Все статьи » ЗФТШ Физика

Статьи , страница 172

  • 2.3. Электрическое напряжение. Работа и мощность электрического тока. Тепловое действие тока

    В электрической цепи, подключённой к источнику, возникают электрические силы, действующие на носители зарядов и приводящие их в движение. Пусть под действием электрической силы `F` частица, несущая заряд `q`, переместилась вдоль проводника из точки `1` в точку `2`, а сила `F` совершила над заряженной частицей работу `A_(12)`. Отношение работы `A_(12)` электрической силы над зарядом `q` при перемещении его из точки `1` в точку `2` к самому заряду $$ q$$ называют электрическим напряжением между точками `1` и `2`:

     `U_(12)=(A_(12))/q`.                                                  (3)

    Единицей измерения напряжения в СИ является вольт (В).

    За один вольт принимается напряжение на концах проводника, при котором работа сил электрического поля по перемещению через этот проводник заряда в один кулон равна одному джоулю.

    Эта единица  названа в честь итальянского физика А. Вольта, который в 1800 г. изобрёл электрическую батарею и впервые получил с её помощью постоянный ток, устойчиво поддерживавшийся в электрической цепи. Это открытие ознаменовало начало новой эпохи, полностью преобразившей нашу цивилизацию: современная жизнь немыслима без использования электрического тока.

    В соотношении (3) индексы `1` и `2` можно опустить, если помнить, что `1` – это точка «старта», `2` – точка «финиша».

    Зная напряжение `U` на концах проводника и силу тока `I`, текущего в проводнике в течение времени `t` постоянного тока, вычислим заряд `q=I*t`, который протечёт за указанное время по проводнику. Тогда за это время силы электрического поля в проводнике совершат работу

     `A=q*U=I*t*U`.                                             (4)

    Это позволяет судить о скорости совершения работы электрическими силами, т. е. о мощности, развиваемой силами электрического поля. Из (4) следует, что в проводнике, напряжение на концах которого равно `U`, а сила тока `I`, силы электрического поля в единицу времени совершают работу

    `P=A/t=I*U`.                                                (5)

    Напомним, что единицей измерения мощности в СИ служит ватт (Вт).

    Очень часто работу и мощность электрических сил называют соответственно работой и мощностью электрического тока, тем самым подчёркивают, что это работа по поддержанию электрического тока в цепи.

    Пример 8

    По проводнику в течение `T=1` мин течёт постоянный ток силой `I=0,2` А. Напряжение на проводнике `U=1,5` В. Какую работу `A` совершают электрические силы в проводнике за указанное время? Найдите мощность `P` электрического тока в проводнике.

    Решение

    За время `T` через проводник пройдёт заряд `Q=I*T`. Работа сил электрического поля над этим зарядом в соответствии с (4) равна

    `A=Q*U=I*T*U=0,2*60*1,5=18` Дж.

    Для ответа на второй вопрос задачи воспользуемся соотношением (5):

    `P=I*U=0,2*1,5=0,3` Вт.

    Заметим, что в повседневной жизни, рассчитываясь «за электричество», мы оплачиваем расход электроэнергии – работу электрических сил, а не мощность. И здесь принято работу электрических сил выражать во внесистемных единицах – киловатт-часах:

    `1` кВт`*`ч`=1000`Вт`*3600`с`=3,6*10^6`Дж

    Работа электрического тока может идти на изменение механической и внутренней энергий проводника. Например, в результате протекания электрического тока через электродвигатель его ротор (подвижная часть, способная вращаться, в отличие от статора) раскручивается. При этом большая часть работы электрических сил идёт на увеличение механической энергии ротора, а также других тел, с которыми ротор связан теми или иными механизмами. Другая часть работы электрического тока (в современных электродвигателях один – два процента) идёт на изменение внутренней энергии обмоток двигателя, что приводит к их нагреванию (обмотка электродвигателя представляет собой катушку, изготовленную обычно из меди, с большим числом витков).

    Обсудим тепловое действие электрического тока более подробно. Из опыта известно, что электрический ток нагревает проводник. Объясняется это явление тем, что свободные электроны в металлах, перемещаясь под действием сил электрического поля, взаимодействуют с ионами вещества и передают им свою энергию. В результате увеличивается энергия колебаний ионов в проводнике, его температура растёт, при этом говорят, что в проводнике за некоторое время `t` выделяется количество теплоты `Q_("тепл")`. Если проводник с током неподвижен и величина тока постоянна, то работа электрических сил идёт на изменение внутренней энергии проводника. По закону сохранения энергии это количество равно работе сил электрического поля (4) в проводнике за то же самое время,      т. е.

     `Q_("тепл")=I*t*U`.                                             (6)

    Отсюда мощность `P` тепловыделения, т. е. количество теплоты, выделяющейся в единицу времени на участке цепи, где напряжение равно `U`, а сила тока равна `I` составляет

    `P=(Q_("тепл"))/t=U*I`.                                            (7) 

    Пример 9

    По спирали электроплитки, подключённой к источнику с напряжением `U=120` В, протекает постоянный ток силой `I=5` А в течение `T=1` ч. Какое количество теплоты `Q_("тепл")`  отдаёт при этом плитка в окружающую среду?

    Решение

    В окружающую среду будет передано то количество теплоты, которое выделится в спирали нагревательного элемента плитки за указанное время. По формуле (6) находим:

    `Q_("тепл") =I*T*U=5*3600*120=2,16*10^6` Дж.

    Пример 10

    Электродвигатель, включённый в электрическую сеть с напряжением `U=24` В, за время `T=1` ч работы совершил механическую работу `A=1680` кДж. Сила тока в обмотке `I=20` А. Найдите мощность `P` электрического тока и коэффициент полезного действия  `eta` двигателя. Какое количество теплоты `Q_("тепл")` выделится в обмотке?

    Решение

    Мощность электрического тока найдём по формуле (5):

    `P=I*U=20*24=480` Вт.

    По определению коэффициент полезного действия (КПД) `eta` двигателя равен отношению полезной механической работы `A` к работе электрических сил `A_("эл")`, умноженному на `100%`. С учётом выражения (4) для работы электрических сил находим КПД электродвигателя:

    `eta=A/(A_("эл"))*100%=A/(UIT)*100%=(1680*10^3)/(24*20*3600)*100%~~97%`.

    Количество `Q_("тепл")` теплоты, выделившейся в обмотке, найдём по закону сохранения энергии `A_("эл")=A+Q_("тепл")`. Отсюда  `Q_("тепл")=A_("эл")-A=UIT-A=24*20*3600-1680*10^3=48*10^3` Дж.

  • 2.4. Закон Ома. Электрическое сопротивление. Закон Джоуля – Ленца

    Как отмечалось выше, для поддержания постоянного тока в проводнике, т. е. движения электронов с постоянной скоростью, необходимо непрерывное действие сил электрического поля на носители заряда. Это означает, что электроны в проводниках движутся «с трением», иначе говоря, проводники обладают электрическим сопротивлением.

    Если состояние проводника остаётся неизменным (не изменяется его температура и т. д.), то для каждого проводника существует однозначная зависимость между напряжением `U` на концах проводника и силой `I` тока в нём `I=f(U)`. Она называется вольтамперной характеристикой данного проводника.

    Для многих проводников эта зависимость особенно проста – линейная: сила тока прямо пропорциональна приложенному напряжению, т. е.

     `I=1/RU`,                                                 (8)

    где `R` – электрическое сопротивление проводника (постоянная при неизменных условиях величина).

    Этот закон носит название закона Ома. Немецкий физик Г. Ом в 1827 г. в результате серии экспериментов установил, что для широкого класса проводников сила `I` электрического тока в проводнике пропорциональна напряжению `U` на концах проводника.

    Сопротивление `R` проводника зависит от рода вещества проводника, от его размеров и формы, а также от состояния проводника.

    Единицей сопротивления в СИ является один Ом (Ом). За один Ом принимается сопротивление такого проводника, в котором при напряжении между его концами один вольт течёт постоянный ток силой один ампер: `1`Ом`=1`В`//1`A.

    Вытекающее из закона Ома (8) соотношение

     `R=U/I`                                                 (9)

    можно рассматривать и как определение сопротивления по приведённой формуле.

    Г. Ом установил, что для проводников  $$ R$$ не зависит от $$ U.$$ 

    В технических приложениях для описания процессов в электрических цепях часто используется понятие  вольтамперной характеристики. Для проводников, подчиняющихся закону Ома (8), графиком зависимости силы `I` тока в проводнике от напряжения `U` на нём будет прямая линия, проходящая через начало координат (см. рис. 1). При этом говорят, что проводник имеет линейную вольтамперную характеристику.

    В то же время для полупроводников, электронных ламп, диодов, транзисторов зависимость `I=f(U)` носит сложный характер, и такие элементы называют нелинейными (или неомическими). Для таких элементов величина `R`, вычисленная по формуле `R=U/I`, зависит от `U`. В частности, при измерении вольтамперной характеристики лампочки накаливания с вольфрамовой нитью мы обнаружим, что она имеет вид, схематически показанный на рис. 2. Искривление вольтамперной характеристики связано с нагревом нити и увеличением сопротивления нити накала с ростом температуры. В некоторых устройствах, таких как диод, сопротивление зависит от направления тока.


    Обсудим вопрос о тепловыделении в проводнике. С учётом закона Ома (8) формула (7) для мощности тепловыделения принимает вид:

    `P=U*I=U^2/R=I^2R`.                                      (10)

    Другими словами, если через резистор `R` протекает постоянный ток силой `I`, то за `t` секунд в резисторе выделяется количество теплоты, равное

    `Q_("тепл")=P*t=U^2/R*t=I^2*R*t`.                               (11)

    Соотношения (10), (11) являются математическим выражением закона, открытого в XIX веке практически одновременно и независимо английским физиком Д. Джоулем и русским физиком Э.Х. Ленцем.

    Обратим внимание, что полученный закон является прямым следствием закона сохранения энергии в применении к движению электрических зарядов под действием сил электрического поля.

  • 2.5 Расчёт сопротивления проводника. Удельное сопротивление

    Причиной электрического сопротивления является взаимодействие электронов с ионами кристаллической решётки. Зависимость сопротивления проводника от его размеров и вещества, из которого изготовлен проводник, на опытах изучил Г. Ом. Он установил, что сопротивление проволоки длиной `l` и площадью поперечного сечения `S` определяется по формуле

    `R=rho l/S`                                               (12)

    где `rho` – удельное сопротивление вещества, из которого изготовлен проводник. Эту величину определяют экспериментально, результаты измерений удельного сопротивления приводят в физических справочниках (и в справочных разделах задачников по физике).

    В соответствии с формулой (12) единицей удельного сопротивления в СИ служит Ом`*`м.

    Удельное сопротивление вещества зависит от температуры. Для металлов с ростом температуры растёт и удельное сопротивление. У электролитов наблюдается обратная зависимость. Эти обстоятельства следует учитывать на практике при расчётах спиралей электронагревательных приборов,   нитей лампочек накаливаний и т. д.

    Пример 11

    Резистор сопротивлением `R=38` Ом изготовлен из медного провода кругового сечения массой `m=11,2` г. Найдите длину `l` провода. Удельное сопротивление меди `rho=1,7*10^(-8)` Ом`*`м, плотность меди `delta=8,9*10^3 "кг"//"м"^3`. Обратите внимание, что в настоящем примере приняты обозначения: `delta` – плотность, `rho` – удельное сопротивление.

    Решение

    Обозначим площадь поперечного сечения проводника `S`. Тогда объём проводника равен  `V=S*l`, его масса `m=delta*V=delta*S*l`. По формуле (12) сопротивление проводника равно `R=rhol/S`.

    Исключая `S` из двух последних соотношений, приходим к ответу на вопрос задачи:

    `l=sqrt((mR)/(rho delta))=sqrt((11,2*10^(-3)*38)/(1,7*10^(-8)*8,9*10^3))~~53` м.

  • 2.6. Соединение проводников в электрической цепи

    В электрических цепях, с которыми мы встречаемся на практике, проводники могут быть соединены различными способами. Наиболее простые способы соединения известны как последовательное и параллельное соединения резисторов.

    Рассмотрим участок $$ AB$$ цепи, в котором резисторы с сопротивлениями `R_1` и `R_2` соединены последовательно (рис. 3). Поставим вопрос: каким сопротивлением `R_("экв")`, подключённым между точками `A` и `B`, можно заменить последовательно соединенные сопротивления `R_1` и `R_2` так, чтобы напряжение на участке `AB` и сила тока, текущего от `A` к `B`, остались неизменными?

    Для ответа на поставленный вопрос заметим, что при последовательном соединении сила тока во всех проводниках одинакова – иначе заряды накапливались бы (или исчезали) в каких-то точках цепи. Так что `I=I_1=I_2`.

    Далее: работа сил электрического поля над любым зарядом при перемещении его из `A` в `B` будет равна сумме работ электрических сил над этим зарядом, совершаемых силами поля при его перемещении в каждом проводнике.

    Отсюда следует, что напряжение на `AB` равно сумме напряжений на резисторах

    $$ {U}_{AB}={U}_{1}+{U}_{2}=I·\left({R}_{1}+{R}_{2}\right).$$

    В эквивалентной схеме сила $$ I$$ тока и напряжение $$ {U}_{AB}$$ «не заметили» замены `R_1` и `R_2` на `R_("экв")`. В этом случае по закону Ома `U_(AB)=I*R_("экв")`. Из сопоставления двух последних равенств находим

     `R_("экв")=R_1+R_2`.                                           (13)

    Этот результат легко обобщается на случай `n` последовательно соединённых резисторов `R_1,R_2,...,R_n`. В этом случае (рекомендуем лично выполнить соответствующий вывод):

    `R_("экв")=sum_(i=1)^n R_i=R_1+R_2+...+R_n`.

    Рассмотрим теперь участок `AB` цепи, в котором резисторы с сопротивлениями `R_1` и `R_2` соединены параллельно (см. рис. 4). Поставим вопрос: каким сопротивлением `R_("экв")`, подключённым между точками `A` и `B`,  можно заменить параллельно соединённые `R_1` и `R_2` так, чтобы напряжение на участке `AB` и сила тока, текущего к узлу `A` и вытекающего из узла `B` остались неизменными?

    Для ответа на поставленный вопрос заметим, что при параллельном соединении проводников работа сил электрического поля в расчёте на единичный заряд (см. (3)) в проводниках одинакова (иначе нарушался бы закон сохранения энергии). Это означает, что напряжения на параллельно соединённых проводниках одинаковы. Обозначим его `U_(AB)`. Силу тока в каждом проводнике определим по закону Ома:  `I_1=(U_(AB))/R_1`,  `I_2=(U_(AB))/R_2`.

    Далее, в любом узле, т. е. точке, где сходятся более двух проводов, по закону сохранения электрического заряда сумма токов, втекающих в узел, равна сумме токов, вытекающих из него. Отсюда следует, что в рассматриваемой задаче (рис. 4) сила `I` тока на входе и на выходе равна сумме сил токов в отдельных ветвях параллельной цепи:

    `I=I_1+I_2=(U_(AB))/R_1+(U_(AB))/R_2=U_(AB)(1/R_1+1/R_2)`.

    В эквивалентной схеме сила $$ I$$ тока и напряжение $$ {U}_{\mathrm{AB}}$$ связаны с `R_("экв")` законом Ома (8) `I=(U_(AB))/R_"экв"`. Два последних равенства справедливы при любых значениях, входящих в них величин `I` и `U_(AB)` если

    `1/(R_("экв"))=1/R_1+1/R_2`.                                (14)

    Этот результат легко обобщается на случай `n` параллельно соединённых резисторов `R_1, R_2, ..., R_n`. В этом случае

    `1/(R_("экв"))=1/R_1+1/R_2+...+1/R_n`.     

    Пример 12

    Между точками `A` и `B` электрической цепи подключены резисторы `R_1=10` Ом, `R_2=20` Ом, `R_3=30` Ом, как показано на рис. 5. Найдите эквивалентное сопротивление `R_(AB)` этого участка цепи.

    Решение

    Эквивалентное сопротивление `R_(12)` цепочки последовательно соединённых резисторов `R_1` и `R_2` найдём по формуле (13)

    `R_(12)=R_1+R_2`.

    Заменяя эти резисторы эквивалентным сопротивлением, получаем участок цепи, в котором к точкам `A` и `B` параллельно присоединены резисторы `R_(12)` и `R_3`. Тогда искомое эквивалентное сопротивление найдём из (14)

    `1/(R_("экв"))=1/(R_(12))+1/(R_3)`,

    `R_("экв")=(R_(12)R_3)/(R_(12)+R_3)=((R_1+R_2)R_3)/(R_1+R_2+R_3)=((10+20)30)/(10+20+30)=15`Ом.

    Пример 13

    Лестничная цепь состоит из последовательности `N` одинаковых звеньев (рис. 6 а). Последнее звено замкнуто резистором `R`. При какой величине отношения `R/r` сопротивление цепи не зависит от числа звеньев?

    Решение

    Сопротивление цепи не будет зависеть от числа звеньев, если эквивалентное сопротивление последнего звена (рис. 6 б) будет равно `R`. Из решения предыдущей задачи получаем:

    `1/R=1/r+1/(r+R)`.

    Отсюда находим `R/r=(sqrt5-1)/2~~0,618`.

  • 2.7. Измерения силы тока и напряжения в электрических цепях. Амперметр и вольтметр

    Для измерения токов и напряжений в электрических цепях используются амперметры и вольтметры, основным элементом которых служит гальванометр – прибор, предназначенный для измерения величин токов. Эти измерения могут быть основаны на одном из действий тока: тепловом, физическом, химическом. Гальванометр, градуированный на величину тока, называется амперметром. По закону Ома (8) напряжение и сила тока связаны прямо пропорциональной зависимостью, поэтому гальванометр можно градуировать и на напряжение. Такой прибор называют вольтметром.

    В этом задании мы не будем касаться вопросов, связанных с конкретным устройством электроизмерительных приборов, с их системами и принципами работы. Остановимся лишь на требованиях, предъявляемых к внутренним сопротивлениям амперметров и вольтметров. Важно, чтобы при включении в цепь для измерений эти приборы вносили как можно меньшее искажение в измеряемую величину.

    Амперметр включается в цепь последовательно. Если сопротивление амперметра `R_"а"` и его подключают к участку цепи с сопротивлением `R_"ц"` (рис. 7а), то эквивалентное сопротивление участка цепи и амперметра в соответствии с (13) равно `R=R_"ц"+R_"а"=R_"ц"(1+(R_"а")/(R_"ц"))`.

    Отсюда следует, что амперметр не будет заметно изменять сопротивление участка цепи, если его собственное (внутреннее) сопротивление будет мало по сравнению с сопротивлением участка цепи.

    Чтобы добиться этого, гальванометр снабжают шунтом (синоним – добавочный путь): вход и выход гальванометра соединяются некоторым сопротивлением, обеспечивающим параллельный гальванометру дополнительный путь для тока (рис. 7 б). Поэтому внутреннее сопротивление амперметра меньше, чем у применённого в нём гальванометра. (Читателю рекомендуется лично убедиться в этом с помощью соотношения (14).) Амперметр называется идеальным, если его внутреннее сопротивление можно считать равным нулю.

    Вольтметр подключается к электрической цепи параллельно тому участку, напряжение на котором требуется измерить. Присоединив, например, вольтметр с сопротивлением  `R_"в"` параллельно лампочке с сопротивлением `R_"л"` (рис. 8 а), получим участок цепи, эквивалентное сопротивление которого вычисляется по формуле (14)  `R=R_"л" (R"в")/(R_"л"+R_"в")`.

    Отсюда следует, что чем больше сопротивление вольтметра по сравнению с сопротивлением лампочки, тем меньше эквивалентное сопротивление будет отличаться от сопротивления лампочки. Вывод: чтобы процесс измерения меньше искажал значение измеряемого напряжения, собственное (внутреннее) сопротивление вольтметра должно быть как можно больше. Поэтому в вольтметре последовательно гальванометру включают некоторое сопротивление (рис. 8б). Внутреннее сопротивление такого вольтметра, как правило, во много раз больше сопротивления входящего в него гальванометра. Вольтметр называется идеальным, если его внутреннее сопротивление можно считать бесконечно большим.

    Каждый измерительный прибор рассчитан на определённый интервал значений измеряемой величины. И в соответствии с этим проградуирована его шкала. Для расширения пределов измерений в амперметре можно использовать добавочный шунт, а в вольтметре – добавочное сопротивление. Найдём значения этих сопротивлений, увеличивающих максимальную измеряемую величину тока или напряжения в  раз.

  • 2.8. Шунт к амперметру

    Если амперметр рассчитан на силу тока `I_m`, а с его помощью необходимо измерять силу тока в `n` раз большую (см. рис. 9), то в этом случае, подключив параллельно амперметру шунт, разделим ток силой `nI_m` на два тока: один из них силой `I_m` будет течь через амперметр, тогда через шунт будет протекать ток силой `I_"ш"=(n-1)I_m`.

    Поскольку шунт включён параллельно амперметру, то напряжения на шунте `U_"ш"=(n-1)I_mR_"ш"`  и амперметре `U_"А"=I_mR_"А"`  равны. Из равенства напряжений

    `I_mR_"А"=(n-1)I_mR_"ш"`

    находим

    `R_"ш"=(R_"А")/(n-1)`                                                  (15)

  • 2.9. Добавочное сопротивление к вольтметру

    Если вольтметр рассчитан на максимальное напряжение `U_max`, а с его помощью необходимо измерять напряжение, в `n` раз большее, то, подключив последовательно с вольтметром добавочное сопротивление `R_2` (рис. 10), разделим напряжение `n*U_max` на два слагаемых: одно из них – это напряжение $$ {U}_{\mathrm{max}}$$ на вольтметре, второе – напряжение $$ \left(n-1\right){U}_{\mathrm{max}}$$ на добавочном сопротивлении.

    Поскольку добавочное сопротивление включено последовательно с вольтметром, то через вольтметр и добавочное сопротивление течёт одинаковый ток, т. е. справедливо равенство

    `(U_max)/(R_"в")=((n-1)U_max)/(R_"д")`.

    Отсюда                                     

    `R_"д"=(n-1)R_"в"`.                                       (16)

    Пример 14

    Шкала гальванометра имеет `N=100` делений, цена деления $$ \delta =1\mathrm{мкА}.$$. Внутреннее сопротивление гальванометра $$ {R}_{G}=\mathrm{1,0} \mathrm{кОм}.$$. Как из этого прибора сделать вольтметр для измерения напряжений до $$ U=100 \mathrm{В}$$ или амперметр для измерения токов силой до $$ I=1\mathrm{A}$$?

    Решение

    Максимально допустимый ток `I_max` через гальванометр равен цене деления, умноженной на число делений: `I_max=delta*N=1*100=100` мкА. При максимальном токе напряжение на приборе максимально и по закону Ома (8) равно

    `U_max=I_max*R_G=10^(-4)*10^3=0,1` В.

    Для использования этого гальванометра в качестве амперметра для измерения токов силой до `I=1` А необходимо параллельно с ним включить шунт, сопротивление которого найдём по формуле (15):

    $$ {R}_{\mathrm{ш}}={\displaystyle \frac{{R}_{\mathrm{G}}}{n-1}}={\displaystyle \frac{{R}_{\mathrm{G}}}{{\displaystyle \frac{I}{{I}_{\mathrm{max}}}}-1}}={\displaystyle \frac{{10}^{3}}{{\displaystyle \frac{1}{{10}^{-4}}}-1}}\approx \mathrm{0,1}  \mathrm{Ом}.$$

    В этом случае максимальному отклонению стрелки на шкале гальванометра соответствует ток в цепи силой `I=1` А.

    Для использования этого гальванометра в качестве вольтметра для измерения напряжений до `U=100` В необходимо последовательно с ним включить добавочное сопротивление, величину которого найдём из (16):

    `R_"д"=(U/U_max -1)R_G=((100)/(0,1)-1)*10^3=999` кОм.

    В этом случае максимальному отклонению стрелки на шкале гальванометра соответствует напряжение между точками подключения  `U=100` В.

    Пример 15

    Для измерения сопротивления `R` проводника собрана электрическая цепь, показанная на рис. 11. Вольтметр `V` показывает напряжение `U_V=5` В. Показание амперметра `A` равно `I_A=25` мА. Найдите величину `R` сопротивления проводника. Внутренне сопротивление вольтметра `R_V=1,0` кОм. Внутреннее сопротивление амперметра `R_A=2,0` Ом.

    Решение

    Ток `I_A`, протекающий через амперметр, равен сумме токов `I_V` и `I_R`, протекающих через вольтметр и амперметр соответственно. Напряжения на резисторе `U_R=I_R*R` и вольтметре `U_V=I_V*R_V` одинаковы и равны показанию `U_V` вольтметра. Таким образом, приходим к системе уравнений

    $$ \left\{\begin{array}{l}{I}_{A}={I}_{V}+{I}_{R},\\ {U}_{V}={I}_{V}·{R}_{V}={I}_{R}·R,\end{array}\right.$$

    решение которой

    $$ R={\displaystyle \frac{{U}_{V}}{{I}_{A}-{\displaystyle \frac{{U}_{V}}{{R}_{V}}}}}={\displaystyle \frac{5}{25·{10}^{-3}-{\displaystyle \frac{5}{{10}^{3}}}}}=250 \mathrm{Ом}.$$

    определяет величину `R` сопротивления проводника по результатам измерений. Заметим, что для приведённой схемы величина внутреннего сопротивления амперметра оказалась несущественной: `R_A` не входит в ответ.

  • Введение
    Просмотр текста ограничен правами статьи
  • § 1. Прямолинейное распространение света
    Просмотр текста ограничен правами статьи
  • § 2. Камера-обскура
    Просмотр текста ограничен правами статьи
  • § 3. Законы отражения света. Плоские зеркала
    Просмотр текста ограничен правами статьи
  • § 4. Система двух зеркал
    Просмотр текста ограничен правами статьи
  • § 5. Преломление света
    Просмотр текста ограничен правами статьи
  • §6. Явление полного отражения
    Просмотр текста ограничен правами статьи
  • § 7. Кажущаяся глубина водоёма
    Просмотр текста ограничен правами статьи
  • 1. Жидкости и газы. Текучесть. Давление

    Жидкости и газы отличаются от твёрдых тел прежде всего тем, что обладают таким свойством, как текучесть. Текучесть проявляется в способности жидкости и газа принимать форму сосуда. Из-за чего появляется и чем объясняется текучесть, по наличию которой и устанавливают, что данное тело не является твёрдым?

    Многочисленные опытные факты подтверждают наличие в природе веществ (тел), у которых отсутствуют силы, препятствующие сдвигу с бесконечно малыми скоростями одних слоёв этих веществ относительно других, т. е. отсутствуют силы трения покоя, действующие вдоль поверхности соприкасающихся слоёв. Если при этом такое вещество принимает форму сосуда и его объём практически не зависит от формы и вида сосуда, то мы имеем дело с жидкостью. Если же это вещество занимает весь предоставленный ему в любом сосуде объём, то это - газ.

    У твёрдого тела сдвинуть один слой (часть) тела относительно другого без приложения значительных усилий невозможно. У жидкости и газа одни слои (части)  могут скользить по другим слоям под действием ничтожно малых сил. Этим и объясняется текучесть.

    наПример

    Если подуть вдоль поверхности воды, то верхние слои воды придут в движение относительно нижних, причём силы трения между слоями будут тем меньше, чем меньше относительная скорость движения слоёв. Другой пример текучести. Даже очень осторожное, медленное и малое наклонение сосуда с жидкостью приводит к перемещению верхних слоёв жидкости относительно нижних и в результате поверхность жидкости становится снова горизонтальной.

    Сила трения покоя между стенкой сосуда и соприкасающейся с ней неподвижной жидкостью тоже равна нулю.

    Мы здесь не будем рассматривать проявление так называемых сил поверхностного натяжения, возникающих из-за того, что поверхностный слой жидкости ведёт себя подобно тонкой упругой оболочке. Силами поверхностного натяжения объясняется существование капель жидкости, возможность каплям удерживаться на наклонной поверхности твёрдого тела, капиллярность и другое.

    Из всего сказанного выше следует, что в неподвижной жидкости (или газе) слои (части) жидкости действуют друг на друга и на стенки сосуда с силами, направленными перпендикулярно к поверхности их соприкосновения. На рисунке показан сосуд с жидкостью.

    Выделим мысленно из всей жидкости её части в объёмах `1` и `2`. Жидкость в объёме `1` давит на жидкость в объёме `2` с силой `F_1` направленной перпендикулярно к поверхности `AB` их соприкосновения. С такой же по модулю силой `F_2` давит и жидкость `2` на `1`. Это следует из так называемого третьего закона Ньютона, согласно которому тела действуют друг на друга с равными по модулю и противоположными по направлению силами. Жидкость в сосуде давит на часть `MN` стенки сосуда с силой `F_3`, направленной перпендикулярно стенке. Часть `MN` стенки давит на жидкость с такой же силой  `F_4`.

    Величиной, характеризующей взаимодействие частей жидкости или газа друг с другом и со стенками сосуда, служит давление.

    ОПРЕДЕЛЕНИЕ

    Давлением называется величина, равная отношению модуля силы `F` давления, действующей по нормали (перпендикулярно) к плоской поверхности, к площади  `S` этой поверхности: `P=F/S`.

    В системе СИ давление измеряется в $$ \mathrm{Н}/{\mathrm{м}}^{2}$$. Эта единица давления носит название паскаль (Па):          

    1 Па =1 Н/м21\;\mathrm{Па}\;=1\;\mathrm Н/\mathrm м^2

    Уточним, что следует понимать под давлением в жидкости или газе.

    Поместим в жидкость или газ небольшую плоскую пластину. Одну из сторон этой пластины назовём площадкой. Жидкость (газ) давит на площадку с некоторой силой `F`. Если площадь площадки `S`, то давление жидкости на площадку `P = F/S`. Из условия равновесия вырезанной мысленно из жидкости (газа) призмы с основанием в виде прямоугольного треугольника, находящейся в месте расположения площадки, можно вывести, что давление на площадку в жидкости или газе не зависит от ориентации площадки. Вывод приводить не будем. Теперь можно дать определение давления в жидкости или газе.

    определение

    Давлением в некоторой точке жидкости называется давление жидкости на небольшую площадку, произвольно ориентированную и помещённую вблизи этой точки. Аналогично и для газа.






  • 2. Закон Паскаля

    Рассмотрим связь между давлениями в различных точках жидкости. Будем рассматривать покоящуюся жидкость в неподвижном сосуде. Дополнительное давление в жидкости, возникающее из-за силы тяжести, учитывать не будем.

    Пусть жидкость заключена в замкнутый сосуд произвольной формы (см. рисунок).

    Будем давить на поршень. Покажем, что давление `P_A` в точке `A` равно давлению `P_B` в точке  `B`. Для этого выделим мысленно внутри жидкости тонкий цилиндр, ось которого проходит через точки `A` и `B`, а основания площадью `S` каждое перпендикулярны оси. На части боковой поверхности цилиндра из жидкости со стороны окружающей жидкости действуют силы давления, перпендикулярные оси цилиндра. На основания цилиндра жидкость действует с силами `F_A = P_A S` и `F_B = P_B S`,  направленными вдоль оси `AB`. Поскольку цилиндр находится в покое, то `F_A = F_B`,  т. е. `P_A S = P_B S`. Отсюда `P_A = P_B`. Значит,  давление в точках `A` и `B` одно и то же. Аналогично доказывается равенство давлений в точках `B` и `C` и в точках `C` и `K`. Таким образом, приходим к выводу, что давление во всех точках внутри жидкости одинаково. Поршень давит на жидкость на её границе в одном месте, но это давление ощущается во всей жидкости. Мы получили

    Закон Паскаля

    давление, оказываемое на жидкость в каком-либо одном месте на её границе, передаётся без изменения во все точки жидкости. 

    Этот закон был установлен экспериментально французским физиком и математиком  Блэзом  Паскалем  (1623 - 1662) и носит его имя.

    Всё сказанное в этом параграфе справедливо и для газов. Справедлив для газов и закон Паскаля.

    Отметим, что закон Паскаля выведен и сформулирован здесь при условии отсутствия силы тяжести. Наличие силы тяжести не изменяет сути закона и вносит дополнительную связь между давлениями в различных точках жидкости или газа.

    Закон Паскаля лежит в основе устройства гидравлических машин. Принцип устройства и действия такой машины следующий. Два цилиндрических сосуда разного диаметра с поршнями соединены трубкой и заполнены жидкостью (см. рис.).

    Пусть на малый поршень площадью `S_1` действует сила `F_1`. Тогда в жидкости создаётся давление `P = F_1 //S_1`. На большой поршень площадью `S_2` со стороны жидкости действует сила `F_2 = PS_2 = F_1 S_2 //S_1`. С этой же силой большой поршень может действовать на какое-нибудь тело, препятствующее его перемещению. Во сколько раз `S_2` больше `S_1`, во столько раз и развиваемая поршнем сила `F_2` больше приложенной силы `F_1`. Это используется в гидравлическом прессе, гидравлическом тормозе, гидравлическом домкрате.

    задача 1

    Площадь большого поршня гидравлического домкрата 20 см220\;\mathrm{см}^2, а малого 0,5 см20,5\;\mathrm{см}^2. Груз какой максимальной массы можно поднять этим домкратом, если на малый поршень давить с силой не более `200Н`? Силой трения поршней о стенки цилиндров пренебречь.

    Решение

    Пусть  S1=0,5 см2S_1=0,5\;\mathrm{см}^2S2=20 см2S_2=20\;\mathrm{см}^2F1=200 НF_1=200\;\mathrm Н.  Так как давление во всех точках жидкости одинаково, то

    `F_1 /S_1 =F_2 /S_2`.

    Здесь `F_2` - сила давления жидкости на большой поршень. Отсюда

    F2=F1S2S1=200 Н·20 см20,5 см2=8000 НF_2=\dfrac{F_1S_2}{S_1}=200\;\mathrm Н\cdot\dfrac{20\;\mathrm{см}^2}{0,5\;\mathrm{см}^2}=8000\;\mathrm Н.

    Поднять можно тело с максимальным весом `F_2 = 8000 Н`, что соответствует массе `m = F_2 //g`,  где g=9,8 м/с2g=9,8\;\mathrm м/\mathrm с^2.  Итак, m800 кгm\approx800\;\mathrm{кг}.


  • 3. Гидростатическое давление

    На Земле на все тела действует сила тяжести. Под действием силы тяжести верхние слои жидкости действуют на нижние. Следовательно, в жидкости существует дополнительное давление, обусловленное силой тяжести, называемое гидростатическим давлением.

    Можно показать, что в жидкости, на глубине `H`,  считая от поверхности жидкости в сосуде, гидростатическое давление вычисляется по формуле `P_sf"г" = rho gH`.

    Здесь `rho` - плотность жидкости. В системе единиц СИ  `g = 9,8  sf"м/с"^2`, а давление `P_sf"г"`, плотность `rho` и высота `H`  измеряются в  Па, `sf"кг/м"^3` и `sf"м"` соответственно.

    Полное давление `P` в жидкости, налитой в сосуд, складывается из давления у поверхности жидкости и гидростатического давления. Давление у поверхности жидкости часто равно атмосферному давлению `P_"атм"`, о котором будет сказано в дальнейшем. В этом случае `P = P_sf"г" + P_sf"атм"`.

    Для ответа на некоторые вопросы полезно знать, что на одном горизонтальном уровне давление в жидкости постоянно, а разность давлений `Delta P`  на двух уровнях жидкости `AB` и `MN`, отстоящих друг от друга по высоте на расстояние `H` (см. рисунок), вычисляется по формуле `Delta P = rho g H`, которая аналогична формуле для гидростатического давления.

    Справка

    Греческая  буква  `Delta` (дельта),  стоящая  перед любой величиной, обычно используется  для  обозначения  изменения  этой  величины.

  • 4. Сообщающиеся сосуды

    Сообщающимися называются сосуды, которые имеют связывающие их каналы, заполненные жидкостью (см. рис.).

    Можно показать, что справедлив закон сообщающихся сосудов.

    Закон сообщающихся сосудов:

    в сообщающихся сосудах, заполненных однородной жидкостью, давление во всех точках жидкости, расположенных в одной горизонтальной плоскости, одинаково, независимо от формы сосудов, а поверхности жидкости в сообщающихся сосудах (открытых вверху) устанавливаются на одном уровне (см. рис.).



  • 5. Атмосферное давление. Опыт Торричелли

    Земля окружена воздушной оболочкой, состоящей из смеси газов. Эта оболочка называется атмосферой. Каждый горизонтальный слой атмосферы сжат весом более верхних слоёв. Поэтому давление в нижних слоях атмосферы больше, чем в верхних. При этом и плотность воздуха в нижних слоях значительно больше, чем в верхних. Это связано с тем, что газы под воздействием давления могут сильно уменьшить свой объём. Жидкости же обладают очень малой сжимаемостью и практически не изменяют своей плотности даже при больших давлениях. Атмосферное давление на уровне моря равно примерно 105 Па10^5\;\mathrm{Па}, т. е. 100000 Па100000\;\mathrm{Па}. Это желательно помнить. С увеличением высоты над уровнем моря атмосферное давление уменьшается. На высоте примерно в 5,5 км5,5\;\mathrm{км} оно уменьшается вдвое.

    Значение атмосферного давления впервые определил экспериментально в 1634 г. итальянский учёный Торричелли, создав простейший ртутный барометр. Опыт Торричелли состоит в следующем. Стеклянная трубка длиной около метра, запаянная с одного конца, заполняется полностью ртутью. Затем, закрыв отверстие трубки, её переворачивают и погружают открытым концом в чашу со ртутью (см. рис.).

    Часть ртути из трубки выливается, и в ней остаётся столб ртути высотой `H`. Давление в трубке над ртутью равно нулю (если пренебречь ничтожным давлением паров ртути), так как там - пустота (вакуум):  `P_C = 0`. Давление `P_B` в точке `B` равно давлению `P_A` в точке `A`, поскольку в сообщающихся сосудах - чаше и трубке - точки `A` и `B` находятся на одном уровне. Давление `P_A` равно атмосферному давлению $$ {P}_{\mathrm{атм}}$$.  Поэтому $$ {P}_{B}={P}_{\mathrm{атм}}$$. Разность давлений `P_B - P_C = rho gH`, где `rho` - плотность ртути. Так как $$ {P}_{B}={P}_{\mathrm{атм}}$$  и `P_C = 0`, то $$ {P}_{\mathrm{атм}} =\rho gH$$. Измерив `H` и зная `rho`, можно определить атмосферное давление в условиях опыта. Торричелли нашёл, что для уровня моря H=760 ммH=760\;\mathrm{мм}.

    В опыте Торричелли каждому значению `H` соответствует определённое значение $$ {P}_{\mathrm{атм}}$$. Следовательно, атмосферное давление можно измерять в миллиметрах ртутного столба. Эта единица давления получила специальное название «Торр»: `1`Торр `= 1` мм. рт.ст. При этом высота столба ртути берётся той, которую он имел бы при `0^@"C"`. Атмосферное давление в `760` Торр называется нормальным атмосферным давлением. Значение этого давления называется нормальной (физической) атмосферой и обозначается 1 атм1\;\mathrm{атм}.  Зная плотность ртути  ρ=13595 кг/м3\rho=13595\;\mathrm{кг}/\mathrm м^3, находим по формуле    $$ {P}_{\mathrm{атм}}=\rho gH$$:

    1 атм=760 Торр101325 Па1,013·105 Па1\;\mathrm{атм}=760\;\mathrm{Торр}\approx101325\;\mathrm{Па}\approx1,013\cdot10^5\;\mathrm{Па}.                         

    Умножим равенство $$ {P}_{\mathrm{атм}}=\rho gH$$ на площадь `S` внутреннего сечения трубки: $$ {P}_{\mathrm{атм}}S=\rho gHS$$. Заметим, что последнее равенство можно получить и непосредственно, записав условие равновесия  столба `BC`  ртути (рис. 6). Произведение $$ {P}_{\mathrm{атм}}S$$ равно силе давления `F` на столб ртути `BC` снизу, вызванное наличием атмосферного давления, а `rho gHS` есть вес столба `BC` ртути в трубке. Поэтому говорят, что в опыте Торричелли давление, создаваемое весом столба ртути, уравновешивается атмосферным давлением.

    Замена ртути водой в опыте Торричелли требует высоты трубки более `10` м. Действительно, при нормальном атмосферном давлении 1 атм1\;\mathrm{атм} для значения плотности воды ρ=1000 кг/м3\rho=1000\;\mathrm{кг}/\mathrm м^3 из формулы $$ {P}_{\mathrm{атм}}=\rho gH$$ следует, что H10,3 мH\approx10,3\;\mathrm м. Это означает, что нормальное атмосферное давление уравновешивается столбом воды высотой `10,3` м.   

    Несколько замечаний для решения задач. Полезно помнить, что плотность воды равна 1000 кг/м31000\;\mathrm{кг}/\mathrm м^3 и гидростатическое давление в 105 Па10^5\;\mathrm{Па} создаётся в воде на глубине приблизительно 10 м10\;\mathrm м. Проверьте это, используя формулу для гидростатического давления.

    Поскольку плотность воздуха намного меньше плотности воды, изменением атмосферного давления, связанным с перепадом высоты в несколько метров, можно в ряде случаев пренебречь по сравнению с гидростатическим давлением воды, вызванным таким же перепадом высоты.

    Задача 2

    В сосуд налита вода (см. рис.).

    Расстояние от поверхности воды до дна H=0,5 мH=0,5\;\mathrm м. Площадь дна S=0,1 м2S=0,1\;\mathrm м^2. Найти гидростатическое давление `P_1` и полное давление `P_2` вблизи дна. Найти силу давления воды на дно.

    Решение

    Плотность воды ρ=103 кг/м3\rho=10^3\;\mathrm{кг}/\mathrm м^3. Гидростатическое давление

    $$ {P}_{1}=\rho gH={10}^{3} \mathrm{кг}/{\mathrm{м}}^{3}·\mathrm{9,8} \mathrm{м}/{\mathrm{с}}^{2}·\mathrm{0,5} \mathrm{м}\approx 5·{10}^{3} \mathrm{Па}=5000 \mathrm{Па}$$.

    Полное давление складывается из атмосферного $$ {P}_{\mathrm{атм}}={10}^{5}\mathrm{Па}$$ и гидростатического:

     $$ {P}_{2}={P}_{\mathrm{атм}}+{P}_{1}=100000 \mathrm{Па}+5000 \mathrm{Па}=105000 \mathrm{Па}$$.

    Интересно, что полное давление мало отличается от атмосферного, так как толщина слоя воды достаточно мала. Сила давления воды на дно $$ F={P}_{2}·S=105000 \mathrm{Па}·\mathrm{0,1} {\mathrm{м}}^{2}=10500 H$$.

    Задача 3

    На лёгкий поршень площадью `S`, касающийся поверхности воды, поставили гирю массой `m` (см. рис.).

    Высота слоя  воды в сосуде с вертикальными стенками  `H`. Определить давление в жидкости вблизи дна. Плотность воды `rho`.

    Решение

    На поршень снизу со стороны воды действует направленная вверх сила `F_1 = P_1 S`, где `P_1` давление вблизи поршня. Сверху на поршень действует гиря и атмосферный воздух с силой `F_2 = mg + P_"атм" S`, где g=9,8 м/с2g=9,8\;\mathrm м/\mathrm с^2, $$ {P}_{\mathrm{атм}}={10}^{5} \mathrm{Па}$$ - атмосферное давление. Поршень находится в равновесии. Поэтому `F_1 = F_2`. Итак,  `P_1 S = mg + P_"атм" S`. Отсюда  `P_1 = P_"атм" + (mg)/S`.

    Этот  результат можно писать и сразу, говоря, что давление под поршнем равно атмосферному `P_"атм"` и добавочному давлению  `mg//S`, создаваемому гирей.

    Разность давлений в воде у дна и вблизи поршня: `P_2 - P_1 = rho gH`.

    Отсюда  `P_2 = P_1 + rho gH`.  

    Окончательно, давление у дна `P_2 = P_"атм" + (mg)/S + rho gH`.