шерстяной ткани, то он будет притягивать лёгкие предметы и пыль. В конце XVI века английский учёный У. Гильберт обнаружил, что таким же свойством обладают стекло и ряд других веществ, натёртых шёлком. Теперь мы говорим, что в этих случаях тела, благодаря трению, приобретают электрический заряд, а сами тела называем заряженными.
Все ли электрические заряды одинаковы или существуют различные их виды? Опыт показывает, что существует два и только два вида зарядов, причём заряды одного вида отталкиваются, а заряды разных видов притягиваются. Мы говорим, что одноимённые заряды отталкиваются, а разноимённые притягиваются.
Американский учёный Б. Франклин (XVIII век) назвал эти два вида зарядов положительными и отрицательными. Какой заряд как назвать было совершенно безразлично; Франклин предложил считать заряд наэлектризованной стеклянной палочки положительным. В таком случае заряд, появляющийся на янтаре, потёртом о шерсть, будет отрицательным. Этого соглашения придерживаются и по сей день.
О заряженных телах говорят, что одни тела наэлектризованы сильнее, а другие слабее. Для того чтобы такие утверждения имели смысл, следует установить количественную меру, позволяющую сравнивать степени наэлектризованности тел. Мерой наэлектризованности любого тела является электрический заряд `Q` этого тела (латинские буквы `q` и `Q` традиционно используются для обозначения заряда). В свою очередь, незаряженные тела называют электронейтральными, или просто нейтральными, их заряд равен нулю.
В международной системе единиц (сокращенно СИ) единицей измерения заряда служит кулон (Кл) (в честь французского учёного Шарля Кулона, установившего в 1785 г. закон взаимодействия точечных зарядов). Определение этой единицы в СИ даётся через единицу измерения силы тока и будет представлено ниже.
Развитие науки о природе привело не только к открытию элементарных частиц (протонов, электронов, нейтронов и др.), но и показало, что электрический заряд не может существовать сам по себе, без элементарной частицы – носителя заряда.
Важными свойствами заряда являются его делимость и независимость от скорости.
Экспериментально установлена делимость электрического заряда и существование его наименьшей порции. Эту наименьшую величину электрического заряда называют элементарным зарядом `e=1,6*10^(-19)`Кл. Несмотря на значительные экспериментальные усилия, к настоящему времени не обнаружены в свободном состоянии носители с зарядом `|q|<e`, где `e` - элементарный заряд.
Носителями электрического заряда являются элементарные частицы, например, электроны (заряд каждого `q_e=-e=-1,6*10^(-19)`Кл), протоны (заряд каждого `q_p=e=1,6*10^(-19)`Кл). Экспериментально установлено, что отрицательный заряд электрона равен (с высокой точностью) по абсолютному значению положительному заряду протона. Величина заряда любого тела кратна элементарному заряду.
Металлическому шару путём удаления части электронов сообщается заряд `Q=2,0*10^(-6)` Кл. Сколько электронов удалено с шара? На сколько изменится масса шара? Элементарный заряд `e=1,6*10^(-19)`Кл, масса электрона `m_e=0,9*10^(-30)`кг.
Количество удалённых электронов найдём из равенства
`N=(-Q)/(-e)=(2,0*10^(-6))/(1,6*10^(-19))=1,25*10^(13)`.
Масса электронов, удалённых с шара,
`m=N*m_e=1,25*10^(13)*0,9*10^(-30)=1,125*10^(-17)`кг
даёт ответ на второй вопрос задачи. Отметим, что убыль массы шара очень мала.
Независимость элементарного заряда от скорости носителя доказывается фактом электронейтральности атомов, в которых вследствие различия масс электрона и протона лёгкие электроны, видимо, движутся значительно быстрее массивных протонов. Если бы заряд зависел от скорости, нейтральность атомов не могла бы соблюдаться. Так что независимость заряда от скорости принимается в качестве одного из экспериментальных фактов, на которых строится теория электричества.
Лишь в XIX веке стало ясно: причина существования электрического заряда кроется в самих атомах. Позднее (в другом Задании) мы обсудим строение атома и развитие представлений о нём более подробно; здесь же кратко остановимся на основных идеях, которые помогут нам лучше понять природу электричества.
По поведению зарядов в наэлектризованном теле все вещества делятся на проводники и изоляторы (диэлектрики). В диэлектриках сообщённый им заряд остаётся в том месте, куда он был помещён при электризации. В проводниках сообщённый заряд может свободно перемещаться по всему телу. Именно поэтому проводящие тела можно заряжать электризацией через влияние. Почти все природные материалы попадают в одну из этих двух резко различных категорий. Есть, однако, вещества (среди которых следует назвать кремний, германий, углерод), принадлежащие к промежуточной, но тоже резко обособленной категории. Их называют полупроводниками.
С точки зрения атомной теории электроны в изоляторах связаны с атомами очень прочно, в то время как в проводниках многие электроны связаны с атомами очень слабо и могут свободно перемещаться внутри вещества. Такие электроны называют «свободными», или электронами проводимости. Слово «свободными» взято в кавычки, так как свойства электронов в металле значительно отличаются от свойств действительно свободных электронов в вакууме. В металлических телах – проводниках электричества – число свободных электронов огромно. Проиллюстрируем это утверждение на следующем примере.
Оцените число `n` свободных электронов в `V=1"м"^3` меди, считая, что в меди в среднем в расчёте на один атом свободным является один электрон. Плотность меди `rho=8,9*10^3 "кг"//"м"^3`, в `M=64` г меди содержится `N_A=6,02*10^(23)` атомов.
Согласно условию число свободных электронов в любом объёме меди равно числу атомов в нём. Поэтому определим число атомов в объёме `V`. Для этого следует массу меди `rhoV` разделить на `M` и умножить на `N_A`, т. е.
`N=(rhoV)/M N_A=(8,9*10^3*1)/(64*10^(-3))*6,02*10^(23)~~8,4*10^(28)`.
Найденная величина называется концентрацией носителей.
Сохранение электрического заряда представляет собой важнейшее известное из опыта его свойство: в изолированной системе алгебраическая сумма зарядов всех тел остаётся неизменной. Справедливость этого закона подтверждается не только в процессах электризации, но и в наблюдениях над огромным числом рождений, уничтожений и взаимных превращений элементарных частиц. Закон сохранения электрического заряда – один из самых фундаментальных законов природы. Неизвестно ни одного случая его нарушения. Даже в тех случаях, когда происходит рождение новой заряженной частицы, обязательно одновременно рождается другая частица с равным по величине и противоположным по знаку зарядом.
Электрический заряд элементарной частицы не зависит ни от выбора системы отсчёта, ни от состояния движения частицы, ни от её взаимодействия с другими частицами. Поэтому и заряд макроскопического тела не зависит ни от движения составляющих его частиц, ни от движения тела как целого.
Два одинаковых проводящих шарика, несущих заряды `Q_1=-9,0*10^(-9)` Кл и `Q_2=2,0*10^(-9)` Кл, приводят в соприкосновение и удаляют друг от друга. Какими станут заряды `Q_1^'` и `Q_2^'` шариков?
После приведения шариков в соприкосновение заряды, свободно перемещающиеся в проводниках, придут в движение и разделятся поровну между шариками. Действительно у зарядов «нет оснований предпочесть» один из шариков: «с точки зрения зарядов» шарики неотличимы. Тогда `Q_1^'=Q_2^'`. Заряды шариков найдём по закону сохранения электрического заряда:
`Q_1+Q_2=2Q_1^'`.
Отсюда `Q_1^'=(Q_1+Q_2)/2=(-9,0*10^(-9)+2,0*10^(-9))/2=-3,5*10^(-9)` Кл.
Соображения симметрии, использованные при решении задачи, являются важнейшими в физике, к ним мы будем неоднократно обращаться в дальнейшем в различных разделах курса физики.
Свободный нейтрон `n` - незаряженная частица – распадается на протон `p`, электрон `e^-` и электронное антинейтрино $$ {\stackrel{~}{\nu }}_{e}$$. Схему этой реакции записывают в виде $$ n\to p+{e}^{-}+{\stackrel{~}{\nu }}_{e}$$. Найдите заряд `q` антинейтрино.
По условию нейтрон – незаряженная частица. Заряды протона и электрона равны соответственно `e` и `-e`. Из закона сохранения заряда следует, что заряд нейтрона равен сумме зарядов продуктов реакции, т. е. протона, электрона и антинейтрино:
`0=e+(-e)+q`.
Отсюда `q=0`.
Заряд электронного антинейтрино равен нулю.
Заряженные тела воздействуют друг на друга. Сила взаимодействия двух зарядов зависит от величин этих зарядов и от расстояния межу ними. Долгое время оставалось неясным, посредством чего взаимодействуют заряженные тела, если они не вступают в непосредственный контакт друг с другом. Кулон был убеждён, что промежуточная среда, т. е. «пустота» между зарядами никакого участия во взаимодействии не принимает.
Такая точка зрения, несомненно, была навеяна впечатляющими успехами ньютоновской теории тяготения, блестяще подтверждавшейся астрономическими наблюдениями. Однако сам Ньютон писал: «Непонятно, каким образом неодушевлённая косная материя, без посредства чего-либо иного, что нематериально, могла бы действовать на другое тело без взаимного прикосновения».
В 30-е годы XIX века английским естествоиспытателем М. Фарадеем была введена в физику идея поля как материальной среды, посредством которой осуществляется любое взаимодействие пространственно удалённых тел. М. Фарадей считал, что «материя присутствует везде, и нет промежуточного пространства, не занятого ею». Фарадей развил последовательную концепцию электромагнитного поля, основанную на идее конечной скорости распространения взаимодействия. Законченная теория электромагнитного поля в строгой математической форме была через 30 лет развита другим английским физиком, Дж. Максвеллом.
По современным представлениям электрические заряды наделяют окружающее их пространство особыми физическими свойствами – создают электрическое поле. Основным свойством поля является то, что на находящуюся в этом поле заряженную частицу, действует некоторая сила, т. е. взаимодействие электрических зарядов осуществляется посредством создаваемых ими полей. Поле, создаваемое неподвижными зарядами, не изменяется со временем и называется электростатическим.
Таким образом, электрическое поле представляет собой особый вид материи (отличный от вещества), которое создаётся электрическими зарядами и которое обнаруживается по действию на электрические заряды. Более подробно взаимодействие электрических зарядов и электрические поля, создаваемые зарядами, будут рассмотрены в десятом классе, а мы перейдём к изучению вопросов, связанных с электрическим током.
Направленное движение электрических зарядов называется электрическим током. Носителями зарядов в зависимости от типа проводника могут быть электроны и ионы. В металлических проводниках – это свободные электроны, или электроны проводимости, в гальванических ваннах, т. е. в растворах электролитов, – положительные и отрицательные ионы. Тела или вещества, в которых можно создать электрический ток, называют проводниками электрического тока. Проводниками являются все металлы, водные растворы солей или кислот, ионизованные газы.
При движении свободных заряженных частиц происходит перенос заряда. Количественной характеристикой – силой $$ I$$ тока – принято считать скорость переноса заряда через любое поперечное сечение проводника, т. е. количество заряда, перемещённого через «контрольную поверхность», на которой осуществляется подсчёт пересёкшего её заряда, в единицу времени:
`I=q/t`, (1)
где `q` – заряд, прошедший через произвольное фиксированное поперечное сечение проводника за время от `0` до `t`. Если сила тока не изменяется со временем, ток называют постоянным. Единица измерения силы тока в системе СИ называется ампером (А) (в честь А.М. Ампера – французского учёного XIX века) и вводится через магнитное взаимодействие токов.
Один ампер есть сила такого тока, поддерживаемого в двух бесконечных (очень длинных) прямолинейных параллельных проводниках ничтожно малой площади поперечного сечения, расположенных на расстоянии `1`м в вакууме, при котором в расчёте на `1` метр длины проводника действует сила `F=2*10^(-7) "Н"`.
Единица измерения силы тока ампер, наряду с метром, секундой, килограммом, является основной единицей системы СИ. Единица измерения заряда кулон (Кл) является производной и вводится в соответствии с (1): один кулон – это электрический заряд, проходящий через поперечное сечение проводника при силе тока $$ 1\mathrm{A}$$ за $$ 1\mathrm{c}$$, т. е. $$ 1\mathrm{Кл}=1\mathrm{A}·1\mathrm{c}.$$
За направление электрического тока принимают направление, в котором движутся положительно заряженные носители тока.
Отношение силы `I` тока к площади `S` поперечного сечения проводника называется плотностью тока:
`j=I/S`, (2)
которая равна силе тока в расчёте на единицу площади поперечного сечения.
По проводу течёт постоянный ток. Через произвольное поперечное сечение за время `t=2` мин протёк заряд `q=1,2` Кл. Найдите силу `I` тока в проводе и его плотность `j`. Площадь поперечного сечения проводника `S=0,5 "мм"^2`.
Силу тока определим по формуле (1):
$$ I={\displaystyle \frac{q}{t}}={\displaystyle \frac{\mathrm{1,2}}{120}}=\mathrm{0,01}\mathrm{A}$$,
плотность тока найдём по формуле (2):
`j=I/S=(0,01)/(0,5*10^(-6))=2*10^4"А"//"м"^2`.
Согласно модели, предложенной Нильсом Бором, в основном состоянии атома водорода электрон движется вокруг покоящегося протона по круговой орбите радиуса `r=0,53*10^(-10)` м со скоростью `v=2,2*10^6` м/с. Какой величине `I` тока эквивалентно движение электрона по орбите? Каково направление этого тока? Элементарный заряд `e=1,6*10^(-19)` Кл.
В рассматриваемой модели электрон обращается вокруг протона с периодом `T=(2pir)/v`. За `t=1` с электрон пересечёт любую контрольную поверхность, на которой происходит подсчёт переносимого заряда, `nu=1/T` раз. Тогда через эту поверхность за `t=1` с пройдёт заряд `q=e*nu`, т. е. сила эквивалентного тока в соответствии с (1) равна
`I=q/t=enu=ev/(2pir)=1,6*10^(-19) *(2,2*10^6)/(2*3,14*0,53*10^(-10))~~1,06*10^(-3) "А"`.
Поскольку электрон – отрицательно заряженная частица, то направление рассматриваемого тока противоположно направлению движения электронов.
Электрический ток течёт в электрических цепях, представляющих собой различные приборы и устройства, соединённые проводниками.
Если бы носители заряда, приведённые в движение в замкнутом проводнике, не взаимодействовали с ионами, то они двигались бы бесконечно долго. Такой ток можно наблюдать в некоторых веществах при весьма низких температурах; удельное сопротивление таких веществ – их называют сверхпроводниками – равно нулю при этих температурах.
Но в большинстве проводников при протекании тока движущиеся заряженные частицы взаимодействуют с неподвижными и теряют кинетическую энергию.
Для получения постоянного тока, т. е. не изменяющегося с течением времени, на заряды в электрической цепи должны действовать не только силы электрического поля, но и другие силы, отличные от сил электрического взаимодействия. Такие силы получили общее название сторонних электродвижущих сил. Всякое устройство, в котором возникают сторонние силы, называют источником тока. Источниками тока являются, например, батарейки, аккумуляторы и т. д.
Сторонние силы в источниках возникают по разным причинам. В химических источниках, например, в автомобильном аккумуляторе или в гальваническом элементе, они возникают благодаря химическим реакциям в области контакта пластин аккумулятора или электродов батарейки с жидким электролитом. В фотоэлементе они возникают в результате действия электромагнитного излучения на электроны в металле или полупроводнике. В генераторах на электростанции сторонние силы возникают в проводниках при движении их в магнитном поле.
Если воспользоваться гидростатической аналогией, то силы электрического поля в электрической цепи можно уподобить силе тяжести, стремящейся выравнивать уровни жидкости в сообщающихся сосудах; источник тока с действующими в нём сторонними электродвижущими силами можно сравнить с насосом, работающим против силы тяжести и восстанавливающим разность уровней в сосудах, несмотря на течение жидкости.
Источник тока по результатам своего действия представляет собой устройство, отделяющее положительные заряды от отрицательных. После разделения заряды перемещаются на полюса (электроды) источника. При этом один из электродов заряжается положительно, другой отрицательно. И если к источнику подключить проводник, то эти заряды действуют на заряды проводника вблизи полюсов, те в свою очередь действуют на соседние и т. д. В результате этих коллективных взаимодействий в цепи на поверхности проводника возникает такое распределение зарядов, которое обеспечивает существование внутри проводника электрического поля, а в проводнике под действием сил этого поля течёт электрический ток.