-
Описание
многократный призер Всероссийской олимпиады по математике. Преподаватель кафедры высшей математики и кафедры математических основ управления МФТИ, лауреат конкурса Фонда «Династия» в номинации «Молодой учитель»
-
Место работы
кафедра высшей математики МФТИ
-
VK
http://vk.com/molch64
9 февраля 2021 г.
Введение
Действия с натуральными и целыми числами знакомы вам с младших классов, когда математика сводится по существу к арифметике. Полезно и поучительно подойти к ним, владея аппаратом алгебры. Задачи о делимости и уравнения в целых числах служат излюбленным ...
463 просмотра
2 июня 2020 г.
§2 Десятичная запись числа
Всякое натуральное число `N` единственным образом представимо в десятичной записи, которая имеет вид
`N=a_n*10^n+a_(n-1)*10^(n-1)+cdots+a_2*10^2+a_1*10+a_0`,
где `n` – натуральное число или `0`, а `a_n,a_(n-1),cdots,a_2,a_1,a_0`, – ...
455 просмотров
2 июня 2020 г.
§1. Делимость целых чисел
1.1. Основные понятия и факты
Напомним основные понятия и факты.
Множество натуральных чисел обозначается символом `NN`.
Множество целых чисел обозначается символом `ZZ`
Множество рациональных чисел обозначается символом `QQ`.
Множество действ...
454 просмотра
7 декабря 2019 г.
3.4. Детальный анализ игры
Данный параграф появился в связи с тем, что с 2015 года в ЕГЭ в задаче по теме теории игр требуется не только указать стратегию выигравшего, но и провести более подробный анализ, нарисовав дерево игры (о чём прямо сказано в условии) и ответив на дополн...
543 просмотра
7 декабря 2019 г.
3.2. Анализ с конца
Вторым важным способом решения задач является решение задачи с конца. Предположим (хотя это и не всегда верно), что для обоих игроков одни и те же позиции являются выигрышными.
Вернёмся к примеру 9.
Для нахождения выигрышной стратегии рассмотрим общу...
526 просмотров
4 декабря 2019 г.
3.4. Детальный анализ игры
Данный параграф появился в связи с тем, что с 2015 года в ЕГЭ в задаче по теме теории игр требуется не только указать стратегию выигравшего, но и провести более подробный анализ, нарисовав дерево игры (о чём прямо сказано в условии) и ответив на дополн...
967 просмотров
4 декабря 2019 г.
3.3. Дерево игры
Данный способ является разновидностью анализа с конца и заключается в том, что мы будем анализировать в знаках «`+`» и «`-`» не все позиции, а только те, в которые можно прийти из начальной позиции. Для этого мы нарисуем дерево ...
936 просмотров
4 декабря 2019 г.
3.2. Анализ с конца
Вторым важным способом решения задач является решение задачи с конца. Предположим (хотя это и не всегда верно), что для обоих игроков одни и те же позиции являются выигрышными.
Вернёмся к примеру 9.
Для нахождения выигрышной стратегии рассмотрим общу...
981 просмотр
4 декабря 2019 г.
§ 2. Стратегия. Правильная игра
Вернёмся к примеру 5 и зададимся вопросом: кто выиграет?
В общем случае может выиграть любой из игроков – для этого его сопернику достаточно «подыграть». Однако второй игрок может выиграть при любых ходах первого игрока. Для этого ем...
947 просмотров
4 декабря 2019 г.
§ 1. Математические игры
Будем называть игру математической, если для неё выполнены следующие условия:
Условия Математической игры
Условие 1. В игре участвуют два игрока.
Условие 2. Игра заканчиваются выигрышем одного из участников. Это автоматически означает проигрыш с...
1000 просмотров
4 декабря 2019 г.
Элементы теории математических игр
Игрой
называется процесс, в котором участвуют две или более стороны, ведущие борьбу за реализацию своих интересов.
Согласно этому определению, довольно много жизненных ситуаций можно считать играми - для этого требуется лишь борьба двух или б...
888 просмотров
12 февраля 2019 г.
§8. Понятие случайного события. Вероятность
Определение
Случайным событием, связанным с некоторым опытом, называется всякое событие, которое при осуществлении этого опыта либо происходит, либо не происходит.
Первый пример случайного события – «выпадение герба» при под...
2670 просмотров
12 февраля 2019 г.
§7. Бином Ньютона
На разворотах многих школьных учебников по алгебре за 7 класс написаны следующие формулы:
(a+b)2=a2+2ab+b2, (a+b)3=a3+3a2b+3ab2+b3(a+b)^2 = a^2 + 2ab + b^2,\:\:\: (a+b)^3 = a^3+3a^2b + 3ab^2 + b^3.
Обобщим эту формулу для более...
1612 просмотров
12 февраля 2019 г.
§6. Треугольник Паскаля
Вернёмся к арифметическим свойствам количеств сочетаний и докажем свойство 2:
Доказательство Свойства 2
Cn+1k+1=Cnk+1+CnkC_{n+1}^{k+1} = C_n^{k+1} + C_n^k, если 0≤k+1≤n0 \leq k + 1 \leq n. Действительно,
Cnk+1+Cnk=n!(k+1)!(n-k-1)!+...
1542 просмотра
12 февраля 2019 г.
§5. Формула включений и исключений
Формулу включений и исключений для множеств вы проходили в предыдущем задании («Элементы теории множеств. Элементы логики»), и выглядела для двух множеств она так:
mA∪B=mA+mB-mA∩Bm\left( A \bigcup B \right) = m\left( A \right...
1636 просмотров
12 февраля 2019 г.
§4. Правило суммы
Правило суммы
Если объект a1a_1 можно выбрать n1n_1 способами, а объект a2a_2 можно выбрать n2n_2 способами, причём результаты выбора объектов a1a_1 и a2a_2 никогда не совпадают, то выбор «либо a1a_1, либо a2a_2» можно осуществить n1+n...
1526 просмотров
12 февраля 2019 г.
§3. Сочетания
В некоторых задачах при выборе kk элементов из nn не важен порядок их выбора – важно лишь множество выбранных элементов.
Определение
Всякий выбор неупорядоченных kk элементов из множества, состоящего из nn элементов, называется сочетанием и...
1525 просмотров
12 февраля 2019 г.
§2. Размещения и перестановки
Определение
Всякий выбор упорядоченных kk элементов[3] из множества, состоящего из nn элементов, называется размещением из nn элементов по kk элементов. Количество размещений из nn элементов по kk обозначается через AnkA_n^k. Символ AnkA...
1505 просмотров
12 февраля 2019 г.
§1. Правило произведения
Решение многих комбинаторных задач основывается на двух фундаментальных правилах, которые называются правилом произведения и правилом суммы. В этом параграфе мы познакомимся с первым из них. Однако проведём небольшой мысленный эксперимент.
Представьте...
1738 просмотров
11 января 2019 г.
§4. Решение уравнений в целых числах
4.1. Линейное диофантово уравнение с двумя неизвестными
В этом разделе рассматривается линейное уравнение
`ax+by=c`,
где `a`, `b`, `c` – целые числа, причём `ab!=0` (иначе это уравнение с не более одной неизвестной).
Уравнения с целым...
3284 просмотра
11 января 2019 г.
§3. Деление целых чисел с остатком
3.1. Основные понятия и факты
Теорема о делении с остатком
Всякое целое число `m` можно разделить с остатком на любое натуральное число `n`, т. е. однозначным образом представить в виде:
`m=nq+r,0<=r<n`,
где `q` – (це...
1583 просмотра
11 января 2019 г.
Рекомендуемая литература
Агаханов Н.Х., Подлипский О.К. Математические олимпиады Московской области 1993-2005. Изд. 2. - М.: МФТИ, 2006.
Алтуфова Н.Б., Устинов А.В. Алгебра и теория чисел. Сборник задач для математических школ, 2-е издание. М.: МЦНМО, 2002.
Виленкин Н.А., ...
1701 просмотр
11 января 2019 г.
§1. Делимость целых чисел
1.1. Основные понятия и факты
Напомним основные понятия и факты.
Множество натуральных чисел обозначается символом `NN`.
Множество целых чисел обозначается символом `ZZ`
Множество рациональных чисел обозначается символом `QQ`.
Множество действ...
1538 просмотров
28 ноября 2018 г.
3.4. Детальный анализ игры
Данный параграф появился в связи с тем, что с 2015 года в ЕГЭ в задаче по теме теории игр требуется не только указать стратегию выигравшего, но и провести более подробный анализ, нарисовав дерево игры (о чём прямо сказано в условии) и ответив на дополн...
1633 просмотра
28 ноября 2018 г.
3.3. Дерево игры
Данный способ является разновидностью анализа с конца и заключается в том, что мы будем анализировать в знаках «`+`» и «`-`» не все позиции, а только те, в которые можно прийти из начальной позиции. Для этого мы нарисуем дерево ...
1659 просмотров
28 ноября 2018 г.
3.2. Анализ с конца
Вторым важным способом решения задач является решение задачи с конца. Предположим (хотя это и не всегда верно), что для обоих игроков одни и те же позиции являются выигрышными.
Вернёмся к примеру 9.
Для нахождения выигрышной стратегии рассмотрим общу...
1589 просмотров
28 ноября 2018 г.
3.1. Удачный ход
Одним из способов нахождения выигрышных стратегий является удачный ответ на ход противника, например, учитывающий симметрию.
Пример 7
Два игрока по очереди ставят на шахматную доску слонов так, чтобы фигуры не били друг друга. Цвет фигур значения...
1667 просмотров
28 ноября 2018 г.
§ 1. Математические игры
Будем называть игру математической, если для неё выполнены следующие условия:
Условия Математической игры
Условие 1. В игре участвуют два игрока.
Условие 2. Игра заканчиваются выигрышем одного из участников. Это автоматически означает прои...
1537 просмотров
28 ноября 2018 г.
Элементы теории математических игр
Игрой
называется процесс, в котором участвуют две или более стороны, ведущие борьбу за реализацию своих интересов.
Согласно этому определению, довольно много жизненных ситуаций можно считать играми – для этого требуется лишь борьба двух...
1681 просмотр
8 марта 2018 г.
Литература
1. Генкин С.А., Итенберг И.В., Фомин Д.В. Ленинградские математические кружки. – Киров, 1994.
2. Кутасов А.Д., Пиголкина Т.С., Чехлов В.И., Яковлева Т.Х. Пособие по математике для поступающих в ВУЗы. /под ред. Г.Н .Яковлева – М.: Наука, 1988.
2491 просмотр
8 марта 2018 г.
§8. Понятие случайного события. Вероятность
Определение. Случайным событием, связанным с некоторым опытом, называется всякое событие, которое при осуществлении этого опыта либо происходит, либо не происходит.
Первый пример случайного события – «выпадение герба» при подбра...
2906 просмотров
8 марта 2018 г.
§7. Бином Ньютона
На разворотах многих школьных учебников по алгебре за 7 класс написаны следующие формулы:
(a+b)2=a2+2ab+b2, (a+b)3=a3+3a2b+3ab2+b3(a+b)^2 = a^2 + 2ab + b^2,\:\:\: (a+b)^3 = a^3+3a^2b + 3ab^2 + b^3.
Обобщим эту формулу для более...
2985 просмотров
7 марта 2018 г.
§6. Треугольник Паскаля
Вернёмся к арифметическим свойствам количеств сочетаний и докажем свойство 2: Cn+1k+1=Cnk+1+CnkC_{n+1}^{k+1} = C_n^{k+1} + C_n^k, если 0≤k+1≤n0 \leq k + 1 \leq n. Действительно,
Cnk+1+Cnk=n!(k+1)!(n-k-1)!+n!k!(n-k)!=n!((n-k)+(k+1))(k+1)!...
4100 просмотров
7 марта 2018 г.
§5. Формула включений и исключений
Формулу включений и исключений для множеств вы проходили в предыдущем задании («Элементы теории множеств. Элементы логики»), и выглядела для двух множеств она так:
mA∪B=mA+mB-mA∩Bm\left( A \bigcup B \right) = m\left( A \right...
3478 просмотров
7 марта 2018 г.
§4. Правило суммы
Правило суммы. Если объект a1a_1 можно выбрать n1n_1 способами, а объект a2a_2 можно выбрать n2n_2 способами, причём результаты выбора объектов a1a_1 и a2a_2 никогда не совпадают, то выбор «либо a1a_1, либо a2a_2» можно осуществить n1+n2n_1...
2278 просмотров
6 марта 2018 г.
§3. Сочетания
В некоторых задачах при выборе kk элементов из nn не важен порядок их выбора – важно лишь множество выбранных элементов.
Определение. Всякий выбор неупорядоченных kk элементов из множества, состоящего из nn элементов, называется сочетанием из nn...
2361 просмотр
6 марта 2018 г.
§2. Размещения и перестановки
Определение. Всякий выбор упорядоченных kk элементов 3{\:}^3 из множества, состоящего из nn элементов, называется размещением из nn элементов по kk элементов. Количество размещений из nn элементов по kk обозначается через AnkA_n^k. Символ AnkA_n...
2588 просмотров
6 марта 2018 г.
§1. Правило произведения
Решение многих комбинаторных задач основывается на двух фундаментальных правилах, которые называются правилом произведения и правилом суммы. В этом параграфе мы познакомимся с первым из них. Однако проведём небольшой мысленный эксперимент.
Представьте...
2586 просмотров
27 февраля 2018 г.
§4. Решение уравнений в целых числах
4.1. Линейное диофантово уравнение с двумя неизвестными
В этом разделе рассматривается линейное уравнение
`ax+by=c`,
где `a`, `b`, `c` – целые числа, причём `ab!=0` (иначе это уравнение с не более одной неизвестной).
Уравнения с целым...
27861 просмотр
26 февраля 2018 г.
§3. Деление целых чисел с остатком
3.1. Основные понятия и факты
Теорема о делении с остатком
Всякое целое число `m` можно разделить с остатком на любое натуральное число `n`, т. е. однозначным образом представить в виде:
`m=nq+r,0<=r<n`,
где `q` – (...
6025 просмотров
26 февраля 2018 г.
Рекомендуемая литература
Агаханов Н.Х., Подлипский О.К. Математические олимпиады Московской области 1993-2005. Изд. 2. – М.: МФТИ, 2006.
Алтуфова Н.Б., Устинов А.В. Алгебра и теория чисел. Сборник задач для математических школ, 2-е издание. М.: МЦНМО, 2002.
Виленкин ...
2608 просмотров
26 февраля 2018 г.
§2 Десятичная запись числа
Всякое натуральное число `N` единственным образом представимо в десятичной записи, которая имеет вид
`N=a_n*10^n+a_(n-1)*10^(n-1)+cdots+a_2*10^2+a_1*10+a_0`,
где `n` – натуральное число или `0`, а `a_n,a_(n-1),cdots,a_2,a_1,a_0`, – ...
14934 просмотра
26 февраля 2018 г.
§1. Делимость целых чисел
1.1. Основные понятия и факты
Напомним основные понятия и факты.
Множество натуральных чисел обозначается символом `NN`.
Множество целых чисел обозначается символом `ZZ`
Множество рациональных чисел обозначается символом `QQ`.
Множество действ...
4152 просмотра
29 января 2018 г.
3.4. Детальный анализ игры
Данный параграф появился в связи с тем, что с 2015 года в ЕГЭ в задаче по теме теории игр требуется не только указать стратегию выигравшего, но и провести более подробный анализ, нарисовав дерево игры (о чём прямо сказано в условии) и ответив на дополн...
2675 просмотров
29 января 2018 г.
3.3. Дерево игры
Данный способ является разновидностью анализа с конца и заключается в том, что мы будем анализировать в знаках «`+`» и «`-`» не все позиции, а только те, в которые можно прийти из начальной позиции. Для этого мы нарисуем дерево ...
2766 просмотров
29 января 2018 г.
3.2. Анализ с конца
Вторым важным способом решения задач является решение задачи с конца. Предположим (хотя это и не всегда верно), что для обоих игроков одни и те же позиции являются выигрышными.
Вернёмся к примеру 9.
Для нахождения выигрышной стратегии рассмотрим общу...
4188 просмотров
29 января 2018 г.
3.1. Удачный ход
Одним из способов нахождения выигрышных стратегий является удачный ответ на ход противника, например, учитывающий симметрию.
Пример 7
Два игрока по очереди ставят на шахматную доску слонов так, чтобы фигуры не били друг друга. Цвет фигур значения...
2509 просмотров
29 января 2018 г.
§ 2. Стратегия. Правильная игра
Вернёмся к примеру 5 и зададимся вопросом: кто выиграет?
В общем случае может выиграть любой из игроков – для этого его сопернику достаточно «подыграть». Однако второй игрок может выиграть при любых ходах первого игрока. Для этого ем...
3150 просмотров
29 января 2018 г.
§ 1. Математические игры
Будем называть игру математической, если для неё выполнены следующие условия:
Условия Математической игры
Условие 1. В игре участвуют два игрока.
Условие 2. Игра заканчиваются выигрышем одного из участников. Это автоматически означает прои...
2494 просмотра
29 января 2018 г.
Элементы теории математических игр
Игрой
называется процесс, в котором участвуют две или более стороны, ведущие борьбу за реализацию своих интересов.
Согласно этому определению, довольно много жизненных ситуаций можно считать играми – для этого требуется лишь борьба двух...
2154 просмотра
Сообщение отправлено!
Сообщение не отправлено. Проверьте правильность введёных данных.