Статьи

  • НЕКОТОРЫЕ ПОЛЕЗНЫЕ ССЫЛКИ
    НЕКОТОРЫЕ ПОЛЕЗНЫЕ ССЫЛКИ
    ОЛИМПИАДНЫЕ КНИГИ:
    Из многочисленных сборников олимпиадных задач выделим следующие:
    • С. Генкин, И. Итенберг, Д. Фомин. Ленинградские математические кружки. Киров, 1994. (прекрасное хорошо разбитое на темы методическое пособие. Формально адресована 6-8 классу, но очень полезна и старшеклассникам).
    • А. Спивак. Математический кружок. 6-7 классы. МЦНМО, 2017. (Формально адресована 6-7 классу, но очень полезна и старшеклассникам).
    • А. Канель, А. Ковальджи. Как решают нестандартные задачи. МЦНМО, 2018(главная книга того, кто хочет стать "профи"-олимпиадником).
    • Н. Агаханов, О. Подлипский. Математика. Районные олимпиады. М.: Просвещение, 2010
    • Н. Агаханов, И. Богданов, П. Кожевников, О. Подлипский, Д. Терешин. Математика. Областные олимпиады. М.: Просвещение, 2010
    ЖУРНАЛЫ:
    ЗАДАЧНЫЕ БАЗЫ:
    • problems.ru (в том числе архивы многочисленных олимпиад прошлых лет)
    ЗАДАЧНЫЕ КОНКУРСЫ ПО РЕШЕНИЮ ЗАДАЧ:
  • 7. Плавание тел

    Лодка из железа, спущенная на воду, плывёт, а эта же лодка, полностью погружённая в воду (затопленная), тонет. Из этого примера видно, что одно и тоже тело может плавать, а может и тонуть. Всё зависит от того, как тело приведено в контакт с жидкостью. Поэтому имеет смысл рассмотреть два случая взаимодействия тела с жидкостью.

    1-й случай

    Тело плавает в жидкости,  т. е. находится в покое, частично погрузившись в жидкость. Это может быть любое тело, например, кусок дерева или катер. Важен сам факт плавания. При этом тело соприкасается только с жидкостью и воздухом, плавая предоставленным самому себе, свободно. На начальном этапе рассмотрения вопроса о плавании не будем учитывать вес вытесненного воздуха. На тело действует направленная вниз сила тяжести `F_sf"Т"` и направленная вверх сила Архимеда `F_sf"А"`. Поскольку сила тяжести `F_sf"Т"` равна весу тела (в вакууме), а сила Архимеда `F_sf"А"` – весу (в вакууме) вытесненной жидкости, то можно сказать, что вес тела равен весу вытесненной жидкости. При более строгом рассмотрении вопроса с учётом веса вытесненного воздуха можно показать, что вес тела в воздухе равен весу (тоже в воздухе) вытесненной жидкости.

     Итак, если тело плавает в жидкости, то вес тела в воздухе равен весу в воздухе вытесненной им жидкости.

    При решении задач, когда ситуация реальна, различием в весе в воздухе и вакууме обычно пренебрегают, приравнивая вес любого тела силе тяжести, действующей на тело.

    Задача 5

    Кусок льда объёмом V=0,1 м3V=0,1\;\mathrm м^3 плавает в воде. Найти объём  `V_1`  надводной части льда. Плотность воды  ρ1=1 г/см3\rho_1=1\;\mathrm г/\mathrm{см}^3,  плотность льда ρ2=0,9 г/см3\rho_2=0,9\;\mathrm г/\mathrm{см}^3.

    Решение

    Вес льдины `rho_2 Vg`,  вес вытесненной воды `rho_1 (V - V_1)g`. По закону Архимеда  `rho_2 Vg = rho_1 (V - V_1)g`.  Отсюда 

    V1=ρ1-ρ2Vρ1=1-ρ2ρ1·V=0,01 м3V_1=\dfrac{\left(\rho_1-\rho_2\right)V}{\rho_1}=\left(1-\dfrac{\rho_2}{\rho_1}\right)\cdot V=0,01\;\mathrm м^3.

    2-й случай

    Тело полностью погружено в жидкость и отпущено. Возьмём в руки какое-нибудь тело (кусочек дерева, стальной болт), погрузим его полностью в жидкость (например, воду) и будем удерживать неподвижно. На тело со стороны Земли действует вниз сила тяжести FТ=ρТVgF_\mathrm Т=\rho_\mathrm ТVg, а со стороны жидкости - вверх выталкивающая сила по закону Архимеда  FА=ρЖVgF_\mathrm А=\rho_\mathrm ЖVg. Здесь `V` - объём тела, ρТ\rho_\mathrm Т и ρЖ\rho_\mathrm Ж - плотность тела и жидкости. Отпустим тело. Если окажется, что FТ > FАF_\mathrm Т\;>\;F_\mathrm А,  то тело начнёт двигаться вниз, т. е. тонуть.  Если будет FТ < FАF_\mathrm Т\ <\ F_\mathrm А, то тело станет двигаться вверх, т. е. всплывать. После всплытия, когда тело будет плавать, объём погружённой в жидкость части тела окажется таким, что будет обеспечено равенство силы Архимеда (уже меньшей, чем величина FАF_\mathrm А) и силы тяжести FТF_\mathrm Т.  Итак, тело будет плавать, если ρТVg < ρЖVg\rho_\mathrm ТVg\;<\;\rho_\mathrm ЖVg, т. е. ρТ < ρЖ\rho_\mathrm Т\;<\;\rho_\mathrm Ж.  

    Мы получили условие плавания тела: тело, предварительно полностью погружённое в жидкость, плавает в жидкости, если плотность тела меньше плотности жидкости.

    Если плотности тела и жидкости равны, то полностью погружённое в жидкость тело может находиться в равновесии (покое) в любом месте жидкости, т. е. тело плавает внутри жидкости. Реально такая ситуация трудно осуществима, так как добиться строгого равенства плотностей нелегко.

    Условие плавания сформулировано для тела, предварительно полностью погружённого в жидкость. Предварительное полное погружение важно, так как, например, металлическая миска, не полностью погружённая в воду, может плавать, а полностью погружённая утонет.

    Условие плавания сформулировано для однородного тела, т. е. тела, плотность которого одинакова во всех точках тела. Это условие плавания справедливо и для неоднородного тела, например, куска льда с полостью внутри или стеклянной бутылки, заполненной частично водой и закрытой пробкой. В таком случае под плотностью тела надо понимать его среднюю плотность, т. е. отношение массы тела к его объёму.

  • 8. Воздухоплавание

    На тело, удерживаемое неподвижно в воздухе, действует выталкивающая сила, равная по закону Архимеда весу вытесненного этим телом воздуха. Если вес тела (в вакууме) больше веса вытесненного телом воздуха, то отпущенное тело падает вниз. Если вес тела меньше веса вытесненного воздуха, то отпущенное тело поднимается вверх. Это и есть условие воздухоплавания.

    Для осуществления воздухоплавания надо использовать газ, который легче воздуха. Это может быть нагретый воздух. Если суммарный вес оболочки воздушного шара, наполняющего его газа и полезного груза меньше веса вытесненного шаром воздуха, то шар будет подниматься.

    Задача 6

    Какой груз может поднять воздушный шар объёмом V=10 м3V=10\;\mathrm м^3, наполненный гелием? Плотность гелия ρг=0,18 кг/м3\rho_\mathrm г=0,18\;\mathrm{кг}/\mathrm м^3,  плотность воздуха ρв=1,29 кг/м3\rho_\mathrm в=1,29\;\mathrm{кг}/\mathrm м^3.  Масса оболочки шара m0=2,1 кгm_0=2,1\;\mathrm{кг}.

    Решение

    Объёмом груза по сравнению с объёмом шара пренебрегаем. Вес вытесненного воздуха ρвVg\rho_\mathrm вVg, вес гелия ρгVg\rho_\mathrm гVg.   Максимальная масса груза найдётся из условия:  m0g+ρгVg+mg=ρвVgm_0g+\rho_\mathrm гVg+mg=\rho_\mathrm вVg. Отсюда

    m=ρв-ρгV-m0=9 кгm=\left(\rho_\mathrm в-\rho_\mathrm г\right)V-m_0=9\;\mathrm{кг}.


  • 5. Атмосферное давление. Опыт Торричелли

    Земля окружена воздушной оболочкой, состоящей из смеси газов. Эта оболочка называется атмосферой. Каждый горизонтальный слой атмосферы сжат весом более верхних слоёв. Поэтому давление в нижних слоях атмосферы больше, чем в верхних. При этом и плотность воздуха в нижних слоях значительно больше, чем в верхних. Это связано с тем, что газы под воздействием давления могут сильно уменьшить свой объём. Жидкости же обладают очень малой сжимаемостью и практически не изменяют своей плотности даже при больших давлениях. Атмосферное давление на уровне моря равно примерно 105 Па10^5\;\mathrm{Па}, т. е. 100000 Па100000\;\mathrm{Па}. Это желательно помнить. С увеличением высоты над уровнем моря атмосферное давление уменьшается. На высоте примерно в 5,5 км5,5\;\mathrm{км} оно уменьшается вдвое.

    Значение атмосферного давления впервые определил экспериментально в 1634 г. итальянский учёный Торричелли, создав простейший ртутный барометр. Опыт Торричелли состоит в следующем. Стеклянная трубка длиной около метра, запаянная с одного конца, заполняется полностью ртутью. Затем, закрыв отверстие трубки, её переворачивают и погружают открытым концом в чашу со ртутью (см. рис.).

    Часть ртути из трубки выливается, и в ней остаётся столб ртути высотой `H`. Давление в трубке над ртутью равно нулю (если пренебречь ничтожным давлением паров ртути), так как там - пустота (вакуум):  `P_C = 0`. Давление `P_B` в точке `B` равно давлению `P_A` в точке `A`, поскольку в сообщающихся сосудах - чаше и трубке - точки `A` и `B` находятся на одном уровне. Давление `P_A` равно атмосферному давлению PатмP_\mathrm{атм}.  Поэтому PB=PатмP_B=P_\mathrm{атм}. Разность давлений `P_B - P_C = rho gH`, где `rho` - плотность ртути. Так как PB=PатмP_B=P_\mathrm{атм}  и `P_C = 0`, то Pатм =ρgHP_\mathrm{атм}\;=\rho gH. Измерив `H` и зная `rho`, можно определить атмосферное давление в условиях опыта. Торричелли нашёл, что для уровня моря H=760 ммH=760\;\mathrm{мм}.

    В опыте Торричелли каждому значению `H` соответствует определённое значение PатмP_\mathrm{атм}. Следовательно, атмосферное давление можно измерять в миллиметрах ртутного столба. Эта единица давления получила специальное название «Торр»: `1`Торр `= 1` мм. рт.ст. При этом высота столба ртути берётся той, которую он имел бы при `0^@"C"`. Атмосферное давление в `760` Торр называется нормальным атмосферным давлением. Значение этого давления называется нормальной (физической) атмосферой и обозначается 1 атм1\;\mathrm{атм}.  Зная плотность ртути  ρ=13595 кг/м3\rho=13595\;\mathrm{кг}/\mathrm м^3, находим по формуле    Pатм=ρgHP_\mathrm{атм}=\rho gH:

    1 атм=760 Торр101325 Па1,013·105 Па1\;\mathrm{атм}=760\;\mathrm{Торр}\approx101325\;\mathrm{Па}\approx1,013\cdot10^5\;\mathrm{Па}.                         

    Умножим равенство Pатм=ρgHP_\mathrm{атм}=\rho gH на площадь `S` внутреннего сечения трубки: PатмS=ρgHSP_\mathrm{атм}S=\rho gHS. Заметим, что последнее равенство можно получить и непосредственно, записав условие равновесия  столба `BC`  ртути (рис. 6). Произведение PатмSP_\mathrm{атм}S равно силе давления `F` на столб ртути `BC` снизу, вызванное наличием атмосферного давления, а `rho gHS` есть вес столба `BC` ртути в трубке. Поэтому говорят, что в опыте Торричелли давление, создаваемое весом столба ртути, уравновешивается атмосферным давлением.

    Замена ртути водой в опыте Торричелли требует высоты трубки более `10` м. Действительно, при нормальном атмосферном давлении 1 атм1\;\mathrm{атм} для значения плотности воды ρ=1000 кг/м3\rho=1000\;\mathrm{кг}/\mathrm м^3 из формулы Pатм=ρgHP_\mathrm{атм}=\rho gH следует, что H10,3 мH\approx10,3\;\mathrm м. Это означает, что нормальное атмосферное давление уравновешивается столбом воды высотой `10,3` м.   

    Несколько замечаний для решения задач. Полезно помнить, что плотность воды равна 1000 кг/м31000\;\mathrm{кг}/\mathrm м^3 и гидростатическое давление в 105 Па10^5\;\mathrm{Па} создаётся в воде на глубине приблизительно 10 м10\;\mathrm м. Проверьте это, используя формулу для гидростатического давления.

    Поскольку плотность воздуха намного меньше плотности воды, изменением атмосферного давления, связанным с перепадом высоты в несколько метров, можно в ряде случаев пренебречь по сравнению с гидростатическим давлением воды, вызванным таким же перепадом высоты.

    Задача 2

    В сосуд налита вода (см. рис.).

    Расстояние от поверхности воды до дна H=0,5 мH=0,5\;\mathrm м. Площадь дна S=0,1 м2S=0,1\;\mathrm м^2. Найти гидростатическое давление `P_1` и полное давление `P_2` вблизи дна. Найти силу давления воды на дно.

    Решение

    Плотность воды ρ=103 кг/м3\rho=10^3\;\mathrm{кг}/\mathrm м^3. Гидростатическое давление

    P1=ρgH=103 кг/м3·9,8 м/с2·0,5 м5·103 Па=5000 ПаP_1=\rho gH=10^3\;\mathrm{кг}/\mathrm м^3\cdot9,8\;\mathrm м/\mathrm с^2\cdot0,5\;\mathrm м\approx5\cdot10^3\;\mathrm{Па}=5000\;\mathrm{Па}.

    Полное давление складывается из атмосферного Pатм=105ПаP_\mathrm{атм}=10^5\mathrm{Па} и гидростатического:

     P2=Pатм+P1=100000 Па+5000 Па=105000 ПаP_2=P_\mathrm{атм}+P_1=100000\;\mathrm{Па}+5000\;\mathrm{Па}=105000\;\mathrm{Па}.

    Интересно, что полное давление мало отличается от атмосферного, так как толщина слоя воды достаточно мала. Сила давления воды на дно F=P2·S=105000 Па·0,1 м2=10500 HF=P_2\cdot S=105000\;\mathrm{Па}\cdot0,1\;\mathrm м^2=10500\;H.

    Задача 3

    На лёгкий поршень площадью `S`, касающийся поверхности воды, поставили гирю массой `m` (см. рис.).

    Высота слоя  воды в сосуде с вертикальными стенками  `H`. Определить давление в жидкости вблизи дна. Плотность воды `rho`.

    Решение

    На поршень снизу со стороны воды действует направленная вверх сила `F_1 = P_1 S`, где `P_1` давление вблизи поршня. Сверху на поршень действует гиря и атмосферный воздух с силой `F_2 = mg + P_"атм" S`, где g=9,8 м/с2g=9,8\;\mathrm м/\mathrm с^2Pатм=105 ПаP_\mathrm{атм}=10^5\;\mathrm{Па} - атмосферное давление. Поршень находится в равновесии. Поэтому `F_1 = F_2`. Итак,  `P_1 S = mg + P_"атм" S`. Отсюда  `P_1 = P_"атм" + (mg)/S`.

    Этот  результат можно писать и сразу, говоря, что давление под поршнем равно атмосферному `P_"атм"` и добавочному давлению  `mg//S`, создаваемому гирей.

    Разность давлений в воде у дна и вблизи поршня: `P_2 - P_1 = rho gH`.

    Отсюда  `P_2 = P_1 + rho gH`.  

    Окончательно, давление у дна `P_2 = P_"атм" + (mg)/S + rho gH`.


  • 6. Закон Архимеда

    На поверхности твёрдого тела, погружённого в жидкость (газ), действуют силы давления. Эти силы увеличиваются с глубиной погружения (см. рис.), и на нижнюю часть тела будет действовать со стороны жидкости большая сила, чем на верхнюю.

    Равнодействующая всех сил давления, действующих на поверхность тела со стороны жидкости, называется выталкивающей силой. Другое название этой силы - сила Архимеда. Истинная причина появления выталкивающей силы - это наличие различного гидростатического давления в разных точках жидкости.

    Закон Архимеда

    выталкивающая сила, действующая на тело, погружённое в жидкость, равна по модулю весу вытесненной жидкости и противоположно ему направлена.

    Закон открыт величайшим механиком и математиком Древней Греции Архимедом (287 - 212 г.г. до н. э.).

    Приведённая формулировка закона Архимеда справедлива, если вся поверхность тела соприкасается с жидкостью или если тело плавает в жидкости, или если тело частично погружено в жидкость через свободную (не соприкасающуюся со стенками) поверхность жидкости.

    Если же часть поверхности тела плотно прилегает к стенке или дну сосуда так, что между ними нет прослойки жидкости, то закон Архимеда неприменим!

    Иллюстрацией к сказанному служит опыт, когда ровную нижнюю поверхность деревянного кубика натирают парафином и плотно приставляют ко дну сосуда (см. рис.).

    Затем осторожно наливают воду. Кубик не всплывает, т. к. со стороны воды на него действует сила, прижимающая его ко дну, а не выталкивающая вверх. Известно, что это представляет опасность для подводной лодки, лёгшей на грунт.

    Закон Архимеда применим и в случае погружения тела в газ.
    Строго говоря, в законе Архимеда вес вытесненной жидкости надо брать в вакууме, а не в воздухе, так как вес жидкости в воздухе меньше веса этой жидкости в вакууме на величину веса воздуха, вытесненного этой жидкостью. Но это различие обычно мало, и им пренебрегают.

    Если тело погружено в жидкость частично, то результирующая выталкивающая сила со стороны жидкости и воздуха равна сумме веса вытесненной жидкости и вытесненного этим телом воздуха. Здесь оба веса берутся в вакууме.

    Задача 4

    Железный предмет, полностью погружённый в воду, весит меньше, чем в воздухе на F=100 HF=100\;\mathrm H.   Определить вес предмета в воздухе. Плотность железа ρ=7900 кг/м3\rho=7900\;\mathrm{кг}/\mathrm м^3.

    Решение

    Выталкивающей силой в воздухе можно пренебречь. Пусть вес тела в воздухе `Q`.  Тогда его вес в воде `Q - rho_в Vg`.  Здесь `V` - объём тела, ρв=1000 кг/м3\rho_\mathrm в=1000\;\mathrm{кг}/\mathrm м^3 - плотность воды, g=9,8 м/с2g=9,8\;\mathrm м/\mathrm с^2. Разность этих весов равна  `F`. Поэтому `Q - (Q - rho_в Vg) = F`. 

    Отсюда `V = F/(rho_в g)`.  Вес тела в воздухе 

    Q=ρgV=Fρρв=100 H·7900 кг/м31000 кг/м3=790 HQ=\rho gV=\dfrac{F\rho}{\rho_\mathrm в}=\dfrac{100\;\mathrm H\cdot7900\;\mathrm{кг}/\mathrm м^3}{1000\;\mathrm{кг}/\mathrm м^3}=790\;\mathrm H.


  • 3. Гидростатическое давление

    На Земле на все тела действует сила тяжести. Под действием силы тяжести верхние слои жидкости действуют на нижние. Следовательно, в жидкости существует дополнительное давление, обусловленное силой тяжести, называемое гидростатическим давлением.

    Можно показать, что в жидкости, на глубине `H`,  считая от поверхности жидкости в сосуде, гидростатическое давление вычисляется по формуле `P_sf"г" = rho gH`.

    Здесь `rho` - плотность жидкости. В системе единиц СИ  `g = 9,8  sf"м/с"^2`, а давление `P_sf"г"`, плотность `rho` и высота `H`  измеряются в  Па, `sf"кг/м"^3` и `sf"м"` соответственно.

    Полное давление `P` в жидкости, налитой в сосуд, складывается из давления у поверхности жидкости и гидростатического давления. Давление у поверхности жидкости часто равно атмосферному давлению `P_"атм"`, о котором будет сказано в дальнейшем. В этом случае `P = P_sf"г" + P_sf"атм"`.

    Для ответа на некоторые вопросы полезно знать, что на одном горизонтальном уровне давление в жидкости постоянно, а разность давлений `Delta P`  на двух уровнях жидкости `AB` и `MN`, отстоящих друг от друга по высоте на расстояние `H` (см. рисунок), вычисляется по формуле `Delta P = rho g H`, которая аналогична формуле для гидростатического давления.

    Справка

    Греческая  буква  `Delta` (дельта),  стоящая  перед любой величиной, обычно используется  для  обозначения  изменения  этой  величины.

  • 4. Сообщающиеся сосуды

    Сообщающимися называются сосуды, которые имеют связывающие их каналы, заполненные жидкостью (см. рис.).

    Можно показать, что справедлив закон сообщающихся сосудов.

    Закон сообщающихся сосудов:

    в сообщающихся сосудах, заполненных однородной жидкостью, давление во всех точках жидкости, расположенных в одной горизонтальной плоскости, одинаково, независимо от формы сосудов, а поверхности жидкости в сообщающихся сосудах (открытых вверху) устанавливаются на одном уровне (см. рис.).



  • 2. Закон Паскаля

    Рассмотрим связь между давлениями в различных точках жидкости. Будем рассматривать покоящуюся жидкость в неподвижном сосуде. Дополнительное давление в жидкости, возникающее из-за силы тяжести, учитывать не будем.

    Пусть жидкость заключена в замкнутый сосуд произвольной формы (см. рисунок).

    Будем давить на поршень. Покажем, что давление `P_A` в точке `A` равно давлению `P_B` в точке  `B`. Для этого выделим мысленно внутри жидкости тонкий цилиндр, ось которого проходит через точки `A` и `B`, а основания площадью `S` каждое перпендикулярны оси. На части боковой поверхности цилиндра из жидкости со стороны окружающей жидкости действуют силы давления, перпендикулярные оси цилиндра. На основания цилиндра жидкость действует с силами `F_A = P_A S` и `F_B = P_B S`,  направленными вдоль оси `AB`. Поскольку цилиндр находится в покое, то `F_A = F_B`,  т. е. `P_A S = P_B S`. Отсюда `P_A = P_B`. Значит,  давление в точках `A` и `B` одно и то же. Аналогично доказывается равенство давлений в точках `B` и `C` и в точках `C` и `K`. Таким образом, приходим к выводу, что давление во всех точках внутри жидкости одинаково. Поршень давит на жидкость на её границе в одном месте, но это давление ощущается во всей жидкости. Мы получили

    Закон Паскаля:

    давление, оказываемое на жидкость в каком-либо одном месте на её границе, передаётся без изменения во все точки жидкости. 

    Этот закон был установлен экспериментально французским физиком и математиком  Блэзом  Паскалем  (1623 - 1662) и носит его имя.

    Всё сказанное в этом параграфе справедливо и для газов. Справедлив для газов и закон Паскаля.

    Отметим, что закон Паскаля выведен и сформулирован здесь при условии отсутствия силы тяжести. Наличие силы тяжести не изменяет сути закона и вносит дополнительную связь между давлениями в различных точках жидкости или газа.

    Закон Паскаля лежит в основе устройства гидравлических машин. Принцип устройства и действия такой машины следующий. Два цилиндрических сосуда разного диаметра с поршнями соединены трубкой и заполнены жидкостью (см. рис.).

    Пусть на малый поршень площадью `S_1` действует сила `F_1`. Тогда в жидкости создаётся давление `P = F_1 //S_1`. На большой поршень площадью `S_2` со стороны жидкости действует сила `F_2 = PS_2 = F_1 S_2 //S_1`. С этой же силой большой поршень может действовать на какое-нибудь тело, препятствующее его перемещению. Во сколько раз `S_2` больше `S_1`, во столько раз и развиваемая поршнем сила `F_2` больше приложенной силы `F_1`. Это используется в гидравлическом прессе, гидравлическом тормозе, гидравлическом домкрате.

    задача 1

    Площадь большого поршня гидравлического домкрата 20 см220\;\mathrm{см}^2, а малого 0,5 см20,5\;\mathrm{см}^2. Груз какой максимальной массы можно поднять этим домкратом, если на малый поршень давить с силой не более `200Н`? Силой трения поршней о стенки цилиндров пренебречь.

    Решение

    Пусть  S1=0,5 см2S_1=0,5\;\mathrm{см}^2S2=20 см2S_2=20\;\mathrm{см}^2F1=200 НF_1=200\;\mathrm Н.  Так как давление во всех точках жидкости одинаково, то

    `F_1 /S_1 =F_2 /S_2`.

    Здесь `F_2` - сила давления жидкости на большой поршень. Отсюда

    F2=F1S2S1=200 Н·20 см20,5 см2=8000 НF_2=\dfrac{F_1S_2}{S_1}=200\;\mathrm Н\cdot\dfrac{20\;\mathrm{см}^2}{0,5\;\mathrm{см}^2}=8000\;\mathrm Н.

    Поднять можно тело с максимальным весом `F_2 = 8000 Н`, что соответствует массе `m = F_2 //g`,  где g=9,8 м/с2g=9,8\;\mathrm м/\mathrm с^2.  Итак, m800 кгm\approx800\;\mathrm{кг}.


  • 1. Жидкости и газы. Текучесть. Давление

    Жидкости и газы отличаются от твёрдых тел прежде всего тем, что обладают таким свойством, как текучесть. Текучесть проявляется в способности жидкости и газа принимать форму сосуда. Из-за чего появляется и чем объясняется текучесть, по наличию которой и устанавливают, что данное тело не является твёрдым?

    Многочисленные опытные факты подтверждают наличие в природе веществ (тел), у которых отсутствуют силы, препятствующие сдвигу с бесконечно малыми скоростями одних слоёв этих веществ относительно других, т. е. отсутствуют силы трения покоя, действующие вдоль поверхности соприкасающихся слоёв. Если при этом такое вещество принимает форму сосуда и его объём практически не зависит от формы и вида сосуда, то мы имеем дело с жидкостью. Если же это вещество занимает весь предоставленный ему в любом сосуде объём, то это - газ.

    У твёрдого тела сдвинуть один слой (часть) тела относительно другого без приложения значительных усилий невозможно. У жидкости и газа одни слои (части)  могут скользить по другим слоям под действием ничтожно малых сил. Этим и объясняется текучесть.

    Пример

    Если подуть вдоль поверхности воды, то верхние слои воды придут в движение относительно нижних, причём силы трения между слоями будут тем меньше, чем меньше относительная скорость движения слоёв. Другой пример текучести. Даже очень осторожное, медленное и малое наклонение сосуда с жидкостью приводит к перемещению верхних слоёв жидкости относительно нижних и в результате поверхность жидкости становится снова горизонтальной.

    Сила трения покоя между стенкой сосуда и соприкасающейся с ней неподвижной жидкостью тоже равна нулю.

    Мы здесь не будем рассматривать проявление так называемых сил поверхностного натяжения, возникающих из-за того, что поверхностный слой жидкости ведёт себя подобно тонкой упругой оболочке. Силами поверхностного натяжения объясняется существование капель жидкости, возможность каплям удерживаться на наклонной поверхности твёрдого тела, капиллярность и другое.

    Из всего сказанного выше следует, что в неподвижной жидкости (или газе) слои (части) жидкости действуют друг на друга и на стенки сосуда с силами, направленными перпендикулярно к поверхности их соприкосновения. На рисунке показан сосуд с жидкостью.

    Выделим мысленно из всей жидкости её части в объёмах `1` и `2`. Жидкость в объёме `1` давит на жидкость в объёме `2` с силой `F_1` направленной перпендикулярно к поверхности `AB` их соприкосновения. С такой же по модулю силой `F_2` давит и жидкость `2` на `1`. Это следует из так называемого третьего закона Ньютона, согласно которому тела действуют друг на друга с равными по модулю и противоположными по направлению силами. Жидкость в сосуде давит на часть `MN` стенки сосуда с силой `F_3`, направленной перпендикулярно стенке. Часть `MN` стенки давит на жидкость с такой же силой  `F_4`.

    Величиной, характеризующей взаимодействие частей жидкости или газа друг с другом и со стенками сосуда, служит давление.

    ОПРЕДЕЛЕНИЕ

    Давлением называется величина, равная отношению модуля силы `F` давления, действующей по нормали (перпендикулярно) к плоской поверхности, к площади  `S` этой поверхности: `P=F/S`.

    В системе СИ давление измеряется в Н/м2\mathrm Н/\mathrm м^2. Эта единица давления носит название паскаль (Па):          

    1 Па =1 Н/м21\;\mathrm{Па}\;=1\;\mathrm Н/\mathrm м^2

    Уточним, что следует понимать под давлением в жидкости или газе.

    Поместим в жидкость или газ небольшую плоскую пластину. Одну из сторон этой пластины назовём площадкой. Жидкость (газ) давит на площадку с некоторой силой `F`. Если площадь площадки `S`, то давление жидкости на площадку `P = F/S`. Из условия равновесия вырезанной мысленно из жидкости (газа) призмы с основанием в виде прямоугольного треугольника, находящейся в месте расположения площадки, можно вывести, что давление на площадку в жидкости или газе не зависит от ориентации площадки. Вывод приводить не будем. Теперь можно дать определение давления в жидкости или газе.

    определение

    Давлением в некоторой точке жидкости называется давление жидкости на небольшую площадку, произвольно ориентированную и помещённую вблизи этой точки. Аналогично и для газа.






  • Работы вне конкурса

    Математика 11 класс

    ФИО Вариант № Задачи Сумма
    1 2 3 4 5 6 7
    Аристархов Денис Андреевич 2 3 5 5 0 3 0 0 16
    Артемкина Ксения Сергеевна 2 0 0 0 0 0 0 0 0
    Гаделия Руслан Георгиевич 2 4 4 0 0 7 0 4 19
    Григорьев Александр Денисович 1 0 0 0 0 0 0 0 0
    Добжанский Игорь Станиславович 3 0 0 0 0 0 0 0 0
    Золотарев Дмитрий Витальевич 3 4 5 6 5 6 3 6 35
    Кирменский Алексей Сергеевич 1 2 5 6 0 1 4 0 18
    Макаренко Мария Вячеславовна 12 3 4 2 0 0 0 0 9
    Новиков Андрей Владимирович 1 0 0 0 0 0 1 0 1
    Образцов Александр Сергеевич 4 0 0 0 0 0 0 0 0
    Подлеснова Валерия Андреевна 3 0 0 0 0 0 0 0 0
    Подлеснова Мария Алексеевна 4 2 5 0 0 0 1 0 8
    Растоги Карен Вириш Кумарович 4 4 0 0 0 1 0 0 5
    Расулов Аслан Фазилевич 1 4 5 1 5 0 3 0 18
    Репин Александр Сергеевич 3 4 5 3 0 1 6 0 19
    Решетняк Данила Владимирович 2 4 0 0 0 0 0 0 4
    Самсыгин Павел Филиппович 4 4 0 0 5 0 0 0 9
    Симакова Инна Владимировна 3 4 5 6 5 0 2 2 24
    Смирнов Иван Михайлович 1 4 0 0 5 0 0 0 9
    Чупрова Полина Владимировна 4 0 0 0 5 1 0 0 6
    Шарафутдинов Айгиз Фаизович 2 1 0 0 0 1 0 0 2
    Щербина Кирилл Сергеевич 3 4 0 0 0 1 0 0 5
    Яушкина Мария Дмитриевна 4 4 5 0 0 5 0 0 14

    Математика 10 класс

    ФИО Вариант № Задачи Сумма
    1 2 3 4 5 6 7
    Агабабян Спартак Григорьевич 6 0 0 3 0 0 3 0 6
    Ван Алина Маошэновна 13 0 0 5 0 0 0 0 5
    Зинец Анастасия Николаевна 6 0 5 4 4 5 0 2 20
    Козлов Матвей Дмитриевич 13 0 0 0 0 0 0 0 0
    Косенко Юрий Михайлович 6 3 0 4 0 0 0 0 7
    Лаврова Екатерина Егоровна 6 0 0 0 0 0 0 0 0
    Непианиди Евангелина Фёдоровна 6 0 0 4 0 0 1 0 5
    нет анкеты (г. Воронеж) 6 0 0 0 0 0 0 0 0
    Перов Иван Иванович 13 1 4 0 0 5 0 0 10
    Платинский Степан Андреевич 6 1 0 4 6 2 1 0 14
    Плетминцев Кирилл Витальевич 5 1 0 0 1 5 0 0 7


    Математика 9 класс

    ФИО Вариант № Задачи Сумма
    1 2 3 4 5 6 7
    Бельский Антон Александрович 16 4 0 5 0 2 0 4 15
    Гольдберг Артемий Александрович 7 0 5 5 5 4 0 5 24
    Гришин Данила Алексеевич 8 2 5 0 0 4 1 0 12
    Кузнецов Егор Владимирович 15 0 0 0 0 0 0 0 0
    Кузнецов Семён Евгеньевич 15 0 0 0 0 0 0 0 0
    Мезенцев Михаил Денисович 8 0 0 0 0 0 0 0 0
    Нестеров Даниил Александрович 16 0 0 0 0 0 0 0 0
    Пак Тимур Павлович 7 0 5 5 5 3 1 0 19
    Растоги Радмила Вириш Кумаровна 8 0 0 0 0 4 0 0 4
    Стрельцова Александра Владимировна 8 4 0 5 5 4 0 2 20
    Яковлева Эвелина Витальевна 8 0 0 0 0 0 0 0 0


    Физика 11 класс

    ФИО Вариант № Задачи Сумма
    1 2 3 4 5 6 7
    Аристархов Денис Андреевич 6 2 6 6 10 2 0 0 26
    Воробьева Арина Алексеевна  7 6 0 2 7 2 0 0 17
    Григорьев Александр Денисович 8 0 0 2 0 2 0 0 4
    Зубкова Софья Викторовна 5 5 1 10 0 2 0 0 18
    Работа без анкеты, г.Саранск 6 6 10 10 10 10 0 0 46
    Катаев Сергей Максимович 5 5 0 1 6 4 0 0 16
    Кирменский Алексей Сергеевич 5 5 0 8 0 8 0 0 21
    Миляшин Артем Дмитриевич 7 1 0 0 2 0 0 0 3
    Перец Егор Иванович 5 1 0 0 0 0 0 0 1
    Подлеснова Мария Алексеевна 8 1 1 0 0 1 0 0 3
    Репин Александр Сергеевич 6 5 10 10 10 8 0 0 43
    Решетняк Данила Владимирович 5 3 0 2 0 3 0 0 8
    Симакова Инна Владимировна 8 1 10 10 6 2 0 0 29


    Физика 10 класс

    ФИО

    Вариант № Задачи Сумма
    1 2 3 4 5 6 7
    Агабабян Спартак Григоревич 1 10 10 3 0 10 0 0 33
    Асриян Александр Ораянович 2 10 0 3 0 10 0 0 23
    Бондарь Клим Дмитриевич 2 3 0 0 0 2 0 0 5
    Ван Алина Маошэновна 4 0 0 0 0 10 0 0 10
    Волков Александр 1 10 9 0 10 10 0 0 39
    Гордеев Исай 2 3 10 1 2 5 0 0 21
    Григорян Арег Аветикович 1 10 0 4 0 0 0 0 14
    Григорян Кристине Константиновна 2 10 10 1 0 0 0 0 21
    Еськин Максим 1 10 10 3 10 10 0 0 43
    Зограбян Давит Самвелович 1 10 6 1 7 10 0 0 34
    Ивина Екатерина Александровна 1 3 10 3 2 10 0 0 28
    Истомин Никита Сергеевич  1 3 6 1 0 5 0 0 15
    Кидисюк Константин Алексеевич 2 3 3 10 0 0 0 0 16
    Киселев Кирилл Дмитриевич 1 0 3 0 0 0 0 0 3
    Козлова Дарья Олеговна 2 3 10 0 0 0 0 0 13
    Косенко Юрий Михайлович 2 3 0 0 0 0 0 0 3
    Куркин Дмитрий Иванович 2 3 3 0 0 0 0 0 6
    Лаврова Екатерина Егоровна 2 0 0 0 0 0 0 0 0
    Масалимов Ержан Тельжанович 1 3 6 0 0 0 0 0 9
    Мелкумян Арег Александрович 1 3 6 3 0 7 0 0 19
    Микшин Иван Вячеславович 3 3 0 0 0 0 0 0 3
    Мурадян Айк  2 10 3 3 0 2 0 0 18
    Работа без анкеты, г.Воронеж  2 5 0 0 0 0 0 0 5
    Повареннова Таисия Александровна 1 0 0 3 0 0 0 0 3
    Райдун Семен Константинович 3 3 0 0 0 2 0 0 5
    Тонеян Арчан  1 3 0 1 0 0 0 0 4

    Физика 9 класс

    ФИО Вариант № Задачи Сумма
    1 2 3 4 5 6 7
    Ахметов Адиль Русланович 2 2 0 0 4 1 0 0 7
    Бейсембеков Алишер Жомартович 1 3 4 0 0 0 0 0 7
    Голомедов Александр 1 10 10 10 10 10 0 0 50
    Гришин Данила Алексеевич 2 4 2 0 9 10 0 0 25
    Каратаева Татьяна Юрьевна 3 0 0 0 0 0 0 0 0
    Коростинский Роман Денисович 1 3 0 0 0 10 10 0 23
    Кузнецов Егор Владимирович 4 0 0 0 3 10 0 0 13
    Кузнецов Семен Евгеньевич 4 0 0 0 2 10 0 0 12
    Лыжова Полина Дмитриевна 1 5 1 0 8 3 0 0 17
    Сысоев Артем Владимирович 2 5 4 0 10 6 0 0 25
    Фартыгин Артем Игоревич 2 4 10 6 10 10 0 0 40
  • 8. Воздухоплавание

    На тело, удерживаемое неподвижно в воздухе, действует выталкивающая сила, равная по закону Архимеда весу вытесненного этим телом воздуха. Если вес тела (в вакууме) больше веса вытесненного телом воздуха, то отпущенное тело падает вниз. Если вес тела меньше веса вытесненного воздуха, то отпущенное тело поднимается вверх. Это и есть условие воздухоплавания.

    Для осуществления воздухоплавания надо использовать газ, который легче воздуха. Это может быть нагретый воздух. Если суммарный вес оболочки воздушного шара, наполняющего его газа и полезного груза меньше веса вытесненного шаром воздуха, то шар будет подниматься.

    Задача 6

    Какой груз может поднять воздушный шар объёмом V=10 м3V=10\;\mathrm м^3, наполненный гелием? Плотность гелия ρг=0,18 кг/м3\rho_\mathrm г=0,18\;\mathrm{кг}/\mathrm м^3,  плотность воздуха ρв=1,29 кг/м3\rho_\mathrm в=1,29\;\mathrm{кг}/\mathrm м^3.  Масса оболочки шара m0=2,1 кгm_0=2,1\;\mathrm{кг}.

    Решение

    Объёмом груза по сравнению с объёмом шара пренебрегаем. Вес вытесненного воздуха ρвVg\rho_\mathrm вVg, вес гелия ρгVg\rho_\mathrm гVg.   Максимальная масса груза найдётся из условия:  m0g+ρгVg+mg=ρвVgm_0g+\rho_\mathrm гVg+mg=\rho_\mathrm вVg. Отсюда

    m=ρв-ρгV-m0=9 кгm=\left(\rho_\mathrm в-\rho_\mathrm г\right)V-m_0=9\;\mathrm{кг}.


  • 7. Плавание тел

    Лодка из железа, спущенная на воду, плывёт, а эта же лодка, полностью погружённая в воду (затопленная), тонет. Из этого примера видно, что одно и тоже тело может плавать, а может и тонуть. Всё зависит от того, как тело приведено в контакт с жидкостью. Поэтому имеет смысл рассмотреть два случая взаимодействия тела с жидкостью.

    1-й случай

    Тело плавает в жидкости,  т. е. находится в покое, частично погрузившись в жидкость. Это может быть любое тело, например, кусок дерева или катер. Важен сам факт плавания. При этом тело соприкасается только с жидкостью и воздухом, плавая предоставленным самому себе, свободно. На начальном этапе рассмотрения вопроса о плавании не будем учитывать вес вытесненного воздуха. На тело действует направленная вниз сила тяжести `F_sf"Т"` и направленная вверх сила Архимеда `F_sf"А"`. Поскольку сила тяжести `F_sf"Т"` равна весу тела (в вакууме), а сила Архимеда `F_sf"А"` – весу (в вакууме) вытесненной жидкости, то можно сказать, что вес тела равен весу вытесненной жидкости. При более строгом рассмотрении вопроса с учётом веса вытесненного воздуха можно показать, что вес тела в воздухе равен весу (тоже в воздухе) вытесненной жидкости.

     Итак, если тело плавает в жидкости, то вес тела в воздухе равен весу в воздухе вытесненной им жидкости.

    При решении задач, когда ситуация реальна, различием в весе в воздухе и вакууме обычно пренебрегают, приравнивая вес любого тела силе тяжести, действующей на тело.

    Задача 5

    Кусок льда объёмом V=0,1 м3V=0,1\;\mathrm м^3 плавает в воде. Найти объём  `V_1`  надводной части льда. Плотность воды  ρ1=1 г/см3\rho_1=1\;\mathrm г/\mathrm{см}^3,  плотность льда ρ2=0,9 г/см3\rho_2=0,9\;\mathrm г/\mathrm{см}^3.

    Решение

    Вес льдины `rho_2 Vg`,  вес вытесненной воды `rho_1 (V - V_1)g`. По закону Архимеда  `rho_2 Vg = rho_1 (V - V_1)g`.  Отсюда 

    V1=ρ1-ρ2Vρ1=1-ρ2ρ1·V=0,01 м3V_1=\dfrac{\left(\rho_1-\rho_2\right)V}{\rho_1}=\left(1-\dfrac{\rho_2}{\rho_1}\right)\cdot V=0,01\;\mathrm м^3.

    2-й случай

    Тело полностью погружено в жидкость и отпущено. Возьмём в руки какое-нибудь тело (кусочек дерева, стальной болт), погрузим его полностью в жидкость (например, воду) и будем удерживать неподвижно. На тело со стороны Земли действует вниз сила тяжести FТ=ρТVgF_\mathrm Т=\rho_\mathrm ТVg, а со стороны жидкости - вверх выталкивающая сила по закону Архимеда  FА=ρЖVgF_\mathrm А=\rho_\mathrm ЖVg. Здесь `V` - объём тела, ρТ\rho_\mathrm Т и ρЖ\rho_\mathrm Ж - плотность тела и жидкости. Отпустим тело. Если окажется, что FТ > FАF_\mathrm Т\;>\;F_\mathrm А,  то тело начнёт двигаться вниз, т. е. тонуть.  Если будет FТ < FАF_\mathrm Т\ <\ F_\mathrm А, то тело станет двигаться вверх, т. е. всплывать. После всплытия, когда тело будет плавать, объём погружённой в жидкость части тела окажется таким, что будет обеспечено равенство силы Архимеда (уже меньшей, чем величина FАF_\mathrm А) и силы тяжести FТF_\mathrm Т.  Итак, тело будет плавать, если ρТVg < ρЖVg\rho_\mathrm ТVg\;<\;\rho_\mathrm ЖVg, т. е. ρТ < ρЖ\rho_\mathrm Т\;<\;\rho_\mathrm Ж.  

    Мы получили условие плавания тела: тело, предварительно полностью погружённое в жидкость, плавает в жидкости, если плотность тела меньше плотности жидкости.

    Если плотности тела и жидкости равны, то полностью погружённое в жидкость тело может находиться в равновесии (покое) в любом месте жидкости, т. е. тело плавает внутри жидкости. Реально такая ситуация трудно осуществима, так как добиться строгого равенства плотностей нелегко.

    Условие плавания сформулировано для тела, предварительно полностью погружённого в жидкость. Предварительное полное погружение важно, так как, например, металлическая миска, не полностью погружённая в воду, может плавать, а полностью погружённая утонет.

    Условие плавания сформулировано для однородного тела, т. е. тела, плотность которого одинакова во всех точках тела. Это условие плавания справедливо и для неоднородного тела, например, куска льда с полостью внутри или стеклянной бутылки, заполненной частично водой и закрытой пробкой. В таком случае под плотностью тела надо понимать его среднюю плотность, т. е. отношение массы тела к его объёму.

  • 6. Закон Архимеда

    На поверхности твёрдого тела, погружённого в жидкость (газ), действуют силы давления. Эти силы увеличиваются с глубиной погружения (см. рис.), и на нижнюю часть тела будет действовать со стороны жидкости большая сила, чем на верхнюю.

    Равнодействующая всех сил давления, действующих на поверхность тела со стороны жидкости, называется выталкивающей силой. Другое название этой силы - сила Архимеда. Истинная причина появления выталкивающей силы - это наличие различного гидростатического давления в разных точках жидкости.

    Закон Архимеда

    выталкивающая сила, действующая на тело, погружённое в жидкость, равна по модулю весу вытесненной жидкости и противоположно ему направлена.

    Закон открыт величайшим механиком и математиком Древней Греции Архимедом (287 - 212 г.г. до н. э.).

    Приведённая формулировка закона Архимеда справедлива, если вся поверхность тела соприкасается с жидкостью или если тело плавает в жидкости, или если тело частично погружено в жидкость через свободную (не соприкасающуюся со стенками) поверхность жидкости.

    Если же часть поверхности тела плотно прилегает к стенке или дну сосуда так, что между ними нет прослойки жидкости, то закон Архимеда неприменим!

    Иллюстрацией к сказанному служит опыт, когда ровную нижнюю поверхность деревянного кубика натирают парафином и плотно приставляют ко дну сосуда (см. рис.).

    Затем осторожно наливают воду. Кубик не всплывает, т. к. со стороны воды на него действует сила, прижимающая его ко дну, а не выталкивающая вверх. Известно, что это представляет опасность для подводной лодки, лёгшей на грунт.

    Закон Архимеда применим и в случае погружения тела в газ.
    Строго говоря, в законе Архимеда вес вытесненной жидкости надо брать в вакууме, а не в воздухе, так как вес жидкости в воздухе меньше веса этой жидкости в вакууме на величину веса воздуха, вытесненного этой жидкостью. Но это различие обычно мало, и им пренебрегают.

    Если тело погружено в жидкость частично, то результирующая выталкивающая сила со стороны жидкости и воздуха равна сумме веса вытесненной жидкости и вытесненного этим телом воздуха. Здесь оба веса берутся в вакууме.

    Задача 4

    Железный предмет, полностью погружённый в воду, весит меньше, чем в воздухе на F=100 HF=100\;\mathrm H.   Определить вес предмета в воздухе. Плотность железа ρ=7900 кг/м3\rho=7900\;\mathrm{кг}/\mathrm м^3.

    Решение

    Выталкивающей силой в воздухе можно пренебречь. Пусть вес тела в воздухе `Q`.  Тогда его вес в воде `Q - rho_в Vg`.  Здесь `V` - объём тела, ρв=1000 кг/м3\rho_\mathrm в=1000\;\mathrm{кг}/\mathrm м^3 - плотность воды, g=9,8 м/с2g=9,8\;\mathrm м/\mathrm с^2. Разность этих весов равна  `F`. Поэтому `Q - (Q - rho_в Vg) = F`. 

    Отсюда `V = F/(rho_в g)`.  Вес тела в воздухе 

    Q=ρgV=Fρρв=100 H·7900 кг/м31000 кг/м3=790 HQ=\rho gV=\dfrac{F\rho}{\rho_\mathrm в}=\dfrac{100\;\mathrm H\cdot7900\;\mathrm{кг}/\mathrm м^3}{1000\;\mathrm{кг}/\mathrm м^3}=790\;\mathrm H.


  • 5. Атмосферное давление. Опыт Торричелли

    Земля окружена воздушной оболочкой, состоящей из смеси газов. Эта оболочка называется атмосферой. Каждый горизонтальный слой атмосферы сжат весом более верхних слоёв. Поэтому давление в нижних слоях атмосферы больше, чем в верхних. При этом и плотность воздуха в нижних слоях значительно больше, чем в верхних. Это связано с тем, что газы под воздействием давления могут сильно уменьшить свой объём. Жидкости же обладают очень малой сжимаемостью и практически не изменяют своей плотности даже при больших давлениях. Атмосферное давление на уровне моря равно примерно 105 Па10^5\;\mathrm{Па}, т. е. 100000 Па100000\;\mathrm{Па}. Это желательно помнить. С увеличением высоты над уровнем моря атмосферное давление уменьшается. На высоте примерно в 5,5 км5,5\;\mathrm{км} оно уменьшается вдвое.

    Значение атмосферного давления впервые определил экспериментально в 1634 г. итальянский учёный Торричелли, создав простейший ртутный барометр. Опыт Торричелли состоит в следующем. Стеклянная трубка длиной около метра, запаянная с одного конца, заполняется полностью ртутью. Затем, закрыв отверстие трубки, её переворачивают и погружают открытым концом в чашу со ртутью (см. рис.).

    Часть ртути из трубки выливается, и в ней остаётся столб ртути высотой `H`. Давление в трубке над ртутью равно нулю (если пренебречь ничтожным давлением паров ртути), так как там - пустота (вакуум):  `P_C = 0`. Давление `P_B` в точке `B` равно давлению `P_A` в точке `A`, поскольку в сообщающихся сосудах - чаше и трубке - точки `A` и `B` находятся на одном уровне. Давление `P_A` равно атмосферному давлению PатмP_\mathrm{атм}.  Поэтому PB=PатмP_B=P_\mathrm{атм}. Разность давлений `P_B - P_C = rho gH`, где `rho` - плотность ртути. Так как PB=PатмP_B=P_\mathrm{атм}  и `P_C = 0`, то Pатм =ρgHP_\mathrm{атм}\;=\rho gH. Измерив `H` и зная `rho`, можно определить атмосферное давление в условиях опыта. Торричелли нашёл, что для уровня моря H=760 ммH=760\;\mathrm{мм}.

    В опыте Торричелли каждому значению `H` соответствует определённое значение PатмP_\mathrm{атм}. Следовательно, атмосферное давление можно измерять в миллиметрах ртутного столба. Эта единица давления получила специальное название «Торр»: `1`Торр `= 1` мм. рт.ст. При этом высота столба ртути берётся той, которую он имел бы при `0^@"C"`. Атмосферное давление в `760` Торр называется нормальным атмосферным давлением. Значение этого давления называется нормальной (физической) атмосферой и обозначается 1 атм1\;\mathrm{атм}.  Зная плотность ртути  ρ=13595 кг/м3\rho=13595\;\mathrm{кг}/\mathrm м^3, находим по формуле    Pатм=ρgHP_\mathrm{атм}=\rho gH:

    1 атм=760 Торр101325 Па1,013·105 Па1\;\mathrm{атм}=760\;\mathrm{Торр}\approx101325\;\mathrm{Па}\approx1,013\cdot10^5\;\mathrm{Па}.                         

    Умножим равенство Pатм=ρgHP_\mathrm{атм}=\rho gH на площадь `S` внутреннего сечения трубки: PатмS=ρgHSP_\mathrm{атм}S=\rho gHS. Заметим, что последнее равенство можно получить и непосредственно, записав условие равновесия  столба `BC`  ртути (рис. 6). Произведение PатмSP_\mathrm{атм}S равно силе давления `F` на столб ртути `BC` снизу, вызванное наличием атмосферного давления, а `rho gHS` есть вес столба `BC` ртути в трубке. Поэтому говорят, что в опыте Торричелли давление, создаваемое весом столба ртути, уравновешивается атмосферным давлением.

    Замена ртути водой в опыте Торричелли требует высоты трубки более `10` м. Действительно, при нормальном атмосферном давлении 1 атм1\;\mathrm{атм} для значения плотности воды ρ=1000 кг/м3\rho=1000\;\mathrm{кг}/\mathrm м^3 из формулы Pатм=ρgHP_\mathrm{атм}=\rho gH следует, что H10,3 мH\approx10,3\;\mathrm м. Это означает, что нормальное атмосферное давление уравновешивается столбом воды высотой `10,3` м.   

    Несколько замечаний для решения задач. Полезно помнить, что плотность воды равна 1000 кг/м31000\;\mathrm{кг}/\mathrm м^3 и гидростатическое давление в 105 Па10^5\;\mathrm{Па} создаётся в воде на глубине приблизительно 10 м10\;\mathrm м. Проверьте это, используя формулу для гидростатического давления.

    Поскольку плотность воздуха намного меньше плотности воды, изменением атмосферного давления, связанным с перепадом высоты в несколько метров, можно в ряде случаев пренебречь по сравнению с гидростатическим давлением воды, вызванным таким же перепадом высоты.

    Задача 2

    В сосуд налита вода (см. рис.).

    Расстояние от поверхности воды до дна H=0,5 мH=0,5\;\mathrm м. Площадь дна S=0,1 м2S=0,1\;\mathrm м^2. Найти гидростатическое давление `P_1` и полное давление `P_2` вблизи дна. Найти силу давления воды на дно.

    Решение

    Плотность воды ρ=103 кг/м3\rho=10^3\;\mathrm{кг}/\mathrm м^3. Гидростатическое давление

    P1=ρgH=103 кг/м3·9,8 м/с2·0,5 м5·103 Па=5000 ПаP_1=\rho gH=10^3\;\mathrm{кг}/\mathrm м^3\cdot9,8\;\mathrm м/\mathrm с^2\cdot0,5\;\mathrm м\approx5\cdot10^3\;\mathrm{Па}=5000\;\mathrm{Па}.

    Полное давление складывается из атмосферного Pатм=105ПаP_\mathrm{атм}=10^5\mathrm{Па} и гидростатического:

     P2=Pатм+P1=100000 Па+5000 Па=105000 ПаP_2=P_\mathrm{атм}+P_1=100000\;\mathrm{Па}+5000\;\mathrm{Па}=105000\;\mathrm{Па}.

    Интересно, что полное давление мало отличается от атмосферного, так как толщина слоя воды достаточно мала. Сила давления воды на дно F=P2·S=105000 Па·0,1 м2=10500 HF=P_2\cdot S=105000\;\mathrm{Па}\cdot0,1\;\mathrm м^2=10500\;H.

    Задача 3

    На лёгкий поршень площадью `S`, касающийся поверхности воды, поставили гирю массой `m` (см. рис.).

    Высота слоя  воды в сосуде с вертикальными стенками  `H`. Определить давление в жидкости вблизи дна. Плотность воды `rho`.

    Решение

    На поршень снизу со стороны воды действует направленная вверх сила `F_1 = P_1 S`, где `P_1` давление вблизи поршня. Сверху на поршень действует гиря и атмосферный воздух с силой `F_2 = mg + P_"атм" S`, где g=9,8 м/с2g=9,8\;\mathrm м/\mathrm с^2Pатм=105 ПаP_\mathrm{атм}=10^5\;\mathrm{Па} - атмосферное давление. Поршень находится в равновесии. Поэтому `F_1 = F_2`. Итак,  `P_1 S = mg + P_"атм" S`. Отсюда  `P_1 = P_"атм" + (mg)/S`.

    Этот  результат можно писать и сразу, говоря, что давление под поршнем равно атмосферному `P_"атм"` и добавочному давлению  `mg//S`, создаваемому гирей.

    Разность давлений в воде у дна и вблизи поршня: `P_2 - P_1 = rho gH`.

    Отсюда  `P_2 = P_1 + rho gH`.  

    Окончательно, давление у дна `P_2 = P_"атм" + (mg)/S + rho gH`.


  • 4. Сообщающиеся сосуды

    Сообщающимися называются сосуды, которые имеют связывающие их каналы, заполненные жидкостью (см. рис.).

    Можно показать, что справедлив закон сообщающихся сосудов.

    Закон сообщающихся сосудов:

    в сообщающихся сосудах, заполненных однородной жидкостью, давление во всех точках жидкости, расположенных в одной горизонтальной плоскости, одинаково, независимо от формы сосудов, а поверхности жидкости в сообщающихся сосудах (открытых вверху) устанавливаются на одном уровне (см. рис.).



  • 3. Гидростатическое давление

    На Земле на все тела действует сила тяжести. Под действием силы тяжести верхние слои жидкости действуют на нижние. Следовательно, в жидкости существует дополнительное давление, обусловленное силой тяжести, называемое гидростатическим давлением.

    Можно показать, что в жидкости, на глубине `H`,  считая от поверхности жидкости в сосуде, гидростатическое давление вычисляется по формуле `P_sf"г" = rho gH`.

    Здесь `rho` - плотность жидкости. В системе единиц СИ  `g = 9,8  sf"м/с"^2`, а давление `P_sf"г"`, плотность `rho` и высота `H`  измеряются в  Па, `sf"кг/м"^3` и `sf"м"` соответственно.

    Полное давление `P` в жидкости, налитой в сосуд, складывается из давления у поверхности жидкости и гидростатического давления. Давление у поверхности жидкости часто равно атмосферному давлению `P_"атм"`, о котором будет сказано в дальнейшем. В этом случае `P = P_sf"г" + P_sf"атм"`.

    Для ответа на некоторые вопросы полезно знать, что на одном горизонтальном уровне давление в жидкости постоянно, а разность давлений `Delta P`  на двух уровнях жидкости `AB` и `MN`, отстоящих друг от друга по высоте на расстояние `H` (см. рисунок), вычисляется по формуле `Delta P = rho g H`, которая аналогична формуле для гидростатического давления.

    Справка

    Греческая  буква  `Delta` (дельта),  стоящая  перед любой величиной, обычно используется  для  обозначения  изменения  этой  величины.

  • 2. Закон Паскаля

    Рассмотрим связь между давлениями в различных точках жидкости. Будем рассматривать покоящуюся жидкость в неподвижном сосуде. Дополнительное давление в жидкости, возникающее из-за силы тяжести, учитывать не будем.

    Пусть жидкость заключена в замкнутый сосуд произвольной формы (см. рисунок).

    Будем давить на поршень. Покажем, что давление `P_A` в точке `A` равно давлению `P_B` в точке  `B`. Для этого выделим мысленно внутри жидкости тонкий цилиндр, ось которого проходит через точки `A` и `B`, а основания площадью `S` каждое перпендикулярны оси. На части боковой поверхности цилиндра из жидкости со стороны окружающей жидкости действуют силы давления, перпендикулярные оси цилиндра. На основания цилиндра жидкость действует с силами `F_A = P_A S` и `F_B = P_B S`,  направленными вдоль оси `AB`. Поскольку цилиндр находится в покое, то `F_A = F_B`,  т. е. `P_A S = P_B S`. Отсюда `P_A = P_B`. Значит,  давление в точках `A` и `B` одно и то же. Аналогично доказывается равенство давлений в точках `B` и `C` и в точках `C` и `K`. Таким образом, приходим к выводу, что давление во всех точках внутри жидкости одинаково. Поршень давит на жидкость на её границе в одном месте, но это давление ощущается во всей жидкости. Мы получили

    Закон Паскаля:

    давление, оказываемое на жидкость в каком-либо одном месте на её границе, передаётся без изменения во все точки жидкости. 

    Этот закон был установлен экспериментально французским физиком и математиком  Блэзом  Паскалем  (1623 - 1662) и носит его имя.

    Всё сказанное в этом параграфе справедливо и для газов. Справедлив для газов и закон Паскаля.

    Отметим, что закон Паскаля выведен и сформулирован здесь при условии отсутствия силы тяжести. Наличие силы тяжести не изменяет сути закона и вносит дополнительную связь между давлениями в различных точках жидкости или газа.

    Закон Паскаля лежит в основе устройства гидравлических машин. Принцип устройства и действия такой машины следующий. Два цилиндрических сосуда разного диаметра с поршнями соединены трубкой и заполнены жидкостью (см. рис.).

    Пусть на малый поршень площадью `S_1` действует сила `F_1`. Тогда в жидкости создаётся давление `P = F_1 //S_1`. На большой поршень площадью `S_2` со стороны жидкости действует сила `F_2 = PS_2 = F_1 S_2 //S_1`. С этой же силой большой поршень может действовать на какое-нибудь тело, препятствующее его перемещению. Во сколько раз `S_2` больше `S_1`, во столько раз и развиваемая поршнем сила `F_2` больше приложенной силы `F_1`. Это используется в гидравлическом прессе, гидравлическом тормозе, гидравлическом домкрате.

    задача 1

    Площадь большого поршня гидравлического домкрата 20 см220\;\mathrm{см}^2, а малого 0,5 см20,5\;\mathrm{см}^2. Груз какой максимальной массы можно поднять этим домкратом, если на малый поршень давить с силой не более `200Н`? Силой трения поршней о стенки цилиндров пренебречь.

    Решение

    Пусть  S1=0,5 см2S_1=0,5\;\mathrm{см}^2S2=20 см2S_2=20\;\mathrm{см}^2F1=200 НF_1=200\;\mathrm Н.  Так как давление во всех точках жидкости одинаково, то

    `F_1 /S_1 =F_2 /S_2`.

    Здесь `F_2` - сила давления жидкости на большой поршень. Отсюда

    F2=F1S2S1=200 Н·20 см20,5 см2=8000 НF_2=\dfrac{F_1S_2}{S_1}=200\;\mathrm Н\cdot\dfrac{20\;\mathrm{см}^2}{0,5\;\mathrm{см}^2}=8000\;\mathrm Н.

    Поднять можно тело с максимальным весом `F_2 = 8000 Н`, что соответствует массе `m = F_2 //g`,  где g=9,8 м/с2g=9,8\;\mathrm м/\mathrm с^2.  Итак, m800 кгm\approx800\;\mathrm{кг}.


  • 1. Жидкости и газы. Текучесть. Давление

    Жидкости и газы отличаются от твёрдых тел прежде всего тем, что обладают таким свойством, как текучесть. Текучесть проявляется в способности жидкости и газа принимать форму сосуда. Из-за чего появляется и чем объясняется текучесть, по наличию которой и устанавливают, что данное тело не является твёрдым?

    Многочисленные опытные факты подтверждают наличие в природе веществ (тел), у которых отсутствуют силы, препятствующие сдвигу с бесконечно малыми скоростями одних слоёв этих веществ относительно других, т. е. отсутствуют силы трения покоя, действующие вдоль поверхности соприкасающихся слоёв. Если при этом такое вещество принимает форму сосуда и его объём практически не зависит от формы и вида сосуда, то мы имеем дело с жидкостью. Если же это вещество занимает весь предоставленный ему в любом сосуде объём, то это - газ.

    У твёрдого тела сдвинуть один слой (часть) тела относительно другого без приложения значительных усилий невозможно. У жидкости и газа одни слои (части)  могут скользить по другим слоям под действием ничтожно малых сил. Этим и объясняется текучесть.

    Пример

    Если подуть вдоль поверхности воды, то верхние слои воды придут в движение относительно нижних, причём силы трения между слоями будут тем меньше, чем меньше относительная скорость движения слоёв. Другой пример текучести. Даже очень осторожное, медленное и малое наклонение сосуда с жидкостью приводит к перемещению верхних слоёв жидкости относительно нижних и в результате поверхность жидкости становится снова горизонтальной.

    Сила трения покоя между стенкой сосуда и соприкасающейся с ней неподвижной жидкостью тоже равна нулю.

    Мы здесь не будем рассматривать проявление так называемых сил поверхностного натяжения, возникающих из-за того, что поверхностный слой жидкости ведёт себя подобно тонкой упругой оболочке. Силами поверхностного натяжения объясняется существование капель жидкости, возможность каплям удерживаться на наклонной поверхности твёрдого тела, капиллярность и другое.

    Из всего сказанного выше следует, что в неподвижной жидкости (или газе) слои (части) жидкости действуют друг на друга и на стенки сосуда с силами, направленными перпендикулярно к поверхности их соприкосновения. На рисунке показан сосуд с жидкостью.

    Выделим мысленно из всей жидкости её части в объёмах `1` и `2`. Жидкость в объёме `1` давит на жидкость в объёме `2` с силой `F_1` направленной перпендикулярно к поверхности `AB` их соприкосновения. С такой же по модулю силой `F_2` давит и жидкость `2` на `1`. Это следует из так называемого третьего закона Ньютона, согласно которому тела действуют друг на друга с равными по модулю и противоположными по направлению силами. Жидкость в сосуде давит на часть `MN` стенки сосуда с силой `F_3`, направленной перпендикулярно стенке. Часть `MN` стенки давит на жидкость с такой же силой  `F_4`.

    Величиной, характеризующей взаимодействие частей жидкости или газа друг с другом и со стенками сосуда, служит давление.

    ОПРЕДЕЛЕНИЕ

    Давлением называется величина, равная отношению модуля силы `F` давления, действующей по нормали (перпендикулярно) к плоской поверхности, к площади  `S` этой поверхности: `P=F/S`.

    В системе СИ давление измеряется в Н/м2\mathrm Н/\mathrm м^2. Эта единица давления носит название паскаль (Па):          

    1 Па =1 Н/м21\;\mathrm{Па}\;=1\;\mathrm Н/\mathrm м^2

    Уточним, что следует понимать под давлением в жидкости или газе.

    Поместим в жидкость или газ небольшую плоскую пластину. Одну из сторон этой пластины назовём площадкой. Жидкость (газ) давит на площадку с некоторой силой `F`. Если площадь площадки `S`, то давление жидкости на площадку `P = F/S`. Из условия равновесия вырезанной мысленно из жидкости (газа) призмы с основанием в виде прямоугольного треугольника, находящейся в месте расположения площадки, можно вывести, что давление на площадку в жидкости или газе не зависит от ориентации площадки. Вывод приводить не будем. Теперь можно дать определение давления в жидкости или газе.

    определение

    Давлением в некоторой точке жидкости называется давление жидкости на небольшую площадку, произвольно ориентированную и помещённую вблизи этой точки. Аналогично и для газа.






  • тест

    19\sqrt{19}

  • §5. Преобразование двойных радикалов

    Выражения вида a+bc\sqrt{a+b\sqrt{c}} называют двойными или сложными радикалами. Мы уже рассматривали примеры, в которых можно было избавиться от внешних радикалов. 

    Пример 1

    Освободитесь от внешнего радикала в выражении 23+415\sqrt{23+4\sqrt{15}}.

    Решение

    \triangle Заметим, что выражение 23+415=20+3+2·2·5·3=(25+3)223+4\sqrt{15}=20+3+2\cdot 2\cdot \sqrt{5}\cdot\sqrt{3}=(2\sqrt{5}+\sqrt{3})^2, тогда 23+415=(25+3)2=|25+3|=25+3\sqrt{23+4\sqrt{15}}=\sqrt{(2\sqrt{5}+\sqrt{3})^2}=|2\sqrt{5}+\sqrt{3}|=2\sqrt{5}+\sqrt{3}.

    Пример 2

    Освободитесь от внешнего радикала в выражении 124-703\sqrt{124-70\sqrt{3}}.

    Решение

    \triangle В этом примере укажем метод, по которому иногда можно избавляться от внешнего радикала. Подберём целые числа aa и bb такие, чтобы 124-703=a-b3\sqrt{124-70\sqrt{3}}=a-b\sqrt{3}. Если такие числа есть, то должны выполняться такие условия:

    $$\begin{cases} (a-b\sqrt{3})^2=124-70\sqrt{3}; \\ a-b\sqrt{3}\geq 0, \end{cases} $$

    Из первого условия получаем

    a2-2ab3+3b2=124-703;a2+3b2-124=2ab3-703a^2-2ab\sqrt{3}+3b^2=124-70\sqrt{3};\:\:\:\: a^2+3b^2-124=2ab\sqrt{3}-70\sqrt{3}.

    Так как aa и bb - целые числа, то выражение a2+3b2-124a^2+3b^2-124 является целым числом, значит, рациональным числом. Выражение (2ab-70)3(2ab-70)\sqrt{3} является рациональным числом, если

    $$\begin{cases}  (a-b\sqrt{3})^2=124-70\sqrt{3}; \\  a-b\sqrt{3}\geq 0, \end{cases} $$. и 2ab-70=02ab-70=0, т. е. ab=35ab=35

    Уравнению ab=35ab=35 удовлетворяют следующие пары чисел: a=1,b=35;a=5,b=7;a=7,b=5;a=35,b=1;a=-1,b=-35;a=1, b=35;\:\: a=5, b=7;\:\: a=7, b=5;\:\: a=35, b=1;\:\: a=-1, b=-35;\:\:

    a=-5,b=-7;a=-7,b=-5;a=-35,b=-1 a=-5, b=-7;\:\: a=-7, b=-5;\:\: a=-35, b=-1.

    Условию a2+3b2-124=0a^2+3b^2-124=0 удовлетворяют две пары чисел: a=7,b=5a=7, b=5 и a=-7,b=-5a=-7, b=-5. Число 7-537-5\sqrt{3} не удовлетворяет условию a-b30a-b\sqrt{3}\geq 0, а число -7+53-7+5\sqrt{3} удовлетворяет этому условию. Таким образом,  124-703=-7+53\sqrt{124-70\sqrt{3}}=-7+5\sqrt{3}. \blacktriangle

    В некоторых примерах удаётся избавиться от внешнего радикала, если воспользоваться тождеством

    a±b=a+a2-b2±a-a2-b2\sqrt{a\pm \sqrt{b}}=\sqrt{\dfrac{a+\sqrt{a^2-b}}{2}}\pm\sqrt{\dfrac{a-\sqrt{a^2-b}}{2}}.

    Это тождество называют формулой двойного радикала. Оно справедливо, если a>0a>0, b>0b>0 и a2-b>0a^2-b>0. Тогда все три корня определены, a+a2-b2>a-a2-b2\sqrt{\dfrac{a+\sqrt{a^2-b}}{2}}>\sqrt{\dfrac{a-\sqrt{a^2-b}}{2}} и правая часть равенства положительна. 

    Возведем в квадрат обе части равенства. Получим:

    a±b=a+a2-b2+a-a2-b2±2a2-a2+b4,a±b=a±ba\pm\sqrt{b}=\dfrac{a+\sqrt{a^2-b}}{2}+\dfrac{a-\sqrt{a^2-b}}{2}\pm 2\sqrt{\dfrac{a^2-a^2+b}{4}},\:\:\:\: a\pm\sqrt{b}=a\pm\sqrt{b}.

    Пример 3

    Освободитесь от внешнего радикала в выражении 56-2880\sqrt{56-\sqrt{2880}}, используя формулу двойного радикала. 

    Решение

    \triangle 56-2880=56+3136-28802-56-3136-28802=\sqrt{56-\sqrt{2880}}=\sqrt{\dfrac{56+\sqrt{3136-2880}}{2}}-\sqrt{\dfrac{56-\sqrt{3136-2880}}{2}}=

    =56+162-56-162=6-20=6-25=\sqrt{\dfrac{56+16}{2}}-\sqrt{\dfrac{56-16}{2}}=6-\sqrt{20}=6-2\sqrt{5}. \blacktriangle