Пример 1. Какие силы действуют на человека во время ходьбы? Какая сила приводит его в движение?
Рис. 15 |
Решение: На человека всегда действует сила тяжести . Она приложена ко всем частям организма, но принято её изображать приложенной к центру масс (на рис. 15 это не так). Во время ходьбы человек мышечными усилиями толкает ногу назад, относительно центра масс (туловища). На рисунке эта сила обозначна как . Нога бы начала такое движение, если бы не было сцепления протектора подошвы и поверхности асфальта (пола). Вдоль поверхности возникает сила трения покоя. Нога толкает этой силой асфальт влево , а асфальт толкает ногу вправо , приводя её в движение относительно асфальта. Человек оказывает на поверхность асфальта действие, называемое весом , а на человека действует противоположная сила реакции опоры .
Пример 2. С каким ускорением будет двигаться тело массой по поверхности стола с коэффициентом трения , если к нему приложить силу под углом к горизонту?
Рис. 16 |
Решение. Расставим силы. При расстановке сил пользуются, преимущественно, двумя моделями: 1) все силы прикладывают к центру масс тела, который символизирует материальную точку, в качестве которой рассматривается тело; 2) точки приложения сил изображают там, где сила приложена. Во втором случае требуется применять ряд дополнительных правил, которые на первых порах излишне усложняют решение. На данном рисунке 16 применены правила первой модели.
Далее запишем 2-ой закон Ньютона в векторной форме:
.
Теперь пишем проекции этого уравнения на оси и . Отметим, что оси удобнее всего выбирать из принципа удобства, что чаще всего соответствует направлению одной из осей вдоль ускорения, а второй оси перпендикулярно первой. Еcли движутся несколько тел, то для каждого тела можно выбирать свою удобную пару осей.
Вспомогательное уравнение (формула Кулона – Амонтона):
$$F_\text{тр} =\mu \cdot N$$
Решая скалярную тройку уравнений, получим:
.
Подставим числовые значения и получим: .
При достаточной тренировке в решении задач запись в векторном виде становится излишней, и пишем сразу проекции на оси. На начальном этапе обучения пропускать эту запись не следует.
Рис. 17 |
Пример 3. По наклонной плоскости с углом наклона при основании соскальзывает тело. Найти ускорение тела при коэффициенте трения поверхности и тела, равным .
Решение. На рисунке 17 расставим силы и выберем оси координат из принципа удобства (одна из осей вдоль ускорения).
Запишем уравнение второго закона Ньютона в векторном виде:
.
Далее проецируем его на оси координат:
,
Добавим формулу Кулона-Амонтона:
.
Решая систему уравнений, получим:
.
Числовой ответ даёт значение: .
Рассмотрим способ с другими направлениями осей (рис. 18) (неудобными)
.
Добавим формулу Кулона-Амонтона: .
Решение этой системы уравнений так же приведёт к тому же ответу (проверьте самостоятельно), но путь достижения цели будет и длиннее, и сложнее.
Пример показывает рациональность предлагаемого принципа удобства.
Рис. 19 |
Пример 4. Коэффициент трения между резиной и асфальтом . Какой должна быть ширина дороги, чтобы на ней смог развернуться мотоциклист без уменьшения скорости, если его скорость равна ?
Если мотоциклист планирует развернуться, не уменьшая скорости, то движение его будет равномерным по окружности. Сила, приводящая к изменению направления скорости, будет сообщать центростремительное (нормальное) ускорение (рис. 19) . Этой силой будет сила трения.
Решение. Выберем ось вдоль ускорения (рис. 20) . Запишем 2-й закон Ньютона в проекции на эту ось:
Рис. 20 |
.
Так как , а , то , откуда , тогда для разворота нужна ширина:
Из ответа видим, что для разворота на реальной дороге необходимо сниизить скорость.
Пример 5. Два тела массами связаны нитью. Первое тело тянут вправо с силой по поверхности с коэффициентом трения . Определите силу натяжения нити, связывающей тела. С каким ускорением движутся тела? Оборвётся ли нить, если поместить тела на поверхность с коэффициентом трения , а максимальная сила натяжения нити ?
Решение. Расставим силы, действующие на тела (рис. 21):
Рис. 21
Выберем ось вдоль силы и ось перпендикулярно ей.
Второй закон Ньютона для двух тел в проекции на ось :
,
для первого тела на ось :
;
для второго тела:
.
Выразим ускорение из проекции , подставляя силы трения:
,
.
Теперь запишем второй закон Ньютона для второго тела:
,
откуда
,
,
.
Если , то , тела движутся равномерно, а сила натяжения нити останется прежней, . Нить не порвётся.
Пример 6. На вершине наклонной плоскости, с углом при основании укреплён неподвижный блок. Через блок перекинута невесомая и нерастяжимая нить . К нити привязаны два тела: со стороны плоскости и с другой. Коэффициент трения при движении тела по поверхности равен . Какова сила натяжения нити и ускорения тел?
Решение. Силы, действующие на тела, представлены на рисунке 22.
Рис. 22
Запишем 2-ой закон Ньютона для первого тела в проекциях:
,
.
С учётом, что , получим .
Для второго тела в проекции на :
.
Решая совместно два уравнения, получим (учитывая, что и )
,
.
Рис. 23 |
Из этих же уравнения получим силу натяжения нити:
.
Пример 7. Какую горизонтальную силу нужно приложить к тележке массой , чтобы бруски массой и (рис. 23) относительно неё не двигались? Трением пренебречь.
Решение. На рисунке 24 изображены силы, действующие на тела.
Рис. 24
Если трения нет и бруски неподвижны относительно тележки, то 2-й закон Ньютона в проекциях для тел примет вид:
1) для тележки:
,
;
2) для бруска :
,
;
3) для бруска :
,
;
4)
5)
Решая совместно получим:
Рис. 25 |
.
Рассматривая уравнения двух брусков совместно, получим:
Тогда .
Пример 8. Горизонтальный диск вращают с угловой скоростью вокруг вертикальной оси (рис. 25). На поверхности диска в гладкой радиальной канавке находятся грузы и массами и , радиусы их вращения , . Найти силы натяжения н и тей.
Решение. Рассмотрим силы, действующие на тела, и ускорения тел (рис. 26). Уравнение 2-го закона в проекциях имеет вид:
Рис. 26 |
1) .
2) .
.
Рис. 27 Рис. 28
Пример 9. Два небольших по размерам груза с массами и связаны нитью длиной и прикреплены к оси нитью длиной , составляющей угол с осью (см. рис. 27). Грузы находятся на горизонтальной платформе и вращаются вместе с ней вокруг вертикальной оси . При какой постоянной угловой скорости грузы будут давить на платформу с одной и той же силой? Трение между грузами и платформой пренебрежимо мало.
Решение. На рисунке 28 изображены силы, действующие на грузы .
Для первого груза уравнения 2-го Закона Ньютона в проекции имеют вид:
;
,
;
Для второго груза:
Из равенства следует , поэтому .
Тогда из проекции на следует:
.
Рис. 29 |
Пример 10. Найдите ускорения тел системы, изображённой на рисунке 29. Сила приложена по направлению нити к одному из тел массы . Участки нити по обе стороны от лёгкого блока, прикреплённого к телу массы параллельны.
Решение. Силы, действующие на тела, изображены на рисунке 30.
Рис. 30
Для первого тела:
.
Для второго тела:
.
Для третьего тела:
.
Т. к. нить нерастяжима, то смещение второго тела к блоку равно смещению первого тела от блока . Т. к. блок сам смещается с ускорением, то к смещению первого блока добавится смещение :
.
Из (2) и (3) следует .
Тогда, решая совместно (1), (4) и (2), получим:
,
тогда
.
Сила трения – сила механического сопротивления, возникающая в плоскости соприкосновения двух прижатых друг к другу тел при их относительном перемещении.
Сила сопротивления, действующая на тело, направлена противоположено относительному перемещению данного тела.
Сила трения возникает по двум причинам: 1) первая и основная причина заключается в том, что в местах соприкосновения молекулы веществ притягиваются друг к другу, и для преодоления их притяжения требуется совершить работу. Соприкасающиеся поверхности касаются друг друга лишь в очень небольших по площади местах. Их суммарная площадь составляет от общей (кажущейся) площади соприкосновения. При скольжении площадь реального соприкосновения не остается неизменной. Сила трения (скольжения) будет изменяться в процессе движения. Если тело, которое скользит, прижать сильнее к телу, по которому происходит скольжение, то вследствие деформации тел площадь пятен соприкосновения (и сила трения) увеличится пропорционально прижимающей силе.
$$F_\text{тр} \sim F_\text{приж}$$
2) вторая причина возникнове ния силы трения – это наличие шероховатостей (неровностей) поверхностей, и деформация их при движении одного тела по поверхности другого. Глубина проникновения (зацепления) шероховатостей зависит от прижимающей силы, а от этого зависит и величина деформаций. Последние, в свою очередь, определяют величину силы трения: .
При относительном скольжении обе причины имеют место, потому характер взаимодействия имеет вид простого соотношения:
сила трения скольжения (формула Кулона - Амонтона), где
коэффициент трения скольжения,
сила реакции опоры, равная прижимающей силе.
Величина коэффициента трения различна для разных комбинаций трущихся веществ даже при одинаковой их обработке (силы притяжения и упругие свойства зависят от рода вещества).
Если между трущимися поверхностями будет находится смазка, то сила притяжения изменится заметным образом (будут притягиваться другие молекулы, и сила трения скольжения частично заменится силой вязкого трения, которую мы рассмотрим ниже).
Если на тело, лежащее на горизонтальной поверхности, действует горизонтальная сила , то движение будет вызвано этой силой только в том случае, когда она станет больше некоторого значения . До начала движения внешняя сила скомпенсирована силой трения покоя.
Рис. 13 |
Сила трения покоя всегда равна внешней силе, параллельной поверхности, и возникает по причине притяжения между молекулами в областях пятен соприкосновения и деформации шероховатостей.
Сила трения покоя различна в разных участках поверхности по которой будет происходить движение. Если тело долго лежит на поверхности, то вследствие вибраций (они всегда присутствуют на поверхности Земли) площадь пятен соприкосновения незначительно увеличится. Поэтому для начала движения придётся преодолеть немного большую силу трения, чем сила трения скольжения. Данное явление называется явлением застоя. С этим явлением мы сталкиваемся, например передвигая мебель в комнате. (На рисунке 13 превосходство трения покоя над трением скольжения сильно преувеличено).
Силой трения покоя мы пользуемся для перемещения на лыжах или просто при ходьбе.
Рассмотренные виды силы трения относятся к сухому трению или внешнему. Но есть еще один вид силы трения – вязкое трение.
При движении тела в жидкости или газе происходят достаточно сложные процессы обмена молекулами между слоями обтекающей жидкости или газа. Эти процессы называют процессами переноса.
При небольших скоростях движения тела относительно газа или жидкости сила сопротивления будет определяться выражением:
закон Стокса для шара, где
вязкость вещества, в котором движется тело;
средний поперечный размер (радиус) тела;
относительная скорость тела;
коэффициент, соответствующей сферической форме тела.
Вывод о величине скорости (большая она или маленькая) можно сделать, определив безразмерный коэффициент, называемый числом Рейнольдса:
число Рейнольдса, где
плотность вещества, в которой движется тело.
Если , то движение газа (жидкости) вокруг тела ламинарное (слоистое), и скорости можно считать малыми.
Если , то движение газа (жидкости) вокруг тела турбулентное (с завихрениями), и скорости можно считать большими.
В последнем случае на образование вихрей тратится большая часть кинетической энергии тела, а значит, сила трения становится большей, а зависимость перестаёт быть линейной.
сила вязкого трения при больших скоростях, где
площадь поперечного сечения тела,
постоянная величина, зависящая от поперечных размеров тела.
Часто последнюю формулу можно видеть в виде:
\[F_\text{тр} = \beta v^2.\]
Число Рейнольдса, выбранное равным , в действительности определяется конкретной задачей (условиями) и может принимать другие значения того же порядка. Объясняется это тем, что зависимость силы вязкого трения от скорости носит сложный характер: при некотором значении скорости линейная зависимость начинает нарушаться, а при некотором значении скорости эта зависимость становится квадратичной.
Рис. 14 |
В промежутке от до степень принимает дробные значения (рис. 14) . Число Рейнольдса характеризует состояние динамической системы, при котором движение слоёв остаётся ламинарным, и сильно зависит от внешних условий. К примеру: стальной шар, двигаясь в воде вдали от границ жидкости (в океане, озере) сохраняет ламинарным движение слоёв при , а тот же шар, движущийся в вертикальной трубе немного большего, чем шар, радиуса, заполненной водой, уже при вызовет появление завихрений воды вокруг шара. (Отметим, что число Рейнольдса не единственное, применяемое для описания подобного движения. Например, применяют ещё числа Фруда и Маха.)
Из-за такой сложной зависимости силы сопротивления от размеров, формы тела и его скорости рассчитать с необходимой точностью силу сопротивления невозможно. Потому приходится создавать макеты летательных аппаратов и измерять силу сопротивления опытным путём, продувая воздух в аэродинамических трубах.
Пример 7. Сила сопротивления воздуха, действующая на капли тумана, пропорциональна произведению скорости на радиус капель: . Капли радиуса , падая с большой высоты, у земли имеют скорость около . Какую скорость будут иметь капли, радиус которых в два раза меньше? В десять раз меньше?
Решение: Капля падает с постоянной скоростью, т. к. сила тяжести скомпенсирована силой вязкого трения о воздух: или , откуда .
Из полученного результата следует, что скорость капли прямо пропорциональна квадрату радиуса. Если радиус капли уменьшится в два раза, то скорость её падения уменьшится в четыре раза, и составит ; а если радиус окажется в десять раз меньше, то скорость будет в сто раз меньше, т. е. .
Задача любопытна тем, что может объяснить почему облака не падают. Ведь облака – это туман, который не падает из-за наличия восходящих потоков воздуха. На нижней границе облака находятся наиболее крупные капли. Поднимаясь, скорость потока уменьшается, т. к. он совершает работу над встретившимся воздухом и увеличивает свою потенциальную энергию. Раз скорость потока в верхней части облака меньше, то и размер капель там тоже меньше. Капли «висят» над поверхностью земли на постоянной высоте.
Анализируя законы Кеплера, описывающие движение планет, И. Ньютон в 1667 году пришёл к открытию закона всемирного тяготения:
\[\boxed{F = G \frac{mM}{r^2}},\]
где гравитационная постоянная.
Все тела во Вселенной взаимно притягиваются друг к другу с силами прямо пропорциональными произведению их масс и обратно пропорциональными квадрату расстояния между ними.
В такой форме закон справедлив только для двух тел, которые можно считать материальными точками. Однако можно доказать, что для двух однородных тел шарообразной формы эта форма записи закона тоже справедлива.
Измерить величину гравитационной постоянной удалось английскому физику Г. Кавендишу в 1798 году.
С помощью крутильных весов и свинцовых шаров ему удалось получить значение гравитационной постоянной:
\[\boxed{G = 6,67259 \cdot 10^{-11}\ \frac{\mathrm{Нм}^2}{\mathrm{кг}^2}}.\]
Второй закон Ньютона позволяет записать для силы, с которой тело притягивается к Земле: , тогда ускорение свободного падения на поверхности Земли (измерено Галилеем и Ньютоном), на расстоянии, большем радиуса на величину , ускорение свободного падения находится по формуле:
ускорение свободного падения на высоте от поверхности Земли.
Силой тяжести называют силу, с которой тело притягивается к планете:
\[\boxed{F = mg} - \mathrm{сила}\ \mathrm{тяжести}\]
Рассмотрим твёрдое тело, расположенное на горизонтальной неподвижной опоре: под действием силы тяжести тело деформируется. Если тело находится на опоре, то на нижний слой действуют все верхние слои, и, как следствие, этот слой деформируется наибольшим образом. На предпоследний слой действует меньшее количество слоёв, и он деформируется меньше. Таким образом, тело, бывшее прямоугольным, примет вид трапеции. Нижний слой приблизился при такой деформации к центру тела, а значит, возникла сила упругости, направленная в сторону, противоположную направлению смещения частиц при деформации. Сила упругости, возникшая внутри данного тела, направлена перпендикулярно опоре. Эту силу, созданную деформированным телом и приложенную к опоре, называют весом тела. Опора под действием веса деформируется. Противоположная весу сила упругости действует на данное тело со стороны деформированной опоры и тоже направлена перпендикулярно опоре, но называется силой реакции опоры (от слова normal - перпендикуляр).
Рис. 9 |
На рисунке 9 тело не касается опоры для того, чтобы показать, что вес приложен к опоре, а сила реакции опоры к телу. В действительности площадь реального соприкосновения твёрдых тел невелика. Большей частью между телами находится тонкий слой воздуха.
Вполне очевидно, что если опоры нет, то и веса тело иметь не будет. Такое случится в том случае, если тело движется под действием только одной силы – силы тяготения.
Невесомостью называют состояние тела, когда оно движется под действием только силы тяготения.
Так же легко понять, что если на тело действует две силы (сила тяжести и сила реакции опоры), то эти силы не обязательно равны друг другу. Одна из них может быть больше другой.
Рассмотрим движение тела, помещённого в лифт. Пусть сам лифт движется с ускорением . Такое ускорение будет в двух случаях: 1) лифт поднимается равно ускорено, 2) лифт опускается равнозамедленно. Второй закон Ньютона для данного тела примет вид:
Рис. 10 |
При рассмотрении данного движения из лабораторной неподвижной системы отсчёта увидим, что в проекции на вертикальную ось второй закон запишется следующим образом:
откуда
Но по третьему закону Ньютона знаем, что сила реакции опоры и вес тела равны и противоположны, следовательно:
тогда: вес тела, движущегося с ускорением, направленным вверх (рис. 10).
Не трудно проследить за тем, что мы получим, если ускорение тела будет направлено вниз.
В проекции на ось ускорение проецируется со знаком <<>>, что даст окончательную формулу для веса:
вес тела, движущегося с ускорением, направленным вниз.
Или в общем случае: вес тела, движущегося с ускорением.
Рис. 11а |
Подобным образом можно получить выражение для веса тела, движущегося равномерно по выпуклому участку дороги.
вес тела, движущегося с ускорением, направленным вниз (выпуклая дорога).
вес тела, движущегося с ускорением, направленным вверх (вогнутая дорога).
Важное дополнение:
Для рассматриваемой силы, называемой весом, важно понимать и уметь правильно изображать точку приложения этой силы.
На рисунке 11а показан лифт, у которого нет ускорения. Тогда сила тяжести равна силе реакции опоры . А по третьему закону Ньютона, сила реакции опоры равна весу тела. Точка приложения силы тяжести расположена в геометрическом центре тела, если тело однородно и правильной формы. Точка приложения силы реакции опоры должна быть изображена внутри тела вблизи с нижней поверхностью тела на линии действия силы тяжести. Последнее свойство на рисунке не выдержано для удобства изображения (иначе силы на рисунке будут накладываться друг на друга). Точка приложения веса тела находится внутри опоры (пола лифта) вблизи поверхности на линии действия силы реакции опоры.
Рис. 11б Рис. 11в |
На рисунке 11б ускорение лифта направлено вниз. Тогда сила реакции опоры меньше силы тяжести . А вес снова равен силе реакции опоры.
На рисунке 11в ускорение лифта направлено верх. Тогда сила реакции опоры больше силы тяжести . А вес снова равен силе реакции опоры.
Пример 5. Определить среднюю плотность Солнца, если его масса равна , а ускорение свободного падения на поверхности приблизительно составляет .
Решение. Так как , то можем найти радиус Солнца: . Считая Солнце шаром найденного радиуса и известной массы, можем найти среднюю плотность.
\[\rho = \frac MV = \frac{M}{\frac 43 \pi R^3} = \frac{3M}{4\pi \left(\frac{GM}{g}\right)^{\frac 32}} = \frac{3}{4\pi \sqrt M}\left(\frac gG\right)^{\frac 32}.\]
Количественно ответ будет таким: . Однако следует отметить, что этот ответ таков в данной модели. В действительности плотность Солнца не одинакова в недрах светила, и является функцией расстояния от центра. Мы же посчитали её везде одинаковой.
Рис. 12 |
Пример 6. На сколько изменится сила притяжения двух одинаковых шаров, изготовленных из одинакового вещества плотностью , если у одного из них создать полость сферической формы, расположенную внутри одного из них в его центре? Изначально шары касались друг друга и притягивались с силой . Радиус полости равен половине радиуса шара (рис. 12).
Решение. Сила взаимодействия определяется законом всемирного тяготения. Т. к. формы тел шарообразные, то мы можем применить известную формулу закона: .
Массы тел равны, обозначим их , Масса извлечённой части . Новая сила будет меньше первоначальной на величину силы взаимодействия извлечённой части с первым шаром (принцип суперпозиции сил). Следовательно:
\[F_2 = G\frac{m_0 m}{(2R)^2} = G\frac{\frac 18 mm}{(2R)^2} = \frac 18 F\frac{mm}{(2R)^2} = \frac 18 F = 10\ \text{Н}.\]
Сила притяжения шаров станет меньше на , следовательно, станет равной .