Все статьи » ЗФТШ Физика

Статьи

  • §7. Примеры решения задач
    задача 1

    Два маленьких стальных шарика брошены одновременно из одной и той же точки с поверхности земли с начальными скоростями v01=5м/c,v02=8м/cv_{01}=5\mathrm м/\mathrm c,v_{02}=8\mathrm м/\mathrm c, направленными под углами α1=80,α2=20\alpha_1=80, \alpha_2=20 к горизонту соответственно. Чему равно расстояние между шариками, спустя время `t=1/3` с после броска?

    Траектории шариков лежат в одной вертикальной плоскости. Сопротивлением воздуха пренебречь.

    Решение

    Шарики движутся в поле тяжести Земли с постоянным ускорением g\vec g (сопротивлением воздуха пренебрегаем).

    Выберем систему координат так, как показано на рис. 20, начало отсчёта поместим в точку бросания. Для радиус-векторов шариков r1(t)\vec r_1(t) и r2(t)\vec r_2(t) имеем: r1(t)=r01+v01t+gt22{\overrightarrow r}_1(t)={\overrightarrow r}_{01}+{\overrightarrow v}_{01}t+\dfrac{\overrightarrow gt^2}2 ,  r2(t)=r02+v02t+gt22{\overrightarrow r}_2(t)={\overrightarrow r}_{02}+{\overrightarrow v}_{02}t+\dfrac{\overrightarrow gt^2}2Искомое расстояние ll равно модулю разности радиус-векторов шариков в момент времени `t=1/3` с. Так как шарики были брошены из одной и той же точки, то r01=r02\vec r_{01}=\vec r_{02} , следовательно: 

    l=r1(t)-r2(t)=v01-v02tl={\mid \vec r_1(t)-\vec r_2(t)\mid}={\mid \vec v_{01}-\vec v_{02}\mid}t .

    (Остальные слагаемые при вычитании радиус-векторов уничтожились.) В свою очередь, по теореме косинусов (см. рис. 20):

    `|vecv_(01)-vecv_(02)|=sqrt(v_(01)^2+v_(02)^2-2v_(01)v_(02)cos(alpha_1-alpha_2))`.

    Подставляя в это равенство числовые значения входящих в него величин, получим v01-v02=7\mid \vec v_{01}-\vec v_{02}\mid =7 м/с.
    Тогда искомое расстояние между шариками в момент времени `t=1/3` с будет равно

    l=7мс·13c=73м2,3 мl=7\dfrac{\mathrm м}{\mathrm с}\cdot\dfrac13\mathrm c=\dfrac73\mathrm м\approx2,3\;\mathrm м.

    задача*

    Два тела брошены вертикально вверх с поверхности земли из одной точки вслед друг за другом с интервалом времени τ\tau, с одинаковыми начальными скоростями v0\vec v_0. Пренебрегая сопротивлением воздуха, определить, через сколько времени они «встретятся»? Прокомментируйте решение для  `v_0<g tau/2`. 

    Решение

    Направим ось `Oy` вертикально вверх, начало отсчёта поместим в точку бросания. Отсчёт времени будем вести, начиная с момента бросания первого тела. Начальные условия движения тел:
    1) t0=0,y01=0,vy01=v0t_0=0, y_{01}=0, v_{y01}=v_0 ;

    2) t0=τ,y02=0,vy02=v0t_0=\tau , y_{02}=0, v_{y02}=v_0.

    Проекции ускорений тел при отсутствии сопротивления воздуха равны ay1=ay2=-ga_{y1}=a_{y2}=-g. Уравнения движения тел в проекциях на ось OyOy с учётом начальных условий имеют вид:

    `y_1(t)= v_0t-(g t^2)/2`, `y_2(t)=v_0(t-tau)-(g(t-tau)^2)/2`.

    (Заметим, что `y_2=0` при `0<t<=tau`).

    Для наглядности изобразим графики этих функций на одном чертеже (рис. 21). Из чертежа видно, что «встреча» произойдёт в некоторый момент времени txt_x в точке `A`, где пересекаются графики y1(t)y_1(t) и y2(t)y_2(t). Таким образом, условие «встречи»: `y_1(t_x)=y_2(t_x)`, то есть

    v0tx-gtx22=v0(tx-τ)-g(tx-τ)22v_0t_x-\dfrac{gt_x^2}2=v_0(t_x-\tau)-\dfrac{g(t_x-\tau)^2}2.


    Решая это уравнение относительно `t_x`, находим: 
    tx=v0g+τ2t_x=\dfrac{v_0}g+\dfrac\tau2.

    Проанализируем полученное выражение при `v_0<g tau//2`. Известно (см. Пример 7), что время полёта тела, брошенного вертикально, равно 2v0/g2v_0/g. Поэтому, если `v_0<g tau//2`, то τ>2v0/g\tau>2v_0/gЭто означает, что сначала упадёт на землю первое тело, а только затем будет брошено вверх второе. Иными словами, тела «встретятся» в точке бросания.

    Задача* 3

    Мальчик, находясь на плоском склоне горы с углом наклона `varphi=30^@`, бросает камень в сторону подъёма горы, сообщив ему начальную скорость v0v_0, направленную под углом `beta=60^@` к горизонту. На каком расстоянии от мальчика упадёт камень? Сопротивлением воздуха пренебречь.

    Решение

    Выберем систему отсчёта так, как показано на рис. 22, поместив начало отсчёта `O` в точку бросания. В этой системе отсчёта начальная скорость камня составляет с осью `Ox` угол `alpha=beta-varphi=30^@`. Начальные условия: `x_0=0`, `y_0=0`, `v_(0x)=v_0 cosalpha`, `v_(0y)=v_0sinalpha`.

    Проекции ускорения камня в отсутствие сопротивления воздуха равны (см. рис. 22): ax=gx=-gsinφa_x=g_x=-g\sin\varphi, ay=gy=-gcosφa_y=g_y=-g\cos\varphi. Здесь мы учли, что угол между вектором g\vec g и перпендикуляром к поверхности горы равен углу наклона горы `varphi=30^@`, кроме того, по условию задачи φ=α\varphi=\alpha
    Запишем уравнения системы (14) с учётом начальных условий:

    x(t)=(v0cosα)t-(gsinφ)t22x(t)=(v_0\cos\alpha)t-(g\sin\varphi)\dfrac{t^2}2y(t)=(v0sinα)t-(gcosφ)t22y(t)=(v_0\sin\alpha)t-(g\cos\varphi)\dfrac{t^2}2.

    Время полёта τ\tau камня найдём из последнего уравнения, зная, что

    y(τ)=0y(\tau)=0cosφ=32\cos\varphi=\dfrac{\sqrt3}2sinα=12\sin\alpha=\dfrac12.

    А именно τ=23v0g\tau=\dfrac2{\sqrt3}\dfrac{v_0}g . (Значение τ=0\tau=0 мы отбросили, т. к. оно не связано с вопросом задачи).
    Подставляя найденное значение τ\tau в уравнение для x(t)x(t) определим искомое расстояние (иными словами, дальность полёта):

    l=x(τ)= 23v02gl=x(\tau)=\;\dfrac23\dfrac{v_0^2}g.

    Задача 4

    Массивная платформа движется с постоянной скоростью `vecV_0` по горизонтальному полу. С заднего края платформы производится удар по мячу. Модуль начальной скорости мяча относительно платформы равен u=2V0u=2V_0 причём вектор u\vec u составляет угол `alpha=60^@` с горизонтом (рис. 23). На какую максимальную высоту над полом поднимется мяч? На каком расстоянии от края платформы будет находиться мяч в момент приземления. Высотой платформы и сопротивлением воздуха пренебречь. Все скорости лежат в одной вертикальной плоскости. (ФЗФТШ при МФТИ, 2009.)


    Решение

    Для описания движения мяча и платформы введём систему отсчёта, связанную с полом. Ось OxOx направим горизонтально в направлении удара, а ось OyOy вертикально вверх (рис. 23).

    Движение мяча происходит с постоянным ускорением a\vec aпричём ax=0,ay=-ga_x=0, a_y=-g где gg - величина ускорения свободного падения.
    Проекции начальной скорости v0\vec v_0 мяча на оси OxOx и OyOy равны:

    `v_(0x)=V_(0x)+u_x=-V_0+2V_0*cos60^@=-V_0+V_0=0`,

    `v_(0y)=V_(0y)+u_y=0+2V_0*sin60^@=sqrt3V_0`.

    Равенство нулю горизонтальной скорости мяча означает, что его движение происходит только по вертикали, и он упадёт в точке удара.
    Максимальную высоту подъёма (`y_"max"`) и время полёта мяча найдём из законов кинематики равноускоренного движения:

    vy2-v0y2=2ay(y-y0),  y=y0+v0yt+ayt22v_y^2-v_{0y}^2=2a_y(y-y_0),\;\;y=y_0+v_{0y}t+\dfrac{a_yt^2}2.

    Учитывая, что при `y=y_"max"` проекция вертикальной скорости обращается в ноль vy=0v_y=0, а в момент приземления мяча t=Tполетаt=T_\mathrm{полета} его координата по оси OyOy обращается в ноль y=0y=0, имеем:

    ymax=v0y22g=3V022g,  Tполета=23V0gy_\max=\dfrac{v_{0y}^2}{2g}=\dfrac{3V_0^2}{2g},\;\;T_\mathrm{полета}=\dfrac{2\sqrt3V_0}g.

    За время полёта мяча платформа сместится на расстояние

    L=V0Tполета=23V02gL=V_0T_\mathrm{полета}=\dfrac{2\sqrt3V_0^2}g,

    которое и является искомым расстоянием между мячом и платформой в момент приземления мяча.

  • §5. Преобразование скорости и ускорения при переходе в другую систему отсчёта

    В рамках классической механики скорость и ускорение тела преобразуются по определённым правилам при переходе от одной системы отсчёта к другой.

    Пусть имеются две произвольные системы отсчёта `K`  и `K^'` (рис. 6). Известны скорость `v^'` и ускорение `a^'`  тела (точки `A`) в `K^'` - системе.

    Рассмотрим случай, когда `K^'`- система движется поступательно по отношению к `K` - системе, и определим значения скорости v и ускорения  a тела в `K`-системе.
    Если за малый промежуток времени `Deltat` тело (точка `A`) переместилось относительно `K^'` - системы на величинy `Deltavecr^'`, а `K^'` - система переместилась относительно `K` - системы на `Deltavecr_0`, то из правила векторного сложения следует, что перемещение `Deltavecr` тела относительно `K` - системы будет равно  `Deltavecr=Deltavecr_0+Deltavecr^'`. Разделив обе части этого равенства на t\triangle t и обозначив через v0\vec v_0 скорость `K^'` - системы относительно `K` - системы, получим:

    `vec v =vec v_o +vec v^'`                                                                (4).

    Рассуждая аналогично,найдем формулу преобразования ускорения :

    `vec a =vec a_o + vec a^'`                                                              (5).

    Из формулы (5) вытекает важное следствие: при a0=0\vec a_0=0 ускорения a\vec a и `vec a^'` равны. Иными словами, если система отсчёта `K^'` движется поступательно без ускорения относительно системы отсчёта `K`, то ускорения тела в обеих системах отсчёта будут одинаковы.

    Переход из одной системы отсчёта в другую довольно часто применяется на практике и порой существенно облегчает решение некоторых физических задач, поэтому к данному приёму желательно привыкнуть и научиться умело его использовать.
    Часто встречаются задачи, в которых два тела движутся независимо друг от друга в некоторой системе отсчёта, и требуется определить какие-либо величины (перемещение, скорость), характеризующие движение одного тела относительно другого. В таких случаях, как правило, удобно перейти в систему отсчёта, связанную с тем телом, относительно которого рассматривается движение другого тела, и применить полученные выше формулы преобразований. Относительные перемещение и скорость двух тел определяются векторной разностью их перемещений и скоростей, заданных по отношению к одной и той же (чаще всего – неподвижной) системе отсчёта. Рассмотрим следующий пример.


                                        

    Пример 2

    Два корабля движутся с постоянными скоростями v1\vec v_1 и v2\vec v_2 под углом α\alpha друг к другу (рис. 7). Найти скорость первого корабля относительно второго.

    Решение

    Перейдём в систему отсчёта, связанную со вторым кораблём, движущимся со скоростью v2\vec v_2. В этой системе отсчёта относительная  скорость `vec v^'` первого корабля согласно (4) будет равна `vec v^'= vec v_1 -vec v_2`. Вектор v'\vec v' определим геометрически, используя правило построения векторной разности (рис. 8). Из треугольника `BDE` с помощью теоремы косинусов найдём модуль искомого вектора:

    `v^' =sqrt(v_1^2 +v_2^2-2v_1v_2cosalpha)`.

    Направление вектора `vec v^'` зададим, например, углом `beta` (рис. 8), который определим из `DeltaBDE` по теореме синусов:

    `(v_1)/(sinbeta)=(v^')/(sinalpha)`.

    Отсюда

    `sinbeta=(v_1)/(v^')sinalpha=(v_1 sinalpha)/(sqrt(v_1^2 +v_2^2-2v_1v_2cosalpha))`.

  • §6. Примеры движения тела. Методы решения задач.

    Рассмотрим некоторые характерные примеры движения тела, знание которых будет полезно при дальнейшем изучении физики.

    1.Равномерное прямолинейное движение тела.

    При равномерном прямолинейном движении тело совершает равные перемещения `Delta r`  за одинаковые промежутки времени  `Delta t`. Иными словами, скорость  `vec v` тела не зависит от времени и остаётся постоянной в процессе движения:

    `vec v= "const"`.                                                                                 (6)

    При этом зависимость `vec r(t)` имеет вид:

    `vec r(t)=vec r_0+vec v t`,                                                                     (7)

    где  `vec r_0`  -  радиус-вектор тела в начальный момент времени  t=0t = 0 . В этой связи вспомним замечание о начальных условиях, сделанное в §4.  Вектор  r0\vec r_0  здесь является тем начальным условием, которое позволяет однозначно определить радиус-вектор r\vec r тела в любой момент времени в процессе движения.

    Векторное уравнение (7) равносильно системе двух скалярных уравнений, выражающих зависимость от времени t  координат xx и yy движущегося тела:

    x(t)=x0+vx(t),y(t)=y0+vy(t)·\left\{\begin{array}{lc}x(t)=x_0+v_x(t),\\y(t)=y_0+v_y(t)\cdot\end{array}\right.           (8)

           


    где x0x_0 и y0y_0 - начальные координаты тела в момент времени t=0 t= 0, а vxv_x и vyv_y -проекции вектора скорости `vecv` на координатные оси OxOx и OyOy соответственно. 

    Траектория равномерного прямолинейного движения тела графически представляет собой отрезок прямой линии (рис. 9), тангенс угла наклона которой к оси абсцисс равен отношению проекций скорости на оси координат: tgα=vy/vx\mathrm{tg}\alpha=v_y/v_x. Аналитическое уравнение траектории, т. е. зависимость y(x)y(x), легко получить, исключив параметр tt из системы уравнений (8):

    `y(x)=(v_y)/(v_x)(x-x_0)+y_0`.                                                                 (9)

    Пример 3

    Равномерное прямолинейное движение тела на плоскости xOyxOy описывается уравнениями: x(t)=6+3tx(t) = 6 + 3t, y(t)=4ty(t) = 4t (величины измерены  в  СИ).  Запишите  уравнение  траектории  тела.  Изобразите графически  зависимость  модуля  вектора  скорости  от  времени   v(t)v(t). Определите путь, пройденный телом в течение первых пяти секунд движения.

    Решение

    Сравнивая уравнения движения, представленные в условии задачи, с системой уравнений (8), находим:

    x0=6x_0 = 6 м, y0=0y_0 = 0vx =3v_x = 3 м/c, vy =4v_y = 4 м/c.

    Уравнение траектории получим, подставив эти значения в общее уравнение (9):

    `y(x) =4/3(x - 6)`, или `y(x) = 4/3 x - 8`.

    Модуль vv скорости тела определим, зная vxv_x и vyv_y:

    `v=sqrt(v_x^2+v_y^2)=5` м/с.

    График зависимости v(t)v(t) представлен на рис. 10. При равномерном прямолинейном движении пройденный путь `Delta S` численно равен модулю вектора `Delta \vec r` перемещения тела. Вектор `Delta\vec r` для такого движения найдём из уравнения (7):  `Deltavec r = vec r (t) - vec r_0 = vec vt`. Его модуль равен: `Delta r = vt`. Таким образом, при равномерном движении путь, пройденный  телом   в  течение  времени  `t`,   определяется  по формуле `Delta S = vt`,  т. е. численно равен  площади  прямоугольника  под графиком зависимости  v(t)v(t) . Этот вывод можно обобщить и на случай неравномерного движения.

    В нашем примере путь равен площади прямоугольника, заштрихованного на рис. 10:

    `Delta S = vt = 5  "м"/"c"*5  "c" = 25  "м"`.

    Замечание

    Используя рассуждения аналогичные Примеру 3, несложно показать, что пусть численно равен площади фигуры под графиком скорости при любом произвольном движении материальной точки.

    Пример 4

    Координаты тела при  равномерном прямолинейном движении  на  плоскости   xOy xOy  за  время  t=2ct = 2c  изменились  от начальных значений x0=5мx_0 = 5 м, y0=7мy_0 = 7 м до значений x=-3мx = -3 м и y=1мy = 1 м. Найдите модуль скорости тела. Запишите уравнение траектории тела. Изобразите графически траекторию тела и направление вектора его скорости. Постройте графики зависимости координат тела от времени.

    Решение

    Проекции скорости на оси координат можно найти с помощью уравнений движения (8) и численных данных задачи:

    `v_x=(x-x_0)/t=(-3-5)/2=-4` м/с, `v_y=(y-y_0)/t=(1-7)/2=-3` м/с.

    Тогда модуль скорости  v=(vx2+vy2)=5v=\sqrt{(v_x^2+v_y^2)}=5 м/с.

    Уравнение траектории y(x)y(x) с учётом (9) и численных данных задачи имеет вид:

    y(x)=34(x-5)+7y(x)=\dfrac34(x-5)+7, или y(x)=34x+134y(x)=\dfrac34x+\dfrac{13}4

    Положение тела в начальный и  конечный моменты времени (точки `A` и `B`), его траектория и направление скорости изображены на рис. 11. Зависимость координат тела от времени легко найти аналитически, подставляя начальные условия и значения vxv_x и vyv_y в общие уравнения движения (8):

    x(t)=5-4t,y(t)=7-3tx(t)=5-4t , y(t)=7-3t

    Графически эти зависимости представлены в виде отрезков прямых на рис. 12.

    Заметим, что тангенсы углов наклона отрезков прямых на рис. 12 численно равны коэффициентам при tt в соответствующих уравнениях x(t)x(t) и y(t)y(t), т. е. значениям vxv_x и vyv_y:

    `"tg"alpha=-4`, `"tg"beta=-3`.

    (Т. к. в данном случае графики уравнений движения представляют собой убывающие функции, то здесь тангесы отрицательны.)


    2. Неравномерное движение тела.

    Для неравномерного движения характерно то, что с течением времени изменяется скорость движущегося тела, а в общем случае и его ускорение. В качестве примера может служить движение, при котором тело проходит различные участки своего пути с разной скоростью. Такое движение принято характеризовать, прежде всего, средней путевой скоростью. Причём прилагательное «путевая» в условиях задач часто опускается.

    Пример 5*

    Любитель  бега  трусцой  пробежал  половину  пути со скоростью v1=10v_1 =10 км/ч. Затем половину оставшегося времени бежал со скоростью v2=8v_2 = 8 км/ч, а потом до конца пути шёл пешком со скоростью v3=4v_3 = 4 км/ч. Определить среднюю скорость движения бегуна.


    Решение

    Из смысла условия задачи следует, что здесь  речь  идёт  о средней  путевой  скорости.  Разобьём  весь  путь   `Delta S`   на  три   участка `Delta S_1`, `Delta S_2` и `Delta S_3`. Время движения на каждом участке обозначим соответственно `Delta t_1`, `Delta t_2`, `Delta t_3`. Средняя скорость бегуна согласно определению, выраженному формулой (3), будет равна:

    `v_"cp"= (Delta S_1 +Delta S_2+Delta S_3)/(Delta t_1+Delta t_2+Delta t_3)`.

    По    условию    задачи `Delta S_1  =DeltaS // 2`, `Delta S_2 + Delta S_3  = Delta S //2`.    Поскольку `Delta S_1 = v_1Delta t_1`, `Delta S_2 = v_2Delta t_2`, `Delta S_3 = v_3Delta t_3` и, учитывая, что `Delta t_2 = Delta t_3`, найдём время движения на отдельных участках:

    `Delta t_1=(Delta S_1)/(v_1)=(Delta S)/(2v_1)`,

    `Delta t_2=(Delta S_2)/(v_2)=(Delta S)/(2(v_2+v_3))`,

    `Delta t_3=(Delta S_3)/(v_3)=(Delta S)/(2(v_2+v_3))`.

    Подставляя эти значения в выражение для `v_"ср"`, получим:

    `v_"cp"=(Delta S)/((Delta S)/(2v_1)+(Delta S)/(2(v_2+v_3))+(Delta S)/(2(v_2+v_3)))  =(2v_1(v_2+v_3))/(2v_1+v_2+v_3)=7,5` км/ч.

    Заметим, что иногда учащиеся подсчитывают среднюю путевую скорость движения по формуле `v_"ср"= (v_1 + v_2 + ... + v_n)//n`, где  `v_i` - скорость движения на `i`-м участке, `n` - число участков пути. Аналогично поступают и с вектором средней скорости `v_"ср"`. Следует иметь в виду, что такой расчёт в общем случае является ошибочным.

    Другим характерным примером неравномерного движения служит так называемое равнопеременное движение, которое целесообразно рассмотреть подробно, не выходя при этом за рамки школьной программы.

    3. Равнопеременное движение.

    Равнопеременным называется такое неравномерное движение, при котором скорость `vec v` за любые равные промежутки   времени   `Delta t`  изменяется  на  одинаковую  величину   `Deltavec v`. В этом случае ускорение a тела не зависит от времени и остаётся постоянным в процессе движения:

    `vec a="const"`                                                                                     (10)

    При этом `vec v != "const"`, и траектория движения не обязательно прямолинейная.
    При равнопеременном движении скорость v\vec v тела изменяется с течением времени по закону

    `vec v (t)=vec v_0 +vec at`,                                                               (11)

    где v0v_0 - скорость тела в начальный момент времени t=0t = 0.
    В свою очередь, зависимость r(t) \vec r(t) имеет вид:

    `vec r=vec r_0+vec v_0t+(vec a t^2)/2`,                                               (12)

    где r0r_0 - начальный радиус-вектор тела при t=0t = 0 . Вновь заметим, что величины v0v_0 и r0r_0 представляют собой начальные условия, позволяющие в любой момент времени однозначно определить векторы vv и rr.

    При координатном способе описания равнопеременного движения векторным уравнениям (11) и (12), равносильны следующие системы уравнений для проекций скорости и радиус-вектора тела на оси выбранной системы отсчёта. Здесь мы ограничиваемся случаем плоского движения, при котором траектория тела лежит в одной плоскости, совпадающей с координатной:

                                         

    vxt=v0x+axt,vyt=v0y+ayt.\left\{\begin{array}{l}v_x\left(t\right)=v_{0x}+a_xt,\\v_y\left(t\right)=v_{0y}+a_yt.\end{array}\right.      (13)
    xt=x0+v0xt+axt22,yt=y0+v0y+ayt22,\left\{\begin{array}{l}x\left(t\right)=x_0+v_{0x}t+\dfrac{a_xt^2}2,\\y\left(t\right)=y_0+v_{0y}+\dfrac{a_yt^2}2,\end{array}\right. (14)

    где x0x_0 и y0y_0 - начальные абсцисса и ордината тела (при t=0t =0), v0xv_{0x} и v0yv_{0y} - проекции начальной скорости `vecv_0` тела на координатные оси, axa_x и  aya_y - проекции вектора ускорения на оси
    OxOx и OyOy соответственно.
    В принципе формулы (11) и (12), или равносильные им системы уравнений (13) и (14) позволяют решить любую задачу на движение тела с постоянным ускорением.

    В случае прямолинейного движения тела удобнее одну координатную ось, например ось OxOx, совместить с траекторией тела. Тогда для описания движения будет достаточно одной этой оси, в проекциях на которую векторные уравнения (11) и (12) дают:

    vx=v0x+axtv_x=v_{0x}+a_xt,    x=x0+v0xt+axt22x=x_0+v_{0x}t+\dfrac{a_xt^2}2.

    Если на промежутке времени от 00 до tt направление движения тела не изменялось на противоположное, то разность x-x0x-x_0текущей и начальной координат тела совпадает с пройденным путём SS, следовательно,

    `S=v_(0x)t+(a_xt^2)/2`.

    Эту формулу можно записать по-другому, если подставить в неё время tt,  выраженное из уравнения vx=v0x+axt v_x=v_{0x}+a_xt . Это время будет 

    `t=(v_x-v_(0x))/a_x`.

    Тогда для пути SS после несложных преобразований получим

    `S=(v_x^2-v_(0x)^2)/(2a_x)`.

    Удобство этой формулы заключается в том, что она не содержит времени tt в явном виде. Вместе с тем надо помнить, что формула получена в предположении о неизменности направления движения тела.

    Пример 6

    За `2`c прямолинейного равноускоренного движения тело прошло `20` м, увеличив свою скорость в `3` раза. Определите конечную скорость тела. (ЕГЭ, 2005г., уровень .B )

    Решение

    Пусть за время t=2t=2 с скорость тела изменилась от v0v_0 до vv. Направим координатную ось OxOx вдоль траектории тела в сторону движения. Тогда в проекциях на эту ось можно записать  v-v0+atv-v_0+at, `a` - модуль ускорения тела. По условию `v_0=1/3v` и, следовательно, `a=2/3v/t`. 

    За время tt тело, движущееся с таким ускорением, пройдёт путь

    `S=(v^2-v_0^2)/(2a)`.

    С учётом выражений для v0v_0 и aa получим  `S=2/3vt`. Откуда искомая скорость `v=3/2S/t`. Подставляя сюда значения `S = 20` м и `t =2` c, найдём окончательно `v =15` м/ с.



    
    


    Одним из наиболее наглядных примеров равнопеременного движения является движение тела в поле тяжести Земли, которое мы имеем возможность наблюдать повседневно. Для решения задач в этом случае надо заменить в приведённых выше формулах вектор a\vec a на ускорение свободного падения g\vec g, сообщаемое силой гравитационного притяжения всякому телу, движущемуся в поле тяжести Земли. Рассмотрим три конкретных случая такого движения.


    Пример 7

     Движение тела, брошенного вертикально.
    Тело бросили с поверхности земли, сообщив ему начальную скорость v0\vec v_0 направленную вертикально вверх. Пренебрегая сопротивлением воздуха, определите время τ\tau полёта тела до момента падения на землю; скорость тела в момент падения; максимальную высоту HH подъёма тела над землёй; время τ1\tau_1 подъёма тела на максимальную высоту; путь `S`, пройденный телом за время полёта и перемещение тела. Начертите графики зависимости от времени tt вертикальной координаты тела и проекции на вертикальную ось его скорости в процессе полёта.

    Решение


    Поскольку движение полностью происходит в вертикальном направлении, то для определения пространственного положения тела достаточно одной координатной оси OyOy. Направим её вертикально вверх, начало отсчёта OO поместим в точку бросания (рис. 13). Начальные условия движения тела: y0=0,v0y=v0y_0=0, v_{0y}=v_0.

    Проекция ускорения тела на ось OyOy в отсутствие сопротивления воздуха равна ay=ga_y=g , т. к. вектор g\vec g направлен вертикально вниз противоположно направлению координатной оси. Вторые уравнения систем (13) и (14) с учётом начальных условий имеют вид:

               `v_y=v_0-g t`,                                                                     (15)

    `y=v_0t-(g t^2)/2`.                                                              (16)

    Пусть при t=τt=\tau тело упало на землю. В этот момент y=0y=0 и уравнение (16) даёт: `0=v_0 tau-(g t^2)/2`. Откуда для τ\tau получаем: τ=0\tau=0 или `tau=(2v_0)/g`. Значение τ=0\tau=0 соответствует начальному моменту бросания тела с поверхности земли, и для нас интереса не представляет. Следовательно, время полёта тела `tau=(2v_0)/g`.

    Согласно (15), при t=τt=\tau имеем: vy=v0-gtv_y=v_0-gt Тогда с учётом найденного значения τ\tau получим vy=v0-2v0=-v0v_y=v_0-2v_0=-v_0 Таким образом, скорость тела в момент падения равна по величине начальной скорости v0v_0, но направлена вертикально вниз, её проекция на ось OyOy отрицательна.

    Пусть при t=τ1t=\tau_1 тело находится в наивысшей точке подъёма. Это значит, что y=H,vy=0y=H, v_y=0 С учётом этих значений уравнения (15) и (16) дают:

    `0=v_0-g tau_1`, `H=v_0 tau_1-(g tau_1^2)/2`.

    Из первого уравнения определяем время подъёма тела  `tau_1=(v_0)/g` и, подставляя τ1\tau_1 во второе уравнение, найдём `H=(v_0^2)/(2g)`.
    Заметим, что время τ1\tau_1 подъёма тела на максимальную высоту вдвое меньше времени τ\tau полёта тела: τ=2τ1\tau=2\tau_1
    Путь SS , пройденный телом за время полёта, складывается из двух участков: подъёма до высшей точки траектории и падения с высшей точки траектории на поверхность земли. Очевидно, что длины траекторий движения тела на этих участках одинаковы и, значит, S=2HS=2H Перемещение тела равно нулю, поскольку начальная и конечная точки траектории тела совпадают.

    Зависимость y(t)y(t) в соответствии с (16) представляет собой квадратичную функцию, графиком которой, как известно, является парабола (рис. 14). Ветви параболы направлены вниз, т. к. в формуле (16) коэффициент при `t^2` отрицателен.
    Зависимость vy(t)v_y(t) является линейной, и её график представляет собой отрезок прямой линии (рис. 15), тангенс угла наклона которой коси абсцисс равен коэффициенту при tt в формуле (15):

    `"tg"alpha=-g`.


    Пример 8

    Движение тела, брошенного горизонтально.

    Тело бросили с высоты HH над поверхностью земли, сообщив ему начальную скорость v0\vec v_0, направленную горизонтально (рис. 16). Пренебрегая сопротивлением воздуха, определите время τ\tau полёта тела до его падения на землю, дальность ll полёта тела, скорость vecvvecv тела в момент падения. Выбрав прямоугольную систему координат так, как показано на рис. 16, запишите уравнение траектории движения тела, начертите графики зависимости от времени tt координат тела и проекций скорости тела на координатные оси.

    Решение

    Начало отсчёта OO поместим на поверхности земли под точкой бросания (рис. 16). Начальные условия движения тела: `x_0=0`, `y_0=H`, `v_(0x)=v_0`, `v_(0y)=0`. Проекции ускорения тела на оси координат при отсутствии сопротивления воздуха равны:

    `a_x=0`, `a_y=-g`.

    Запишем системы уравнений (13) и (14) с учётом этих значений:

    vx=v0,vy=-gt·\left\{\begin{array}{lc}v_x=v_0,\\v_y=-gt\cdot\end{array}\right.                       (17)
                              

    x=v0t,y=H-gt22·\left\{\begin{array}{lc}x=v_0t,\\y=H-\dfrac{gt^2}2\cdot\end{array}\right.                           (18)
            

    Пусть при t=τt=\tau тело упало на землю. Это означает, что y=0y=0, x=lx=l, и уравнения системы (18) принимают вид:

    l=v0τl=v_0\tau, `0=H-(g tau^2)/2`.

    Решая их ,находим:

    `tau= sqrt((2H)/g)`, `l=v_0sqrt((2H)/g)`.

    В свою очередь, система уравнений (17) даёт: vx=v0,vy=-gτv_x=v_0, v_y=-g\tau. С учётом значения τ\tau получим `v_y=-sqrt(2gH)`, и модуль скорости `vecv` будет равен:

    v=(vx2+vy2)=(vx2+2gH)v=\sqrt{(v_x^2+v_y^2)=\sqrt(v_x^2+2gH)}. Направление вектора `vecv` определим с помощью угла α\alpha (рис. 16):

    `"tg"alpha=v_y//v_x=(-sqrt(2gH))//v_0`.

    Уравнение y(x)y(x) траектории движения тела получим, исключив параметр tt из системы (18):

    `y(x)=-g/(2v_0^2)x^2+H`.

    Так как y(x)y(x) представляет собой квадратичную функцию, то траекторией движения тела является участок параболы с вершиной в точке бросания. Ветви параболы направлены вниз. Графики, требуемые в условии данного примера, представлены соответственно на рис. 17 и рис. 18.

    Пример 9

    Движение тела, брошенного под углом к горизонту.

    Тело бросили с поверхности земли с начальной скоростью v0v_0 направленной под углом α\alpha к горизонту (рис. 19). Пренебрегая сопротивлением воздуха, определите время τ\tau полёта тела до его падения на землю,дальность ll полёта тела, скорость тела в момент падения на землю,максимальную высоту HH подъёма тела над землёй, время τ1\tau_1 подъёма тела на максимальную высоту. Запишите уравнение траектории тела.


    Решение

    Направим оси прямоугольной системы координат, как показано на рис. 19. Начало отсчёта OO поместим в точку бросания. Тогда начальные условия движения тела таковы: `x_0=0`, `y_0=0`, `v_(0x)=v_0cosalpha`, `v_(0y)=v_0sinalpha`. При отсутствии сопротивления воздуха ax=0,ay=ga_x=0, a_y=g С учётом этих значений системы уравнений (13) и (14) имеют вид:

    vx=v0cosα,vy=v0sinα-gt·\left\{\begin{array}{lc}v_x=v_0\cos\alpha,\\v_y=v_0\sin\alpha-gt\cdot\end{array}\right.                   (19)
    x=(v0cosα)t,y=(v0sinα)t-gt22·\left\{\begin{array}{lc}x=(v_0\cos\alpha)t,\\y=(v_0\sin\alpha)t-\dfrac{gt^2}2\cdot\end{array}\right.                       (20)

    Пусть при t=τt=\tau тело упало на землю, тогда: y=0,x=ly=0, x=l. Уравнения системы (20) дают:

    l=(v0cosα)τl=(v_0\cos\alpha)\tau,    0=(v0sinα)τ-gτ220=(v_0\sin\alpha)\tau-\dfrac{g\tau^2}2

    Откуда находим

    τ=2v0sinαg\tau=\dfrac{2v_0\sin\alpha}g,    l=v02sin2αgl=\dfrac{v_0^2\text{sin}2\alpha}g

    (Здесь использовано равенство 2sinαcosα=sin2α.2\sin\alpha\cos\alpha=\sin2\alpha. )
    Из полученного выражения для ll легко определить угол α\alpha, при котором дальность полёта тела будет максимальной. Действительно, величина ll как функция от α\alpha принимает максимальное значение в том случае, когда sin2α=1\sin2\alpha=1. Это возможно, если `2alpha=90^@`, т. е. `alpha=45^@`.

    Модуль скорости тела в момент падения на землю определим с помощью теоремы Пифагора:  v=(vx2+vy2)v=\sqrt{(v_x^2+v_y^2)}. В соответствии с системой уравнений (19) в этот момент (при t=τt=\tau ) имеем: vx=v0cosαv_x=v_0\cos\alpha, vy=v0sinα-gτ=-v0sinαv_y=v_0\sin\alpha-g\tau=-v_0\sin\alpha.

    Следовательно, v=v02cos2α+v02sin2α=v0v=\sqrt{v_0^2\cos^2\alpha+v_0^2\sin^2\alpha}=v_0, (так как cos2α+sin2α=1\cos^2\alpha+\sin^2\alpha=1).

    Направление скорости тела в момент падения составляет угол α\alpha с направлением оси OxOx. Этот угол отсчитывается по часовой стрелке от направления оси OxOx.

    Пусть при t=τ1t=\tau_1 тело достигло максимальной высоты. В этот момент vy=0v_y=0, `y=H`. Соответствующие уравнения систем (19) и (20) дают:

    0=v0sinα-gτ10=v_0\sin\alpha-g\tau_1H=(v0sinα)τ1-gτ122H=(v_0\sin\alpha)\tau_1-\dfrac{g\tau_1^2}2.

    Отсюда последовательно находим:

    τ1=v0sinαg\tau_1=\dfrac{v_0\sin\alpha}g, H=v02sin2α2gH=\dfrac{v_0^2\sin^2\alpha}{2g}.

    Видим,что τ=2τ1\tau=2\tau_1.

    Уравнение траектории получим, исключив из системы (20) время tt :

    y(x)=g2v02cos2αx2+tgαxy(x)=\dfrac g{2v_0^2\cos^2\alpha}x^2+\mathrm{tg}\alpha x

    График траектории тела представляетсобой участок параболы, ветви которой направлены вниз.






     

  • §4. Способы описания движения

    В кинематике существуют три способа аналитического описания движения материальной точки в пространстве. Рассмотрим их, ограничившись случаем движения материальной точки на плоскости, что позволит нам при выборе системы отсчёта задавать лишь две координатные оси.


    1. Векторный способ.

    В этом способе положение материальной точки `A`  задаётся  с  помощью  так называемого  радиус-вектора  `vecr`,  который представляет собой вектор, проведённый из точки `O`, соответствующей началу отсчёта выбранной системы координат, в интересующую нас точку `A` (рис. 1). В процессе движения материальной точки её радиус-вектор может изменяться как по модулю, так и по направлению, являясь функцией времени  r = r (t)\vec r = \vec r (t)

    Геометрическое место концов радиус-вектора  r(t) \vec r(t)  называют траекторией точки `A`.

    В известном смысле траектория движения представляет собой след (явный или воображаемый), который «оставляет за собой» точка `A` после прохождения той или иной области пространства. Понятно, что геометрическая форма траектории зависит от выбора системы отсчёта, относительно которой ведётся наблюдение за движением точки.

    Пусть в процессе движения по некоторой траектории в выбранной системе отсчёта за промежуток времени `Delta t` тело (точка `A`) переместилось из начального положения 1 с радиус-вектором `vec r_1` в конечное положение 2 с радиус-вектором  `vec r_2` (рис. 2). Приращение `Deltavec r` радиус-вектора тела в таком случае равно:  `Deltavec r = vec r_2- vec r_1`.

    Вектор `Deltavec r`, соединяющий начальное и конечное положения тела, называют перемещением тела.

    Отношение `Delta vec r//Delta t` называют средней скоростью (средним вектором скорости) `vec v_"cp"` тела за время `Delta t`:

    `vecv_"cp"=(Deltavecr)/(Delta t)`                                                                   (1)

    Вектор `vecv_"cp"` коллинеарен и сонаправлен с вектором `Deltavec r`, так как отличается от последнего лишь скалярным неотрицательным множителем `1/Delta t`.

    Предложенное определение средней скорости справедливо для любых значений `Delta t`, кроме `Delta t=0`.  Однако ничто не мешает брать промежуток времени `Delta t` сколь угодно малым, но отличным от нуля.
    Для точного описания движения вводят понятие мгновенной скорости, то есть скорости в конкретный момент времени `t` или в конкретной точке траектории. С этой целью промежуток времени `Delta t` устремляют к нулю. Вместе с ним будет стремиться к нулю и перемещение `Delta vec r`. При этом отношение `Deltavec r/Delta t` стремится к определённому значению, не зависящему от `Delta t`.

    Величина, к которой стремится отношение  `Deltavec r/Delta t` при стремлении `Delta t` к нулю, называется мгновенной скоростью`vec v`: 

    `vec v =(Delta vec r)/(Delta t)` при `Delta t -> 0`.

    Теперь заметим, что чем меньше `Delta t`, тем ближе направление `Deltavec r` к направлению касательной к траектории в данной точке. Следовательно, вектор мгновенной скорости направлен по касательной к траектории в данной точке в сторону движения тела.

    В дальнейшем там, где это не повлечёт недоразумений, мы будем опускать прилагательное «мгновенная» и говорить просто о скорости `vec v` тела (материальной точки).

    Движение тела принято характеризовать также ускорением, по которому судят об изменении скорости в процессе движения. Его определяют через отношение приращения вектора скорости `Delta vec v` тела к промежутку времени `Delta t`, в течение которого это приращение произошло.

    Ускорением `veca` тела называется величина, к которой стремится отношение `Delta vec v//Delta t` при стремлении к нулю знаменателя `Delta t`:

     `vec a =(Delta vec v)/(Delta t)` при `Delta t -> 0`                                              (2)

    При уменьшении `Delta t` ориентация вектора`Delta vec v` будет приближаться к определённому направлению, которое принимается за направление вектора ускорения `vec a`. Заметим, что ускорение направлено в сторону малого приращения скорости, а не в сторону самой скорости!

    Таким образом, зная зависимость `vec r(t)`, можно найти скорость `vec v` и ускорение a\vec a тела в каждый момент времени. В этой связи возникает и обратная задача о нахождении скорости `vec v (t)` и радиус-вектора `vec t (t)` по известной зависимости от времени ускорения `vec a`. Для однозначного решения этой задачи необходимо знать начальные условия, т. е. скорость `vec v_0` и радиус-вектор `vec r_0` тела в начальный момент времени t=0t=0.

    Напомним, что в системе СИ единицами длины, скорости и ускорения являются соответственно метр (м), метр в секунду (`"м"//"с"`) и метр на секунду в квадрате ( `"м"//"с"^2`).


    2. Координатный способ. 

    В этом способе положение материальной точки `A` на плоскости в произвольный момент времени `t` определяется двумя координатами `x` и `y`, которые представляют собой проекции радиус-вектора r\vec rтела на оси `Ox` и `Oy` соответственно (рис. 3). При движении тела его координаты изменяются со временем, т. е. являются функциями `t`: x=x(t)x=x( t) и y=y(t)y=y(t) . Если эти функции известны, то они определяют положение тела на плоскости в любой момент времени. В свою очередь, вектор скорости v\vec v можно спроецировать на оси координат и определить таким образом скорости vxv_x и xy x_y изменения координат тела (рис. 4). В самом деле vxv_x  и vyv_y будут равны значениям, к которым стремятся соответственно отношения `Delta x//Delta t` и `Delta y//Delta t` при стремлении к нулю промежутка времени `Delta t`.

    Аналогично с помощью проецирования вектора a\vec a определяются ускорения axa_x и aya_y тела по направлениям координатных осей.

    Таким образом, зная зависимости x(t)x(t) и y(t)y(t) ,можно найти не только положение тела, но и проекции его скорости и ускорения, а следовательно, модуль и направление векторов v\vec v и a\vec aв любой момент времени. Например, модуль вектора скорости будет равен v=(vx2+vy2)v={\sqrt(v_x^2+v_y^2)}, а его направление может быть задано углом между этим вектором и любой осью координат. Так, угол α\alpha между вектором v\vec v и осью Ox определяется отношением `"tg"alpha=v_y//v_x`. Аналогичными формулами определяются модуль и направление вектора a\vec a.
    Обратная задача – нахождение скорости и зависимостей x(t)x(t) и y(t)y(t) по заданному ускорению – будет иметь однозначное решение, если кроме ускорения заданы ещё и начальные условия: проекции скорости и координаты точки в начальный момент времени t=0t=0.

    3. Естественный (или траекторный) способ.

    Этот способ применяют тогда, когда траектория материальной точки известна заранее. На заданной траектории `LM` (рис. 5) выбирают начало отсчёта – неподвижную точку `O`, а положение движущейся материальной точки `A` определяют при помощи так называемой дуговой координаты `l`, которая представляет собой расстояние вдоль траектории от выбранного начала отсчёта `O` до точки `A`. При этом положительное направление отсчёта координаты `l` выбирают произвольно, по соображениям удобства, например так, как показано стрелкой на рисунке 5.

    Движение тела определено, если известны его траектория, начало отсчёта `O`, положительное направление отсчёта дуговой координаты `l` и зависимость l(t)l(t).

    Следующие два важных механических понятия – это пройденный путь и средняя путевая скорость.
    По определению, путь `Delta S` - это длина участка траектории, пройденного телом за промежуток времени `Delta t`.

    Ясно, что пройденный путь – величина скалярная и неотрицательная, а потому его нельзя сравнивать с перемещением `Delta vec r`, представляющим собой вектор. Сравнивать можно только путь `Delta S` и модуль перемещения `
    |Delta vecr|`. Очевидно, что `Delta S >=|Deltavec r|`.

    Средней путевой скоростью `v_"cp"` тела называют отношение пути `Delta S` к промежутку времени `Delta t` в течение которого этот путь был пройден:  

    `v_"cp"=(Delta S)/(Delta t)`                                                                        (3)

    Определённая ранее средняя скорость `v_"cp"` (см. формулу (1)) и средняя путевая   скорость отличаются друг от друга так же, как `Deltavec r` отличается от `Delta S`, но при этом важно понимать, что обе средние скорости имеют смысл только тогда, когда указан промежуток времени усреднения `Delta t`. Само слово «средняя» означает усреднение по времени.

    Пример 1

    Городской троллейбус утром вышел на маршрут, а через 8часов, проехав в общей сложности `72` км, возвратился в парк и занял своё обычное место на стоянке. Какова средняя скорость `vec v_"cp"` и средняя путевая скорость `v_"cp"` троллейбуса?

    Решение

    Поскольку начальное и конечное положения троллейбуса совпадают, то его перемещение `Delta vecr` равно нулю: `Deltavecr=0`, следовательно, `vecv_"ср"=Deltavecr//Deltat=0` и `|vecv_"ср"|=0`. Но средняя путевая скорость троллейбуса не равна нулю:

    `v_"cp"=(Delta S)/(Delta t)=(72 "км")/(8 "ч")=9 "км"//"ч"`.

  • §3. Изменение физической величины

    Изучая физику, часто приходится использовать понятие изменения физической величины. При этом следует иметь в виду, что изменение какой-либо физической величины можно характеризовать либо её приращением, либо убылью. Приращением называется разность конечного и начального значений этой величины, в то время как убыль, напротив, представляет собой разность начального и конечного её значений.
    Иными словами, убыль и приращение отличаются знаком. Мы чаще будем пользоваться понятием приращения и обозначать его в соответствии со сложившейся традицией с помощью греческой буквы «дельта»: `Delta`.
    Таким образом, если этот символ стоит перед обозначением какой-либо векторной или скалярной величины, то такое выражение означает приращение соответствующей величины.
    Так, выражение  `Deltavec A` означает приращение вектора A\vec A , а выражение `Delta x` - приращение скалярной величины xx. Вместе с тем во избежание недоразумений следует проявлять известную осторожность при использовании символа `Delta`. Например, убедитесь самостоятельно, что, вообще говоря,  `|DeltavecA|!=Delta|vecA|`, хотя в некоторых частных случаях возможно равенство.

  • §2. Физические модели

    Реальные движения тел порой так сложны, что при их изучении необходимо постараться пренебречь несущественными для рассмотрения деталями. С этой целью в физике прибегают к моделированию, т. е. к составлению упрощённой схемы (модели) явления, позволяющей понять его основную суть, не отвлекаясь на второстепенные обстоятельства. Среди общепринятых физических моделей важную роль в механике играют модель материальной точки и модель абсолютно твёрдого тела.

    Материальная точка – это тело, геометрическими размерами которого в условиях задачи можно пренебречь и считать, что вся масса тела сосредоточена в геометрической точке.

    Абсолютно твёрдое тело (просто твёрдое тело) – это система, состоящая из совокупности материальных точек, расстояния между которыми в условиях задачи можно считать неизменными.

    Модель материальной точки применима прежде всего в случаях, когда размеры тела много меньше других характерных размеров в условиях конкретной задачи. Например, можно пренебречь размерами искусственного спутника по сравнению с расстоянием до Земли и рассматривать спутник как материальную точку. Это – верно! Но вместе с тем не стоит ограничиваться лишь подобными случаями.

    Дело в том, что сложное движение реального тела можно «разложить» на два простых вида движения: поступательное и вращательное (см. Задание №1). Если при сложном движении заменить тело материальной точкой, то мы исключим из рассмотрения вращение тела, т. к. говорить о вращении точки вокруг самой себя бессмысленно (точка не имеет геометрических размеров). Следовательно, заменив тело материальной точкой при сложном движении, мы допустим ошибку. Однако часто в случаях, когда тело движется поступательно, не вращаясь, его можно считать материальной точкой независимо от размеров, формы и пройденного им пути.

    Модель абсолютно твёрдого тела можно применять, когда в условиях рассматриваемой задачи деформации реального тела пренебрежимо малы. Так, например, в задании, посвящённом вопросам статики (Задание №4), мы будем изучать условия равновесия твёрдого тела и при решении задач часто применять указанную модель. Вместе с тем, данная модель неуместна, если суть задачи состоит, например, в изучении деформаций тела в результате тех или иных воздействий в процессе его движения или в состоянии покоя.

    Таким образом, мы будем изучать механическое движение не самих реальных тел, а упомянутых выше моделей. Из них основной и наиболее употребимой для нас станет модель материальной точки. В то же время там, где это необходимо, мы будем ради наглядности изображать на рисунках тела не в виде точек, а в виде объектов, геометрические размеры которых не равны нулю.

  • §1. Система отсчёта

    В предыдущем задании по физике механическое движение было определено как всякое изменение положения тел или их частей в пространстве относительно друг друга с течением времени. Следовательно, чтобы узнать, движется ли конкретное тело и как оно движется, необходимо указать, относительно каких тел (объектов) рассматривается это движение. Тела, относительно которых рассматривается изучаемое движение, называются телами отсчёта, а само движение при этом является относительным.

    В то же время выбор одного лишь тела отсчёта не даёт возможности полностью описать изучаемое движение, поэтому с телом отсчёта связывают так называемую систему координат, а отсчёт времени ведут с помощью часов, наличие которых предполагается изначально. Выбор той или иной системы координат для решения конкретной задачи осуществляется по соображениям удобства. Наиболее привычной и распространённой для нас является декартова прямоугольная система координат, с которой мы и будем работать в дальнейшем. Тело отсчёта и связанная с ним система координат в совокупности с часами для отсчёта времени образуют систему отсчёта.

  • §6. Задачи на столкновения и законы сохранения импульса и энергии

    В физике под столкновениями понимают процессы взаимодействия  между телами (частицами) в широком смысле слова, а не только в буквальном - как соприкосновение тел. Сталкивающиеся тела на большом расстоянии являются свободными. Проходя друг мимо друга, тела взаимодействуют между собой, в результате могут происходить различные процессы - тела могут соединиться в одно тело (абсолютно неупругий удар), могут возникать новые тела и, наконец, может иметь место упругое столкновение, при котором тела после некоторого сближения вновь расходятся без изменения своего внутреннего состояния. Столкновения, сопровождающиеся изменением внутреннего состояния тел, называются неупругими. Тела (частицы), участвующие в столкновении, характеризуются (до и после столкновения)  импульсами и энергиями. Процесс столкновения сводится к изменению этих величин в результате взаимодействия. Законы сохранения энергии и импульса позволяют достаточно просто устанавливать соотношения между различными физическими величинами при столкновении тел. Особенно ценным здесь является то обстоятельство, что зачастую законы сохранения могут быть использованы даже в тех случаях, когда действующие силы неизвестны. Так обстоит дело, например, в физике элементарных частиц.

    Происходящие в обычных условиях столкновения макроскопических тел почти всегда бывают в той или иной степени неупругими – уже хотя бы потому, что они сопровождаются некоторым нагреванием тел, т. е. переходом части их кинетической энергии в тепло. Тем не менее, в физике понятие об упругих столкновениях играет важную роль. С такими столкновениями часто приходится иметь дело в физическом эксперименте в области атомных явлений, да и обычные столкновения можно часто с достаточной степенью точности считать упругими.

    Сохранение импульса тел (частиц) при столкновении обусловлено тем, что совокупность тел, участвующих в столкновении, составляет либо изолированную систему, т. е. на тела, входящие в систему, не действуют внешние силы, либо замкнутую: внешние силы отличны от нуля, а сумма внешних сил равна нулю. Несколько сложнее обстоит дело с применением закона сохранения энергии при столкновениях. Обращение к сохранению энергии  требует порой учёта различных форм внутренней энергии.

    Можно сказать, что действие законов сохранения импульса и энергии в процессах столкновения подтверждено широким спектром опытных данных.

    Неупругие столкновения

    Пример 14

    Частица массой `m` с кинетической энергией `K` сталкивается с неподвижной частицей массой `M`. Найдите приращение `Q` внутренней энергии системы частиц в результате абсолютно неупругого столкновения («слипания»).

    Решение

    Рассмотрим абсолютно неупругий удар двух тел в ЛСО. Налетающая частица движется до столкновения в положительном направлении оси `Ox` со скоростью `vec v`, кинетическая энергия частицы `K = (mv^2)/2`. В результате абсолютно неупругого удара (слипания) час­тицы движутся с одинаковой скоростью `vec u`. По закону сохранения им­пульса `mv = (m + M) u`. По закону сохранения  энергии

    `(mv^2)/2 = ((m + M)u^2)/2 + Q`.

    Из приведённых соотношений находим `Q = M/(m + M) K`.

     Отметим, что в предельных случаях

    `Q = K`,

    `m < < M`,

    `Q = M/m K < < K`,

    `m > > M`.

    Как видим, при неупругом столкновении лёгкой частицы с массивной (например, электрона с атомом) происходит почти полный переход её кинетической энергии во внутреннюю энергию массивной частицы.

    При равенстве масс  `(m = M)` `Q = K/2`.

    Отсюда следует, например, что при столкновении двух одинаковых ав­томобилей, один из которых неподвижен, а другой движется по на­правлению к нему, половина кинетической энергии идёт на разруше­ние.

    Упругие столкновения

    Пример 15

    На гладкой горизонтальной поверхности лежит гладкий шар массой `M`. На него налетает гладкий шар массой `m`, движущийся со скоростью `vec v`. Происходит упругий центральный удар шаров. Найдите скорости `vecv_1` и `vecv_2` шаров после соударения. При каком условии налетающий шар будет двигаться после соударения в прежнем направлении?

    Решение

    Задачу рассмотрим в ЛСО, ось `Ox` которой направим по линии центров шаров в момент соударения. Внешние силы, действующие на  шары в  процессе соударения, это силы тяжести и силы нормальной реакции опоры. Их сумма равна нулю. Следовательно, импульс системы шаров в процессе взаимодействия не изменяется. По закону сохранения импульса   `m vec v = m vecv_1 + M vecv_2`.

    Переходя к проекциям на ось `Ox`, получаем `mv = mv_(1x) + Mv_2`,  здесь учтено, что направление скорости `vecv_1` налетающего шара после соударения не известно. По закону сохранения энергии

    `(mv^2)/2 = (mv_(1x)^2)/2 + (Mv_2^2)/2`.

    Полученные соотношения перепишем в виде

    `m(v - v_(1x)) = Mv_2`,

    `m(v^2 - v_(1x)^2) = Mv_2^2`.

    Разделив второе равенство на первое `(v != v_(1x))`, приходим к линейной системе `v_2 = v + v_(1x)`,  `m(v - v_(1x)) = Mv_2`, решение которой имеет вид

    `v_(1x) = (m - M)/(m + M) v`,   `v_2 = (2m)/(m + M) v`.

    Налетающий шар будет двигаться после соударения в прежнем направ­лении `(v_(1x) > 0)` при `m > M`,  т. е. если масса налетающего шара больше массы по­коящегося шара.

    Пример 16

    Две гладкие упругие круглые шайбы движутся поступательно по гладкой горизонтальной поверхности со скоростями `vecv_1` и `vecv_2`. Найдите скорости `vecv_1^'` и `vecv_2^'` шайб после абсолютно упругого нецентрального соударения. Массы шайб `m_1` и `m_2`.

    Решение

    Задачу рассмотрим в ИСО, оси координат `Ox` и `Oy` которой лежат в горизонтальной плоскости, при  этом ось `Ox` направлена по линии  центров шайб в момент соударения (рис. 16).

    В  течение  времени  соударения на систему шайб действуют только вертикальные внешние силы: это силы тяжести и силы нормальной реакции. Их сумма равна нулю. Тогда импульс системы шайб в процессе взаимодействия  сохраняется 

    `vecp_1 + vecp_2 = vecp_1^' + vecp_2^'`,      

    здесь `vecp_1 = m_1 vecv_1`, `vecp_2 = m_2 vecv_2`, `vecp_1^' = m_1 vecv_1^'`, `vecp_2^' = m_2 vecv_2^'` - импульсы шайб до и после соударения.

    Так как шайбы идеально гладкие, то в процессе соударения внут­ренние силы -силы упругого взаимодействия - направлены только по оси `Ox`. Эти силы не изменяют `y`-составляющие импульсов шайб. Тогда из `p_(1y) = p_(1y)^'`, `p_(2y) =  p_(2y)^'`  находим `y`-составляющие скоростей шайб после соударения

     `vecv_(1y)^' = v_(1y)`,   `v_(2y)^' = v_(2y)`,

    т. е. в проекции на ось `Oy` скорости шайб в результате соударения не изменились.

    Найдём `x`-составляющие скоростей шайб после упругого соударения. При таком соударении сохраняется кинетическая энергия

    `(m_1 (v_(1x)^2 + v_(1y)^2))/2 + (m_2 (v_(2x)^2 + v_(2y)^2))/2 = (m_1 ((v_(1x)^')^2 + (v_(1y)^')^2))/2 + (m_2 ((v_(2x)^')^2 + (v_(2y)^')^2))/2`.

    С учётом равенства `y`-составляющих скоростей шайб до и после со­ударения последнее равенство принимает вид

    `(m_1 v_(1x)^2)/2 + (m_2 v_(2x)^2)/2 = (m_1 (v_(1x)^')^2)/2 + (m_2 (v_(2x)^')^2)/2`.

    Обратимся к закону сохранения импульса и перейдём к проекциям им­пульсов шайб на ось  `Ox`

    `m_1 v_(1x) + m_2 v_(2x) = m_1 v_(1x)^' + m_2 v_(2x)^'`.

    Таким образом, исходная задача сведена к задаче об абсолютно упру­гом центральном ударе: именно такой вид приняли бы законы сохра­нения энергии и импульса, если бы скорости шайб были направлены по линии центров. Полученную нелинейную систему уравнений можно свести к линейной. Для этого следует (как и в предыдущей задаче) в обоих уравнениях по одну сторону знака равенства объединить слагае­мые, относящиеся к первой шайбе, а по другую - ко второй, и разде­лить `(v_(1x) != v_(1x)^')` полученные соотношения. Это приводит к линей­ному уравнению

    `v_(1x) + v_(1x)^' = v_(2x) + v_(2x)^'`.

    Решая систему из двух последних уравнений, находим

    `v_(1x)^' = ((m_1 - m_2) v_(1x) + 2m_2 v_(2x))/(m_1 + m_2)`,

    `v_(2x)^' = (2m_1 v_(1x) + (m_2 - m_1) v_(2x))/(m_1 + m_2)`.

    Полученные соотношения для `v_(1x)^'`, `v_(1y)^'` и `v_(2x)^'`, `v_(2y)^'` решают вопрос о проекциях и величинах скоростей шайб после соударения

     `v_1^' = sqrt((v_(1x)^')^2 + (v_(1y)^')^2)`,      `v_2^' = sqrt((v_(2x)^')^2 + (v_(2y)^')^2)`, 

    а также об углах `alpha_1` и `alpha_2`, которые векторы скорости `vecv_1^'` и `vecv_2^'` образуют с положительным направлением оси `Ox`:

    `bbb"tg"  alpha_1 = (v_(1y)^')/(v_(1x)^')`,   `bbb"tg"  alpha_2 = (v_(2y)^')/(v_(2x)^')`.

    Построенное в общем виде решение задач упругого центрального и нецентрального соударений открывает дорогу к анализу целого ряда задач, для которых рассмотренная модель соответствует характеру взаимодействия тел (частиц).

  • §7. Теорема об изменении кинетической энергии материальной точки и следствия

    Напомним вывод этой теоремы. По второму закону Ньютона

    `m Delta vec v = vec F Delta t`.

    Умножим обе части этого равенства скалярно на `vec v`, получим

    `m (vec v * Delta vec v) = (vec F * vec v Delta t)`.

    Это соотношение устанавливает равенство `Delta K = Delta A` на каждом элементарном перемещении приращения кинетической энергии

    `Delta K = m ((vec v + Delta vec v)^2)/2 - m ((vec v)^2)/2 ~~ m(vec v * Delta vec v)`

    и работы равнодействующей

    `Delta A = (vec F * Delta vec r) = (vec F * vec v Delta t)`

    на этом перемещении.

    Суммируя такие равенства вдоль произвольной траектории,  приходим к теореме об изменении кинетической энергии на конечных перемещениях:

    Теорема

    На любых перемещениях приращение кинетической энергии материальной точки равно сумме работ всех сил

    `K_2 - K_1 = sum_i A_i`.

    Если среди сил есть потенциальные, то работа такой силы традиционно принимается равной взятому с обратным знаком приращению потенциальной энергии A=-П2-П1A=-\left(П_2-П_1\right).

    Из этих соотношений получаем теорему об изменении полной механической энергии (суммы кинетической и потенциальной энергий) материальной точки

    Теорема

    П2+K2-П1+K1=\left(П_2+K_2\right)-\left(П_1+K_1\right)=`sum_i A_(i  sf"непотенц")`,

    т. е. на любых перемещениях приращение полной механической энергии материальной точки равно сумме работ всех не потенциальных сил.

    Отсюда следует: если не потенциальные силы отсутствуют или их работа равна нулю, то полная механическая энергия материальной точки, сохраняется.

    Это утверждение -  закон сохранения полной механической энергии материальной точки.

    Пример 17

    На заснеженном склоне с углом наклона `alpha` к горизонту коэффициент трения скольжения лыжника на высотах меньших `h` равен `mu_1 (mu_1 >  "tg"  alpha)`, на больших высотах коэффициент трения скольжения лыжника равен `mu_2 (mu_2 < "tg"  alpha)`. С какой высоты `H` следует стартовать лыжнику с нулевой начальной скоростью, чтобы доехать до основания склона с нулевой конечной скоростью?

    Решение

    По условию `mu_2 < "tg"  alpha`, `mu_1 > "tg" alpha`. Тогда при спуске лыжника на верхнем участке склона `F_(sf"тр"2) = mu_2 mg cos alpha < mg sin alpha`, лыжник движется равноускорено. На нижнем участке склона

    `F_(sf"тр"1) = mu_1 mg cos alpha > mg sin alpha`,

    лыжник движется равнозамедленно. При движении лыжника по склону от старта до финиша:

    приращение потенциальной энергии, отсчитанной от нуля у основания склона, равно П2-П1=-mgHП_2-П_1=-mgH,

    приращение кинетической энергии  `K_2 - K_1 = 0`, работа силы трения скольжения

    `A_12 =- mu_2 mg cos alpha * (H - h)/(sin alpha) - mu_1 mg cos alpha h/(sin alpha) =`

    `=- (mg)/("tg"  alpha) (mu_2 H + (mu_1 - mu_2) h)`.

    По теореме об изменении полной механической энергии

    K2+П2-K1+П1=A12\left(K_2+П_2\right)-\left(K_1+П_1\right)=A_{12}.

    В рассматриваемом случае `- mgH =- (mg)/("tg"  alpha) (mu_2 H + (mu_1 - mu_2 )h)`.

    Отсюда `H = (mu_1 - mu_2)/("tg"  alpha - mu_2) h`.

  • §5. Сохранение импульса системы материальных точек

    Из теоремы об изменении  импульса системы  материальных  точек `(Delta vecP_("c"))/(Delta t) = sum_i vecF_i` следует сохранение импульса или его проекций в следующих случаях:

    если  `sum_i vecF_i = vec 0`, то `vecP_("c")` остаётся неизменным по величине и на­правлению;

    если существует направление `x` такое, что `sum_i F_(i,x) = 0`, то `P_(c,x) = "const"`.  

    Наконец, если на малом интервале времени внешние силы конечные и импульс этих сил за время действия во много раз меньше по вели­чине импульса системы `|sum_i vecF_i| Delta t < < |vecP_("c") (t)|`, то из равенства

    `Delta vecP_("c") = vecP_("c") (t + Delta t) - vecP_("c") (t) = (sum_i vecF_i) Delta t`

    следует `Delta vecP_("c") ~~ vec 0`, т. е. сохранение импульса на рассматриваемом интер­вале времени `vecP_("c") (t + Delta t) = vecP_("c") (t)`.

    Пример 10

    Артиллерист стреляет ядром массы `m` так, чтобы оно упало в неприятельском лагере. На вылетевшее из пушки ядро садится барон Мюнхгаузен, масса которого `5m`. Какую часть пути до неприятельского лагеря ему придётся идти пешком? 

    Решение

    Вы, конечно, догадались, что эта задача иллюстрирует последний из перечисленных случаев сохранения импульса системы. В процессе «посадки» барона на ядро на систему «ядро + барон» действуют внешние силы - это силы тяжести и силы сопротивления воздуха. Но барон столь ловок и устраивается на ядро столь быстро, что импульс этих конечных сил за время «посадки» барона на ядро значительно меньше по величине импульса `m vecv_0` ядра  непосредственно перед  «посадкой». Тогда скорость `vecv_0` ядра за мгновение до встречи со сказочным персонажем и скорость `vecv_1` системы «барон на ядре» связаны законом сохранения импульса системы

    `m vecv_0 = 6m vecv_1`,

    так что скорость ядра сразу после того, как Мюнхгаузен устроится на нём поудобнее, уменьшится в `6` раз. Следовательно, в такое же число раз уменьшатся: длительность полёта (равная удвоенному частному от деления  начальной вертикальной составляющей скорости на величину ускорения свободного падения)и горизонтальная составляющая скорости. Дальность полёта, равная произведению этих величин, уменьшится в `36` раз, тогда оставшиеся после благополучного приземления `(35)/(36)` расстояния до неприятельского лагеря, барону предстоит пройти пешком!

    Пример 11

    На гладкой горизонтальной поверхности лежит соломинка массой `M` и длиной  `L`. Жук массой `m` перемещается по соломинке с одного конца на другой.  На какое расстояние `S` переместится  соломинка?

    Решение

    Рассмотрим систему тел «жук + соломинка». На каждом элементарном промежутке времени приращение `Delta vecP_("c")` импульса этой системы равно суммарному импульсу действующих на систему внешних сил: т. е. сил тяжести и силы нормальной реакции

    `Delta vecP_("c") = M Delta vecv_1 + m Delta vecv_2 = ((M + m) vecg + vec N) Delta t`,

    здесь `vecv_1` - скорость соломинки, `vecv_2` - скорость жука. Обе скорости определены в лабораторной системе отсчёта. Сумма сил тяжести и нормальной реакции  равна нулю. Тогда импульс системы  «жук + соломинка» в процессе движения остаётся постоянным, равным своему начальному значению:

    `M vecv_1 + m vecv_2 = vec 0`.

    Поскольку задано перемещение жука в системе отсчёта, связанной с соломинкой, обратимся к правилу сложения скоростей `vecv_2 = vecv_1 + vec u`, здесь `vec u` - скорость жука относительно соломинки. Перейдём в этом равенстве к проекциям на горизонтальную ось, получим `v_(2,x) = v_(1,x) + u_(x')`.

    С учётом правила сложения скоростей закон сохранения импульса принимает вид `Mv_(1,x) + m (v_(1,x) + u_(x')) = 0`, т. е. в любой момент времени  

    `v_(1,x) =- m/(M + m) u_(x')`.  

    Тогда элементарные перемещения: `Delta x_1 = v_(1,x) Delta t` - соломинки относительно лабораторной системы отсчёта и `Delta x' = u_(x') Delta t` - жука относительно соломинки, связаны соотношением `Delta x_1 =- m/(M + m) Delta x'`.

    Суммируя элементарные перемещения по всему времени движения и переходя к абсолютным величинам, приходим к ответу на вопрос за­дачи 

    `S = m/(m + M) L`.

    Пример 12

    Клин массой `2m` и углом наклона к горизонту `alpha (cos alpha = 2//3)` находится на гладкой горизонтальной поверхности стола (см. рис. 12). Через блок, укреплённый на вершине клина, перекинута лёгкая нить, связывающая грузы, массы которых равны `m` и `3m`. Груз массой `3m` может скользить вдоль вертикальной направляющей `AB`, закреплённой на клине. Этот груз удерживают неподвижно на расстоянии `H = 27 sf"см"` от стола, а затем отпускают. В результате грузы и клин движутся поступательно. На какое расстояние `S` сместится клин к мо­менту удара груза массой `3m` о стол? Массы блока и направляющей `AB` считайте пренебрежимо малыми.

                    

    Решение

    Рассмотрим систему тел «клин + грузы» (рис. 13).

    На каждом элементарном промежутке времени приращение `Delta vecP_("c")` импульса системы равно суммарному импульсу действующих на систему внешних сил: тяжести и нормальной реакции горизонтальной опоры

    `Delta vecP_("c") = (6 m vec g + vec N) Delta t`. 

    Проекции  сил  тяжести и нормальной  реакции на горизонтальную ось нулевые. Следовательно, в процессе движения горизонтальная состав­ляющая импульса системы «клин + грузы» остаётся постоянной, равной своему начальному значению - нулю:

    `(2m + 3m) v_(x,sf"к") + mv_(x,sf"г") = 0`,

    здесь `v_(x,sf"к")` - проекция скорости клина и груза массой `3m` на горизон­тальную ось, `v_(x,sf"г")` - проекция скорости груза массой `m` на эту же ось. В системе отсчёта, связанной с клином, модули любых элементарных перемещений грузов равны вследствие нерастяжимости нити. Следовательно, в этой системе модуль перемещения лёгкого груза в проекции на горизонтальную ось за время движения равен `H cos alpha`. Тогда воспользуемся результатами предыдущей задачи. По правилу сложения скоростей `vecv_("г") = vecv_("к") + vec u`, здесь `vec u` - скорость лёгкого груза в системе отсчёта, связанной с  клином. С учётом этого соотношения закон сохранения импульса принимает вид

    `(2m + 3m) v_(x,sf"к") + m(v_(x,sf"к") + u_(x')) = 0`.

    Отсюда находим связь проекций скорости

    `v_(x,sf"к") = - m/(6m) u_(x') = - u_(x')/6`

    и  элементарных перемещений:

    `Delta x_sf"к" =- (Delta x')/6`,

    где `Delta x_sf"к"` - перемещение клина относительно лабораторной системы, `Delta x'` - проекция перемеще­ния лёгкого груза на горизонтальную ось в системе отсчёта, связанной с клином. Суммируя элементарные перемещения по всему времени движения и переходя к абсолютным величинам, приходим к ответу на вопрос задачи

    `S = (H cos alpha)/6 = (27*2)/(6*3) = 3 sf"см"`.

    Пример 13

    По клину массой `M`, находящемуся на гладкой горизонтальной плоскости, скользит шайба массой `m`. Гладкая наклонная плоскость клина составляет с горизонтом угол `alpha`.  Определите величину  `a_1` ускорения  клина.

    Решение

    Для определения ускорения клина рассмотрим движение каждого  из  тел. Силы,  приложенные к  телам,  указаны  на рис. 14.

              

    Запишем второй закон Ньютона для клина `M veca_1 = M vec g + vec P + vec R` и для шайбы `m veca_2 = m vec g + vec N`. Переходя к проекциям сил и ускорений на оси ЛСО с учётом `vec P =- vec N` получаем    

    `Ma_(1x) = N sin alpha`,  `ma_(2x) =- N sin alpha`,  `ma_(2y) =- mg + N cos alpha`.

    Скорость `vecv_2`  шайбы в ЛСО, скорость `vec u` шайбы относительно клина и скорость `vecv_1` клина связаны законом сложения скоростей  `vecv_2 = vecv_1 + vec u`. Дифференцируя это равенство по времени находим связь соответствующих ускорений `veca_2 = veca_1 + veca_("отн")`. Из треугольника ускорений (рис. 15) следует

    `bbb"tg" alpha = (a_(2y))/(a_(2x) - a_(1x))`.

    Подставляя в последнее равенство выражения для проекций ускорения шайбы

    `a_(2x) =- M/m a_(1x)`   и   `a_(2y) =- g + a_(1x) M/m "ctg"  alpha`,

    после несложных преобразований приходим к ответу на вопрос задачи

     `a_(1x) = 1/2 (m sin 2 alpha)/(M + m sin^2 alpha) g`.

    Рассмотренные примеры подчёркивают важную роль законов сохранения.

    Решение прямой задачи динамики, т. е. определение траектории по заданным силам и начальным условиям, упрощается в тех случаях, когда удаётся заменить уравнения Ньютона другими, эквивалентными им, но не содержащими ускорений. Эти уравнения, являющиеся математическим следствием уравнений Ньютона, и связывающие скорости (импульсы) точек с их координатами, называют законами сохранения. Проиллюстрируем это на примере задач о столкновениях частиц.


  • §3. Законы Ньютона. Импульс или количество движения материальной точки

    В основе динамики материальной точки лежат законы (аксиомы) Ньютона. Напомним ключевые определения и законы.

    Система отсчёта, в которой  любая материальная точка, не взаимодействующая с другими телами (такая точка называется свободной), движется равномерно и прямолинейно или покоится, называется инерциальной.

    1-й закон:

    инерциальные системы отсчёта (ИСО) существуют

    2-й закон: 

    в ИСО приращение импульса материальной точки пропорционально силе и происходит по направлению силы:

    `Delta vec p = vec F * Delta t`.

    Импульсом (или количеством движения) материальной точки называют физическую величину, определяемую произведением её массы на вектор скорости в  данной системе отсчёта:

    `vec p = m * vec v`.

    `vec F` - сумма сил, действующих на материальную точку. Величину `vec F * Delta t` называют импульсом силы за время от `t` до `t + Delta t`, в течение которого силу можно считать неизменной по величине и направлению. Величину `Delta vec p = vec p (t + Delta t) - vec p (t)` называют приращением импульса материальной точки  за время от `t` до `t + Delta t`. Поэтому второй закон Ньютона для материальной точки можно сформулировать так:

    в ИСО приращение импульса материальной точки  равно импульсу силы.

    Отметим, что при изучении динамики второй закон Ньютона часто формулируют следующим образом:

    в ИСО ускорение материальной точки прямо пропорционально сумме сил, действующих на неё, и обратно пропорционально её массе:

    `vec a = vec F/m`.

    Действительно, если масса тела остаётся неизменной, то

    `Delta vec p = Delta (m vec v) = m Delta vec v = vec F Delta t`.

    С учётом равенства `vec a = (Delta vec v)/(Delta t)` приходим к эквивалентности приведённых формулировок второго закона.

    Далее в Задании представлены задачи, иллюстрирующие применение законов Ньютона и их следствий: теорем об изменении импульса и энергии в механике.

    3-й закон:

    при взаимодействии двух материальных точек сила `vecF_(12)`, действующая на первую материальную точку со стороны второй, равна по величине и противоположна по направлению силе `vecF_(21)`, действующей со стороны первой материальной точки на вторую:

    `vecF_(12) = - vecF_(21)`.

    Третий закон Ньютона - это совокупность утверждений:

    1. силы возникают парами и имеют одинаковую природу, они приложены к разным материальным точкам,

    2. эти силы равны по величине,

    3. они действуют вдоль одной прямой в противоположных направлениях.

    Заметим, что согласно третьему закону Ньютона обе силы должны быть равны по величине в любой момент времени независимо от движения взаимодействующих тел. Другими словами, если в системе двух взаимодействующих тел изменить положение одного из тел, то это изменение мгновенно скажется на  другом теле, как бы далеко оно ни находилось. На самом деле скорость распространения взаимодействий конечная; она не может превзойти скорость света в вакууме. Поэтому третий закон Ньютона имеет определённые пределы применимости. Однако в классической механике при малых скоростях взаимодействующих тел он выполняется с большой точностью.

    Второй закон Ньютона (уравнение движения) можно представить в виде теоремы об изменении импульса материальной точки:

    `(Delta vec p)/(Delta t) = vec(F)`.

    Скорость изменения импульса материальной точки в инерциальной системе отсчёта равна сумме сил, действующих на эту точку.

    Напомним, что для решения задач динамики материальной точки следует:

    привести «моментальную фотографию» движущегося тела,  указать приложенные к нему силы;

    выбрать инерциальную систему отсчёта,

    привести «моментальную фотографию» движущегося тела,  указать приложенные к нему силы,

    составить уравнение динамики,

    перейти к проекциям приращения импульса и сил на те или иные направления,

    решить полученную систему.

    Рассмотрим характерные примеры.

    Пример 4

    К телу, первоначально покоившемуся на шероховатой горизонтальной поверхности, прикладывают в течение времени `t_1 = 10  sf"с"` горизонтальную силу величиной `F = 5  sf"H"`. После прекращения действия силы тело движется до остановки `t_2 = 40  sf"с"`. Определите величину `F_sf"тр"` силы трения скольжения, считая её постоянной.

    Решение

    На рис. 4 показаны ИСО и силы, действующие на тело в процессе разгона. По второму закону Ньютона

    `(Delta vec p)/(Delta t) = M vec g + vec N + vecF_("тр") + vec F`.

    Переходя к проекциям на горизонтальную ось, находим элементарные приращения импульса в процессе разгона

    `Delta p_x = (F - F_sf"тр" ) Delta t`

    и в процессе торможения `(F = 0)`

    `Delta p_x =- F_sf"тр" Delta t`.

    Просуммируем все приращения импульса тела от старта до остановки

    `sum Delta p_x = sum_(0 <= t <=t_1) (F - F_sf"тр" )Delta t + sum_(t_1 <= t <= t_1 + t_2) (- F_sf"тр") Delta t`.

    Напомним, что для любой физической величины сумма приращений равна разности конечного и начального значений. Тогда

    `p_(x  sf"конечн") - p_(x  sf"начальн") = (F - F_sf"тр") t_1 + (- F_sf"тр") t_2`. 

    С учётом равенств `p_(x  sf"конечн") = 0`, и `p_(x  sf"начальн") = 0` независимости сил от времени приходим к ответу на вопрос задачи:

    `F_sf"тр" = (t_1)/(t_1 + t_2) F = (10)/(10 + 40) * 5 = 1  sf"H"`.

    На ЕГЭ и олимпиадах в вузах РФ регулярно предлагаются задачи динамики, в которых наряду с привычными для школьника силой тяжести, силой Архимеда и т. д., на тело действует сила лобового сопротивления. Такая сила возникает, например, при движении тел в жидкостях и газах. Вопрос о движении тел в жидкостях и газах имеет большое практическое значение. Знакомство с действием такого рода сил уместно начинать, как это принято в физике, с простейших модельных зависимостей, в которых сила сопротивления принимается пропорциональной скорости или её квадрату.

    Пример 5

    Мяч, брошенный с горизонтальной поверхности земли под углом `alpha = 60^@` к горизонту со скоростью `v_0 = 10  sf"м/с"`, упал на землю. В момент падения скорость меньше начальной по величине на `delta = 0,3`. Найдите продолжительность `T` полёта мяча. Силу сопротивления считайте пропорциональной скорости `vec F =- k vec v`, `k > 0`.

    Решение

    Согласно  второму закону Ньютона приращение импульса пропорционально силе и происходит по направлению силы

    `m * Delta vec v = (m vec g - k vec v) * Delta t`,

    переходя к проекциям сил и приращения скорости  на вертикальную ось, получаем

    `m * Delta v_y =- mg * Delta t - k * v_y * Delta t`.

    Заметим, что элементарное перемещение мяча по вертикали равно `Delta y = v_y * Delta t`,  и перепишем  последнее соотношение в виде,

    `m * Delta v_y =- mg * Delta t - k * Delta y`.

    Просуммируем все приращения вертикальной проекции импульса по всему времени полёта, т. е. от `t = 0` до `t = T`

    `m * (sum Delta v_y) =- mg * (sum Delta t) - k * (sum Delta y)`.

    Переходя к конечным приращениям, получаем

    `m (v_y (T) - v_y (0)) =- mg(T - 0) - k(y(T) - y (0))`.

    Точки старта и финиша находятся в одной горизонтальной плоскости, поэтому перемещение мяча по вертикали за время полёта нулевое `y(T) - y(0) = 0`.

    Тогда `- (1 - delta) mv_0 sin alpha - mv_0 sin alpha =- mgT`.

    Отсюда находим продолжительность полёта мяча 

    `T = (v_0 sin alpha)/(g) (2 - delta) = (10 * sin 60^@)/(10) (2,0 - 0,3) ~~ 1,5  sf"с"`.

    В следующем  примере  рассматривается удар, в ходе которого две  очень большие силы,  «согласованно»  действуют во взаимно перпендикулярных направлениях

    Пример 6

    Кубик, движущийся поступательно со скоростью `v` (рис. 5) по гладкой горизонтальной поверхности, испытывает соударение с  шероховатой  вертикальной  стенкой. Коэффициент трения скольжения кубика по стенке `mu` и угол `alpha` известны. Одна из граней кубика параллельна стенке. Под каким углом `beta` кубик отскочит от стенки? Считайте, что перпендикулярная стенке составляющая скорости кубика  в  результате  соударения не изменяется по величине.

                              

    Решение

    Силы, действующие на кубик в процессе соударения, показаны на рис. 6. По второму закону Ньютона

    `Delta vec p = (m vec g + vec(N_sf"Г") + vec(F_sf"тр") + vec(N_sf"В")) * Delta t`.

    Переходя к проекциям на горизонтальные оси `Ox` и `Oy`, получаем

    `Delta p_x =- F_sf"тр" Delta t`,  `Delta p_y = N_sf"В" Delta t`.

    Просуммируем приращения `Delta p_y = N_sf"В" Delta t` по всему времени `tau` соударения, получим

    `sum Delta p_y = p_y (tau) - p_y (0) = mv sin alpha - (- mv sin alpha) = sum_(0 <= t <= tau) N_sf"В" Delta t`.

    В процессе удара в любой момент времени `F_sf"тр" = mu N_sf"В"`, следовательно, во столько же раз отличаются импульсы этих сил за время соударения

    `sum_(0 <= t <= tau) F_sf"тр" Delta t = mu sum_(0 <= t <= tau) N_sf"В" Delta t = mu 2 mv sin alpha`.

    Тогда легко вычислить проекцию `v_x (tau)` скорости кубика после соударения. Для  этого  просуммируем  приращения  `Delta p_x =- F_sf"тр" Delta t =- mu N_sf"В" Delta t` по всему времени `tau` соударения, получим

    `sum Delta p_x = p_x (tau) - p_x (0) = mv_x (tau) - mv cos alpha =- sum_(0 <= t <= tau) F_sf"тр" Delta t =- mu 2 mv sin alpha`.

    Отсюда `v_x (tau) = v (cos alpha - 2 mu sin alpha)`.

    Далее считая, `v_x (tau) > 0`,  получаем `bbb"tg"  beta = (v_y (tau))/(v_x (tau)) = (sin alpha)/(cos alpha - 2 mu sin alpha)`.

    Далее рассмотрим две характерные задачи динамики равномерного движения по окружности.

    Пример 7

    Массивный шарик, подвешенный на лёгкой нити, движется равномерно по окружности в горизонтальной плоскости. Расстояние  от точки подвеса нити до плоскости, в которой происходит движение, равно `H`. Найдите период `T` обращения шарика.

    Решение

    Введём обозначения: `L` - длина нити, `alpha` - угол, образуемый нитью с вертикалью, `r = L sin alpha` - радиус окружности (рис. 7), по которой движется шарик со скоростью `v`.

    Заметим,  что `H = L cos alpha`. Обратимся к динамике. На шарик действуют сила тяжести `m vec g` и сила натяжения `vec F` нити. Эти силы сообщают шарику направленное к центру окружности нормальное ускорение, по величине равное `a = (4 pi^2)/(T^2) r`.

    В инерциальной системе отсчёта основным уравнением динамики материальной точки является второй закон Ньютона `m vec a = vec F + m vec g`. При таком движении сумма сил, так же как и ускорение, в любой момент времени направлена  к центру окружности. Тогда, переходя  в уравнении движения к скалярной форме записи, удобно перейти не к проекциям сил и ускорения на оси `Ox`, `Oy` инерциальной системы отсчёта, а к проекциям сил и ускорения на два направления, а именно: на подвижное направление -направление внутренней нормали к траектории, считая положительным направление к центру  окружности,

    `m * (4 pi^2)/(T^2) r = F sin alpha`,

    и на вертикаль `0 = F cos alpha - mg`.

    Исключив из этих соотношений силу натяжения,  приходим к ответу

    `T = 2 pi sqrt(H/g)`.

    Период обращения конического маятника зависит только от расстояния от точки подвеса до плоскости движения.

    Пример 8

    Маленький деревянный шарик прикреплён с помощью нерастяжимой нити длиной `l = 30  sf"см"` ко дну цилиндрического сосуда с водой. Расстояние от центра дна до точки закрепления нити `r = 20  sf"см"`. Сосуд раскручивают вокруг вертикальной оси, проходящей через  центр дна. При какой угловой скорости вращения нить отклонится от вертикали на угол `alpha = 30^@`?   

    Решение

    Нить с шариком отклонится к оси вращения. Действительно, на шарик будут действовать три силы: сила тяжести `m vec g`, сила натяжения `vec T` нити  и сила Архимеда `vec F` (рис. 8).

    Найдём эту силу. Обозначим объём шарика `V`, плотность дерева, из которого изготовлен шарик `rho_sf"ш"`, плотность воды `rho_sf"в"`, и рассмотрим движение жидкости до погружения в неё шарика. Любой элементарный объём  воды равномерно движется по окружности в горизонтальной плоскости. Следовательно, вертикальная составляющая суммы сил давления (силы Архимеда) `F_(A,z)` уравновешивает  силу  тяжести,  действующую на жидкость  в  рассматриваемом объёме, горизонтальная составляющая `F_(A,r)` сообщает этой жидкости центростремительное ускорение. При замещении жидкости шариком эти составляющие не изменяются. Тогда вертикальная составляющая силы Архимеда, действующей на шарик, по величине равна `F_(A,z) = rho_sf"в" Vg`, а направленная к оси вращения составляющая силы Архимеда по величине равна `F_(A,r) = rho_sf"в" V omega^2 (r - l sin alpha)`. Под действием приложенных сил шарик движется равномерно по окружности радиуса `(r - l sin alpha)` в горизонтальной плоскости. Из второго закона Ньютона `m vec a = m vec g + vec T + vec F`, переходя к проекциям сил и ускорения на вертикальную ось, находим

    `rho _sf"в" Vg - rho_sf"ш" Vg - T cos alpha = 0`,

    проектируя силы и ускорения в горизонтальной плоскости на нормальное направление, получаем

    `rho _sf"ш" V omega^2 (r - l sin alpha) = rho_sf"в" V omega^2 (r - l sin alpha) - T sin alpha`.

    Исключая `T` из двух последних соотношений, находим искомую угловую скорость

    `omega = sqrt((g  bbb"tg"  alpha)/(r - l sin alpha)) ~~ 10,7 sf"с"^-1`.

  • §4. Импульс системы материальных точек. Теорема об изменении импульса системы материальных точек

    Рассмотрим систему материальных точек массами `m_1`, `m_2``...`, движущихся в произвольной ИСО со скоростями `vecv_1`, `vecv_2``...`. Импульсом `vecP_("c")` системы материальных точек называют векторную сумму импульсов материальных точек, составляющих  систему, `vecP_("c") = vecp_1 + vecp_2 + ...`.

    Найдём скорость `(Delta vecP_("c"))/(Delta t)` изменения импульса системы материальных точек (ответ на такой вопрос для одной материальной точки нам известен). Для примера рассмотрим систему двух материальных точек. Будем считать, что на первую материальную точку  действуют суммарной силой `vecF_1` внешние по отношению к системе тела и внутренняя сила `vecf_(12)` со стороны второго тела. В свою очередь, на вторую материальную точку действуют внешние по отношению к системе тела, сумма этих сил `vecF_2`, и внутренняя сила `vecf_(21)` со стороны первого тела. Тогда с учётом второго закона Ньютона для каждого тела получаем

    `(Delta vecP_("c"))/(Delta t) = (Delta vecp_1)/(Delta t) + (Delta vecp_2)/(Delta t) = (vecF_1 + vecf_(12)) + (vecF_2 + vecf_(21))`.

    По третьему закону Ньютона `vecf_(12) + vecf_(21) = vec 0`,  и мы приходим к теореме об  изменении импульса системы  материальных  точек

    `(Delta vecP_("c"))/(Delta t) = vecF_1 + vecF_2`,

    скорость изменения импульса системы материальных точек равна векторной сумме всех внешних сил, действующих на систему.

    Из приведённого доказательства следует, что третий закон Ньютона можно сформулировать и как требование сохранения импульса системы  взаимодействующих  тел,  если  нет  никаких других внешних сил. В этом - его более глубокое физическое содержание.

    Пример 9

    Клин массой `M` находится на шероховатой горизонтальной поверхности стола. На клин положили брусок массой `m` и отпустили. Брусок стал соскальзывать, а клин остался в покое. Коэффициент трения скольжения бруска по  поверхности клина равен `mu`, наклонная плоскость клина составляет с горизонтом угол `alpha`. Найдите горизонтальную `R_1` и вертикальную `R_2` силы (рис. 9), с которыми клин действует на опору.


    Решение

    По третьему закону Ньютона искомые силы связаны с силой трения `vecR_1 =- vecF_("тр"` и силой нормальной реакции `vecR_2 =- vecN_("г")`, действующими на клин со стороны опоры (рис. 10). Силы `vec(F_sf"тр")` и `vec(N_sf"г")`, наряду с силами тяжести, являются внешними по отношению к системе «клин + брусок»  и  определяют скорость  изменения импульса этой системы.

              

    Импульс `vecP_("c")` системы направлен по скорости бруска и по величине  равен  произведению массы бруска на его скорость `vecP_("c") = vec p = m vec v (t)`. Для определения скорости изменения импульса `vec p` бруска обратимся ко второму закону Ньютона (рис. 11):

    `(Delta vecp)/(Delta t) = m vec g + vec N + vec(f_sf"тр"`.

    Переходя к проекциям приращений импульса бруска и сил на оси `Oy` и `Ox` с учётом соотношения `f_sf"тр" = mu N`, получаем

    `(Delta p_y)/(Delta t) = 0 = N - mg cos alpha`,  `(Delta p_x)/(Delta t) = mg(sin alpha - mu cos alpha)`.

    По теореме об изменении импульса системы «клин + брусок»

    `(Delta vecP_("c"))/(Delta t) = M vec g + m vec g + vecN_("г") + vecF_("тр")`.

    Переходя в последнем равенстве к проекциям на горизонтальное  и вертикальное  направления с учётом 

    Pc,x~=pxcosαP_{c,\widetilde x}=p_x\cos\alpha,  Pc,y~=-pxsinαP_{c,\widetilde y}=-p_x\sin\alpha,

    получаем

    Pc,x~t=pxcosαt=mgsinα-μcosαcosα=Fтр\dfrac{\triangle P_{c,\widetilde x}}{\triangle t}=\dfrac{\triangle\left(p_x\cos\alpha\right)}{\triangle t}=mg\left(\sin\alpha-\mu\cos\alpha\right)\cos\alpha=F_\mathrm{тр},

    Pc,y~t=-pxsinαt=-mgsinα-μcosαsinα=-M+mg+Nг\dfrac{\triangle P_{c,\widetilde y}}{\triangle t}=\dfrac{\triangle\left(-p_x\sin\alpha\right)}{\triangle t}=-mg\left(\sin\alpha-\mu\cos\alpha\right)\sin\alpha=-\left(M+m\right)g+N_\mathrm г.

    Отсюда находим искомые силы

    `R_1 = F_sf"тр" = mg(sin alpha - mu cos alpha) cos alpha`,

    `R_2 = N_sf"г" = (M + m) g - mg(sin alpha - mu cos alpha) sin alpha`.



  • §2. Кинематика

    Рассмотрение задач описания движения традиционно начинается с кинематики. Так называют раздел механики, в котором движение тел рассматривается без выяснения причин, его вызывающих. Начнём с равномерного движения.

    Пример 1

    Корабль `A` и торпеда `B` в некоторый момент времени находятся на расстоянии `l = 1  sf"км"`  друг от друга (см. рис. 1). Скорость корабля  `v_1 = 10  sf"м/с"`, угол `alpha = 60^@`. Скорость торпеды `v_2 = 20  sf"м/с"`. При каком угле  `beta` торпеда попадёт в цель?

    Решение

    По условию цель и торпеда в лабораторной системе отсчёта движутся равномерно, их радиусы векторы зависят от времени по закону

    `vecr_1 (t) = vecr_(01) + vecv_1 t`, 

    `vecr_2 (t) = vecr_(02) + vecv_2 t`

    Перейдём в систему отсчёта, связанную с кораблём (точка `A`) и движущуюся поступательно относительно лаборатории. В этой системе положение торпеды (точки `B`)  в любой момент времени определяется вектором

    `vec rho (t) = vecr_(2)(t) - vecr_(1) (t) = (vecr_(02) - vecr_(01)) + (vecv_2 - vecv_1)t`.

    Отсюда следует, что  в подвижной системе торпеда движется  по прямой, проходящей через её начальное положение, определяемое вектором `vecrho_0 = vecr_(02) - vecr_(01)`, а направляющим вектором прямой является относительная скорость `vec u = vecv_2 - vecv_1`. Такая прямая проходит через начало отсчёта подвижной системы (торпеда попадает в цель) в том случае, когда векторы `vecrho_0` и `vec u` антипараллельны. В рассматриваемой задаче это выполняется при равенстве проекций скоростей `vecv_1` и `vecv_2` на перпендикуляр к `vecrho_0`, т. е. к  `AB`,  `v_1 sin alpha = v_2 sin beta`.

    Отсюда `sin beta = (v_1)/(v_2) sin alpha = (10)/(20) sin 60^@ = (sqrt3)/4 ~~ 0,43`,   `beta ~~25,5^@`.

    Обратимся к равнопеременному движению. Как известно, в этом случае зависимости скорости и перемещения от времени имеют вид

      `vec v (t) = vecv_0 + vec a t`,   `vec r (t) = vecr_0 + vecv_0 t + (vec a t^2)/2`.

    Среди всевозможных случаев равнопеременного движения особое место занимает движение под действием гравитационных сил - свободное падение тел в однородном поле тяжести с постоянным ускорением `vec a = vec g`. Из второго соотношения следует, что при свободном падении вектор перемещения `vec r (t) - vec(r_0)` материальной точки за время от `0` до `t` равен сумме векторов `vecv_0 t` и `(vec g t^2)/2`. Это означает, что движение тела, брошенного под углом к горизонту, есть суперпозиция равномерного прямолинейного движения со скоростью  `vecv_0` и свободного падения в однородном поле тяжести `vec g` с нулевой начальной скоростью.

    Пример 2

    Пушка расположена у основания склона, образующего с горизонтом угол `alpha = 30^@`. Под каким углом `beta` к склону следует произвести выстрел с начальной скоростью `v_0 = 100  sf"м/с"` так, чтобы дальность полёта снаряда вдоль склона была наибольшей? Найдите эту максимальную дальность `S_max`.

    Здесь и далее в Задании ускорение свободного падения `g = 10  sf"м/с"^2`. Сопротивление воздуха пренебрежимо мало.

    Решение

    Перемещение снаряда  за время `T` полёта равно

    `vec r (T) = vecv_0 T + (vec g T^2)/2`,

    (считаем `vecr_0 = vec 0`).  Изобразим эти векторы на рисунке 2.

    Проекции векторов `vecv_0 T` и `(vec g T^2)/2` на направление нормали к склону   равны по величине

    `v_0 T sin beta = (gT^2)/2 cos alpha`.

    Отсюда находим продолжительность `T` полёта мяча `T = (2 v_0)/(g) (sin beta)/(cos alpha)`. Дальность `S` полёта равна алгебраической сумме проекций векторов `vecv_0 T` и `(vec g T^2)/2`  на  склон `S = v_0 T cos beta - (gT^2)/2 sin alpha`.

    С учётом выражения для времени полёта последнее соотношение перепишем в виде

    `S = (v_0^2)/(g cos^2 alpha) (sin (alpha + 2 beta) - sin alpha)`.

    Отсюда следует, что наибольшей дальности соответствует такой угол `beta`, при котором множитель в скобках в последнем соотношении принимает наибольшее значение, т. е.

    `sin (alpha + 2 beta) = 1`,  `alpha + 2 beta = pi/2`,  `beta = 1/2 (pi/2 - alpha) = 1/2 (pi/2 - pi/6 ) = pi/6`.

    Отсюда следует, что выстрел следует производить по биссектрисе угла между склоном и вертикалью. В этом дальность полёта наибольшая и равна

    `S_max = (v_0^2 (1 - sin alpha))/(g cos^2 alpha) ~~ 670 sf"м"`.

    Пример 3

    Камень брошен со скоростью `v_0 = 20  sf"м/с"` под углом `alpha = 60^@` к горизонту. Найдите радиус `R` кривизны траектории в окрестности точки старта. Через какое время `tau` после старта вектор скорости повернётся на  `varphi = 1^@`?

    Решение

    Известно, что движение точки по окружности с постоянной  по величине скоростью есть движение ускоренное, при этом вектор ускорения в  любой момент  времени направлен к центру окружности, а его величина постоянна и определяется, например,  по одной из формул

    `a_n = (v^2)/R = v omega = ((2pi)/(T))^2 R`.

    Естественное обобщение этого результата для движения по произвольной криволинейной траектории состоит в следующем: неравномерное движении по произвольной криволинейной траектории может быть представлено как последовательность перемещений по элементарным дужкам окружностей, радиус каждой из которых можно вычислять по формуле `R = (v^2)/(a_n)`. Эту величину называют  радиусом кривизны траектории в рассматриваемой точке.

    Для решения задачи воспользуемся соотношениями `R = (v^2)/(a_n)`,  `omega = (a_n)/v`.

    В  малой окрестности точки старта `v = v_0`, нормальное ускорение `a_n` есть проекция ускорения свободного падения `vec g` на нормаль к траектории (рис. 3)

    `a_n = g * cos alpha`.

    Из приведённых соотношений находим радиус кривизны траектории в малой окрестности точки старта

    `R = (v_0^2)/(g cos alpha) = (20^2)/(10 * 0,5) = 80  sf"м"`,

    и угловую скорость, с которой в этой окрестности вращается вектор скорости,

    `omega = (g cos alpha)/(v_0)`.

    Тогда время поворота вектора скорости на угол `varphi = pi/(180) ~~ 0,017` рад будет равно 

    `tau = varphi/omega = (varphi * v_0)/(g * cos alpha) = (0,017 * 20)/(10 * 0,5) ~~ 0,07  sf"с"`.





  • §1. Введение

    Настоящее задание посвящено основным законам механики - законам Ньютона и их следствиям: законам изменения и сохранения импульса и энергии материальной точки и систем материальных точек. Повторение этих разделов вызвано двумя причинами: первая обусловлена важностью этих законов в физике; вторая  причина связана с тем, что в течение учебного года учащиеся 11 класса примут участие в олимпиадах разных уровней, а по завершении учебного года будут сдавать ЕГЭ. К контрольным мероприятиям следует готовиться. Задание адресовано тем, кто хочет восстановить и углубить свои знания по механике в рамках курса физики средней школы. Поэтому наряду с простыми задачами рассмотрены и достаточно сложные, техника решения которых порой недостаточно подробно обсуждается в школьном курсе физики.

    Обращаем внимание читателя, что перед работой с Заданием ему следует изучить (повторить) соответствующие разделы школьного учебника и выполнить упражнения, представленные в учебнике.

    Механика - наука, изучающая движение тел и способы описания движения и взаимодействия тел.  Для описания механического движения следует выбрать систему отсчёта, представляющую собой тело отсчёта, с которым неподвижно связывают систему координат, и часы для регистрации положения точки в различные моменты времени.

    В механике Ньютона, т. е. при рассмотрении движений со скоростями, малыми по сравнению со скоростью света, показания неподвижных и движущихся часов считаются одинаковыми.

    Выбор систем отсчёта диктуется соображениями удобства и простоты описания движения.

    Для математически точного описания движения используются модели физических тел. Материальная точка - модель тела, применяемая в механике в тех случаях, когда размерами тела можно пренебречь по сравнению с характерными расстояниями, на которых рассматривается движение тела. В геометрии для описания таких тел используется понятие точки. Положение материальной точки в пространстве определяется положением изображающей её геометрической точки. Единственная механическая (негеометрическая) характеристика материальной точки - её масса.

  • §5. Задачи на столкновения и законы сохранения импульса и энергии

    В физике под столкновениями понимают процессы взаимодействия  между телами (частицами) в широком смысле слова, а не только в буквальном - как соприкосновение тел. Сталкивающиеся тела на большом расстоянии являются свободными. Проходя друг мимо друга, тела взаимодействуют между собой, в результате могут происходить различные процессы - тела могут соединиться в одно тело (абсолютно неупругий удар), могут возникать новые тела и, наконец, может иметь место упругое столкновение, при котором тела после некоторого сближения вновь расходятся без изменения своего внутреннего состояния. Столкновения, сопровождающиеся изменением внутреннего состояния тел, называются неупругими. Тела (частицы), участвующие в столкновении, характеризуются (до и после столкновения)  импульсами, энергиями. Процесс столкновения сводится к изменению этих величин в результате взаимодействия. Законы сохранения энергии и импульса позволяют достаточно просто устанавливать соотношения между различными физическими величинами при столкновении тел. Особенно ценным здесь является то обстоятельство, что зачастую законы сохранения могут быть использованы даже в тех случаях, когда действующие силы не известны. Так обстоит дело, например, в физике элементарных частиц.

    Происходящие в обычных условиях столкновения макроскопи­ческих тел почти всегда бывают в той или иной степени неупругими - уже хотя бы потому, что они сопровождаются некоторым нагреванием тел, т. е. переходом части их кинетической энергии в тепло. Тем не ме­нее, в физике понятие об упругих столкновениях играет важную роль - с такими столкновениями часто приходится иметь дело в физическом эксперименте в области атомных явлений, да и обычные столкновения можно часто с достаточной степенью точности считать упругими.

    Сохранение импульса тел (частиц) при столкновении обусловлено тем, что совокупность тел, участвующих в столкновении, составляет либо изолированную систему, т. е. на тела, входящие в систему, не действуют внешние силы, либо замкнутую: внешние силы отличны от нуля, а сумма внешних сил равна нулю. Несколько сложнее обстоит дело с применением закона сохранения энергии при столкновениях. Обращение к сохранению энергии  требует порой учёта различных форм внутренней энергии.

    Можно сказать, что действие законов сохранения импульса и энергии в процессах столкновения подтверждено широким спектром опытных данных.

    Переходя к характерным примерам, отметим, что исследование столкновений традиционно проводится как в лабораторной системе отсчёта (ЛСО), т. е. в инерциальной системе отсчёта, связанной с лабораторией, где проводится опыт, так и в системе центра масс, с которой Вы познакомитесь в следующих Заданиях. Напомним также, что центральным ударом шаров (шайб), называют удар, при котором скорости шаров (шайб) направлены вдоль прямой, проходящей через их центры.

    Неупругие столкновения

    Пример 9

    Частица массой `m` с кинетической энергией `K` сталкивается с неподвижной частицей массой `M`. Найдите приращение `Q` внутренней энергии системы частиц в результате абсолютно неупругого столкновения («слипания»).

    Решение

    Рассмотрим абсолютно неупругий удар двух тел в ЛСО. Налетающая частица движется до столкновения в положительном направлении оси `Ox` со скоростью `vec v`, кинетическая энергия частицы `K = (mv^2)/2`. В результате абсолютно неупругого удара (слипания) час­тицы движутся с одинаковой скоростью `vec u`. По закону сохранения им­пульса

    `mv = (m + M) u`.

    По закону сохранения  энергии

    `(mv^2)/2 = ((m + M)u^2)/2 + Q`.

    Из приведённых соотношений находим

    `Q = M/(m + M) K`.

     Отметим, что в предельных случаях

     `Q = K`,

    `m < < M`,

    `Q = M/m K < < K`,

    `m > > M`.

    Как видим, при неупругом столкновении лёгкой частицы с массивной (например, электрона с атомом) происходит почти полный переход её кинетической энергии во внутреннюю энергию массивной частицы.

    При равенстве масс  `(m = M)`  `Q = K/2`.

    Отсюда следует, например, что при столкновении двух одинаковых ав­томобилей, один из которых неподвижен, а другой движется по на­правлению к нему, половина кинетической энергии идёт на разруше­ние.

    Упругие столкновения

    Пример 10

    На гладкой горизонтальной поверхности лежит гладкий шар массой `M`. На него налетает гладкий шар того же радиуса массой `m`, движущийся со скоростью `vec v`. Происходит упругий центральный удар шаров. Найдите скорости `vecv_1` и `vecv_2` шаров после соударения. При каком условии налетающий шар будет двигаться после соударения в прежнем направлении?

    Решение

    Задачу рассмотрим в ЛСО, ось `Ox` которой направим по линии центров шаров в момент соударения. Внешние силы, действующие на  шары в  процессе соударения, это силы тяжести и силы нормальной реакции опоры. Их сумма равна нулю. Следовательно, импульс системы шаров в процессе взаимодействия не изменяется. По закону сохранения импульса

    `m vec v = m vecv_1 + M vecv_2`.

    Переходя к проекциям на ось `Ox`, получаем 

    `mv = mv_(1x) + Mv_2`,

    здесь учтено, что направление скорости налетающего шара после соударения не известно. По закону сохранения энергии

    `(mv^2)/2 = (mv_(1x)^2)/2 + (Mv_2^2)/2`.

    Полученные соотношения перепишем в виде

    `m(v - v_(1x)) = Mv_2`,

    `m(v^2 - v_(1x)^2) = Mv_2^2`.

    Разделив второе равенство на первое `(v != v_(1x))`, приходим к линейной системе `v_2 = v + v_(1x)`,  `m(v - v_(1x)) = Mv_2`,  решение которой имеет вид

    `v_(1x) = (m - M)/(m + M) v`,

    `v_2 = (2m)/(m + M) v`.

    Налетающий шар будет двигаться после соударения в прежнем направ­лении `(v_(1x) > 0)` при `m > M`,  т. е. если масса налетающего шара больше массы по­коящегося шара.

    Пример 11

    Две гладкие упругие круглые шайбы движутся поступательно по гладкой горизонтальной поверхности. Скорости `vecv_1` и `vecv_2` шайб непосредственно перед соударением известны и показаны на рис. 11. Найдите скорости `vecv_(1)^'` и `vecv_(2)^'` шайб после абсолютно упругого нецентрального соударения. Массы шайб `m_1` и `m_2`.

    Решение

    Задачу рассмотрим в ИСО, оси координат `Ox` и `Oy` которой лежат в горизонтальной плоскости, при  этом ось `Ox` направлена по линии  центров шайб в момент соударения (рис. 11).

    В  течение  времени  соударения на систему шайб действуют только вертикальные внешние силы: это силы тяжести и силы нормальной реакции. Их сумма равна нулю. Тогда импульс системы шайб в процессе взаимодействия  сохраняется:                               

    `vecp_1 + vecp_2 = vecp_(1)^' + vecp_(2)^'`,               

    здесь `vecp_1 = m_1 vecv_1`, `vecp_2 = m_2 vecv_2`, `vecp_(1)^'= m_1 vecv_(1)^'`, `vecp_(2)^' = m_2 vecv_(2)^'` - импульсы шайб до и после соударения.

    Так как шайбы идеально гладкие, то в процессе соударения внут­ренние силы -силы упругого взаимодействия - направлены только по оси `Ox`. Эти силы не изменяют `y`-составляющие импульсов шайб. Тогда из `p_(1y) = p_(1y)^'`, `p_(2y) =  p_(2y)^'`  находим `y`-составляющие скоростей шайб после соударения:

     `v_(1y)^' = v_(1y)`,   `v_(2y)^' = v_(2y)`,

    т. е. в проекции на ось `Oy` скорости шайб в результате соударения не изменились.

    Найдём `x`-составляющие скоростей шайб после упругого соударения. При таком соударении сохраняется кинетическая энергия

    `(m_1 (v_(1x)^2 + v_(1y)^2))/2 + (m_2 (v_(2x)^2 + v_(2y)^2))/2 = (m_1 ((v_(1x)^')^2 + (v_(1y)^')^2))/2 + (m_2 ((v_(2x)^')^2 + (v_(2y)^')^2))/2`.

    С учётом равенства `y`-составляющих скоростей шайб до и после со­ударения последнее равенство принимает вид:

    `(m_1 v_(1x)^2)/2 + (m_2 v_(2x)^2)/2 = (m_1 (v_(1x)^')^2)/2 + (m_2 (v_(2x)^')^2)/2`.

    Обратимся к закону сохранения импульса и перейдём к проекциям им­пульсов шайб на ось  `Ox`:

    `m_1 v_(1x) + m_2 v_(2x) = m_1 v_(1x)^' + m_2 v_(2x)^'`.

    Таким образом, исходная задача сведена к задаче об абсолютно упру­гом центральном ударе: именно такой вид приняли бы законы сохра­нения энергии и импульса, если бы скорости шайб были направлены по линии центров. Полученную нелинейную систему уравнений можно свести к линейной. Для этого следует (как и в предыдущей задаче) в обоих уравнениях по одну сторону знака равенства объединить слагае­мые, относящиеся к первой шайбе, а по другую - ко второй, и разде­лить `(v_(1x) != v_(1x)^')` полученные соотношения. Это приводит к линей­ному уравнению

    `v_(1x) + v_(1x)^' = v_(2x) + v_(2x)^'`.

    Решая систему из двух последних уравнений, находим

    `v_(1x)^' = ((m_1 - m_2) v_(1x) + 2m_2 v_(2x))/(m_1 + m_2)`,

    `v_(2x)^' = (2m_1 v_(1x) + (m_2 - m_1) v_(2x))/(m_1 + m_2)`.

    Полученные соотношения для `v_(1x)^'`, `v_(1y)^'` и `v_(2x)^'`, `v_(2y)^'` решают вопрос о проекциях и величинах скоростей шайб после соударения

     `v_1^' = sqrt((v_(1x)^')^2 + (v_(1y)^')^2)`,      `v_2^' = sqrt((v_(2x)^')^2 + (v_(2y)^')^2)`, 

    а также об углах `alpha_1` и `alpha_2`, которые векторы скорости `vecv_(1)^'` и `vecv_(2)^'` образуют с положительным направлением оси `Ox`,

    `bbb"tg"  alpha_1 = (v_(1y)^')/(v_(1x)^')`,   `bbb"tg"  alpha_2 = (v_(2y)^')/(v_(2x)^')`.

    Построенное в общем виде решение задач упругого центрального и нецентрального соударений открывает дорогу к анализу целого ряда задач, для которых рассмотренная модель соответствует характеру взаимодействия тел (частиц). Приведём пример.

    Пример 12

    Гладкая круглая шайба массой `m_1` движется со скоростью `vec v` вдоль хорды, расстояние до которой от центра гладкого тонкого однородного обруча  равно `R//2` (рис. 12). Обруч массой `m_2` и радиусом `R` лежит на гладком горизонтальном столе. Через какое время `tau` после первого удара шайба окажется  на  минимальном  расстоянии   от   центра   движущегося обруча? Каково это расстояние? Удар считайте абсолютно упругим.

    Решение

    Воспользуемся результатами, полученными в предыдущем примере. В ЛСО, ось `Ox` которой направлена по линии центров шайбы и обруча в момент соударения, проекции скоростей шайбы и центра обруча на ось `Ox`  после соударения равны соответственно

    `v_(1x)^' = ((m_1 - m_2)v_(1x) + 2m_2 v_(2x))/(m_1 + m_2) = ((m_1 - m_2)v_(1x))/(m_1 + m_2)`,

    `v_(2x)^' = (2m_1 v_(1x) + (m_2 - m_1)v_(2x))/(m_1 + m_2) = (2m_1 v_(1x))/(m_1 + m_2)`,

    здесь `v_(1x) = vcos  pi/6` - проекция скорости шайбы на ось `Ox` до соударе­ния, `v_(2x) = 0` - обруч до соударения покоился.

    Из этих соотношений следует, что в системе отсчёта, связанной с обручем, проекция скорости шайбы на линию центров после соударения

    `v_(1xsf"отн") = v_(1x)^' - v_(2x)^' =- v_(1x) =- vcos  pi/6`

    просто изменила знак, а перпендикулярная линии центров составляющая, как было  показано, в рассматриваемом соударении  не изменяется. Следовательно, в системе, связанной с обручем, шайба отразится по закону «угол падения равен углу отражения», и минимальное расстояние от шайбы до центра обруча снова будет равно `R//2`. Искомое время

    `tau = (R cos^(2)   pi/6)/|v_(1xsf"отн")| = cos  pi/6 R/v = sqrt3/2 R/v`.

  • §3. Импульс системы материальных точек. Теорема об изменении импульса системы материальных точек

    Рассмотрим систему материальных точек массами `m_1`, `m_2 ...`, движущихся в произвольной ИСО со скоростями `vecv_1`, `vecv_2 ...`. Импульсом `vecP_sf"с"` системы материальных точек называют векторную сумму импульсов материальных точек, составляющих систему: `vecP_sf"с" = vec p_1 + vec p_2 + ...`.

    Найдём скорость `(Delta vec P_sf"с")/(Delta t)` изменения импульса системы материальных точек (ответ на такой вопрос для одной материальной точки нам известен). Для примера рассмотрим систему двух материальных точек. Будем считать, что на первую материальную точку  действуют суммарной силой `vec F_1` внешние по отношению к системе тела и внутренняя сила `vec f_(12)` со стороны второго тела. В свою очередь, на вторую материальную точку действуют внешние по отношению к системе тела, сумма этих сил `vec F_2`  и внутренняя сила `vec f_(21)` со стороны первого тела. Тогда с учётом второго закона Ньютона для каждого тела получаем

    `(Delta vec P_("с"))/(Delta t) = (Delta vec p_1)/(Delta t) + (Delta vec p_2)/(Delta t) = (vec F_1 + vec f_(12)) + (vec F_2 + vec f_(21))`.

    По третьему закону Ньютона `vec f_(12) + vec f_(21) = vec (0)`,  и мы приходим к теореме об  изменении импульса системы материальных точек:

    `(Delta vec P_("с"))/(Delta t) = vec F_1 + vec F_2`,

    т. е. скорость изменения импульса системы материальных точек равна векторной сумме всех внешних сил, действующих на систему.

    Из приведённого доказательства следует, что третий закон Нью­тона можно сформулировать и как требование сохранения импульса системы  взаимодействующих  тел,  если  нет  никаких  других внешних сил.

    В этом - его более глубокое физическое содержание.

    Пример 5

    Клин массой `M` находится на шероховатой горизонтальной поверхности стола. На клин положили брусок массой `m` и отпустили. Брусок стал соскальзывать, а клин остался в покое. Коэффициент трения скольжения бруска по поверхности клина равен `mu`, наклонная плоскость клина составляет с горизонтом угол `alpha`. Найдите горизонтальную `R_1` и вертикальную `R_2` силы (рис. 6), с которыми клин  действует на опору.


    Решение

    По третьему закону Ньютона искомые силы связаны с силой трения `vec(R_1) = - vecF_("тр")`  и силой нормальной реакции `vec R_2 = - vecN_("г")`, действующими на клин со стороны опоры (рис. 7).

    Силы `vec F_("тр")` и `vecN_("г")`, наряду с силами тяжести, являются внешними по отношению  к системе «клин + брусок» и определяют скорость  изменения импульса этой системы.      

              

    Импульс `vecP_("с")`  системы  направлен  по  скорости  бруска и  по величине  равен произведению массы бруска на его скорость `vecP_("с") = vec p = m vec v (t)`. Для определения скорости изменения импульса `vec p` бруска обратимся ко второму закону Ньютона (рис. 8):

    `(Delta vec p)/(Delta t) = m vec g + vec N + vecf_("тр")`.

    Переходя к проекциям приращений импульса бруска и сил на оси `Oy` и `Ox` с учётом соотношения `f_sf"тр" = mu N` получаем:

       `(Delta p_y)/(Delta t) = 0 = N - mg cos alpha`,  `(Delta p_x)/(Delta t) = mg (sin alpha - mu cos alpha)`.   

    По теореме об изменении импульса системы «клин + брусок»

    `(Delta vec(P_sf"с"))/(Delta t) = M vec g + m vec g + vec N_("г") + vecF_("тр")`.

    Переходя в последнем равенстве к проекциям   на  горизонтальное  и  вертикальное направления (рис. 7), с учётом  

    Pc,x~=pxcosαP_{\mathrm c,\widetilde x}=p_x\cos\alpha

    получаем  

    Pc,y~=-pxsinαP_{\mathrm c,\widetilde y}=-p_x\sin\alpha

    Pc,x~t=px cosαt=mgsinα-μcosαcosα=Fтр\dfrac{\triangle P_{\mathrm c,\widetilde x}}{\triangle t}=\dfrac{\triangle\left(p_x\;\cos\alpha\right)}{\triangle t}=mg\left(\sin\alpha-\mu\cos\alpha\right)\cos\alpha=F_\mathrm{тр},

    Pc,y~t=-px sinαt=-mgsinα-μcosαsinα=-M+mg+Nг\dfrac{\triangle P_{c,\widetilde y}}{\triangle t}=\dfrac{\triangle\left(-p_x\;\sin\alpha\right)}{\triangle t}=-mg\left(\sin\alpha-\mu\cos\alpha\right)\sin\alpha=-\left(M+m\right)g+N_\mathrm г.

    Отсюда находим искомые силы

    `R_1 = F_sf"тр" = mg (sin alpha - mu cos alpha) cos alpha`,

    `R_2 = N_sf"г" = (M + m) g - mg(sin alpha - mu cos alpha)sin alpha`.

    К этим же результатам можно прийти, анализируя движение на «традиционном языке» сил и ускорений с использованием формулы (2).


  • §4. Сохранение импульса системы материальных точек

    Из  теоремы об изменении  импульса  системы  материальных  точек

    `(Delta vecP_("c"))/(Delta t) = sum_i vecF_i`

    следует сохранение импульса или его проекций в следующих случаях:

    если `sum_i vecF_i = vec 0`, то `vecP_("c")` остаётся неизменным по величине и на­правлению;

    если существует направление `x` такое, что `sum_i F_(i,x) = 0`, то `P_(sf"c",x) = bbb"const"`;

    наконец, если на малом интервале времени внешние силы конечные и импульс этих сил за время действия во много раз меньше по вели­чине импульса системы `|sum_i vecF_i| Delta t < < |vecP_("c") (t)|`, то из равенства

    `Delta vecP_("c") = vecP_("c") (t + Delta t) - vecP_("c") (t) = (sum_i vecF_i) Delta t`

    следует, что приращение `Delta vecP_("c")` импульса системы мало, т. е. на рассматриваемом интер­вале времени сохраняется импульс системы

    `vecP_("c") (t + Delta t) = vecP_("c") (t)`.

    Пример 6

    Артиллерист стреляет ядром массы `m` так, чтобы оно упало в неприятельском лагере. На вылетающее из пушки ядро очень быстро садится барон Мюнхгаузен, масса которого `5 m`. Какую часть пути до неприятельского лагеря ему придётся идти пешком? 

    Решение

    Вы, конечно, догадались, что эта задача иллюстрирует последний   из перечисленных  случаев  сохранения   импульса   системы. В процессе «посадки» барона на ядро на систему «ядро + барон» дейст­вуют внешние силы - это силы тяжести и силы сопротивления воздуха. Но барон столь ловок и устраивается на ядро столь быстро, что им­пульс этих конечных сил за время «посадки» барона на ядро значительно меньше по величине импульса `mvecv_0` ядра  непосредственно перед  «посадкой». Тогда скорость `vecv_0` ядра за мгновение до встречи со сказочным персонажем и скорость `vecv_1` системы «барон на ядре» связаны законом сохранения импульса системы

    `m vecv_0 = 6m vecv_1`,

    так что скорость ядра сразу после того, как Мюнхгаузен устроится на нём поудобнее, уменьшится в `6` раз. Следовательно, в такое же число раз уменьшатся: длительность полёта (равная удвоенному частному от деления  начальной вертикальной составляющей скорости на величину ускорения свободного падения)и горизонтальная составляющая скорости. Дальность полёта, равная произведению этих величин, уменьшится в `36` раз, тогда оставшиеся после благополучного приземления `(35)/(36)` расстояния до неприятельского лагеря барону предстоит пройти пешком!

    Пример 7

    На гладкой горизонтальной поверхности лежит соломинка массой `M` и длиной  `L`. Жук массой `m` перемещается по соломинке с одного конца на другой.  На какое расстояние `S` переместится соломинка?

    Решение

    Рассмотрим систему тел «жук + соломинка». На каждом элементарном промежутке времени приращение `Delta vecP_("c")` импульса этой системы равно суммарному импульсу действующих на систему внешних сил: т. е. сил тяжести и силы нормальной реакции

    `Delta vecP_("c") = M Delta vecv_1 + m Delta vecv_2 = ((M + m) vecg + vec N) Delta t`,

    здесь `vecv_1` - скорость соломинки, `vecv_2` - скорость жука. Обе скорости определены в лабораторной системе отсчёта. Сумма сил тяжести и нормальной реакции равна нулю. Тогда импульс системы  «жук + соломинка» в процессе движения остаётся постоянным, равным своему начальному значению:

    `M vecv_1 + m vecv_2 = vec 0`.

    Поскольку задано перемещение жука в системе отсчёта, связанной с соломинкой, обратимся к правилу сложения скоростей 

    `vecv_2 = vecv_1 + vec u`,

    здесь `vec u` - скорость жука относительно соломинки. Перейдём в этом равенстве к проекциям на горизонтальную ось, получим

    `v_(2,x) = v_(1,x) + u_(x^')`.

    С учётом правила сложения скоростей закон сохранения импульса принимает вид `Mv_(1,x) + m (v_(1,x) + u_(x^')) = 0`, т. е. в любой момент времени  `v_(1,x) =- m/(M + m) u_(x^')`.  Тогда элементарные перемещения: `Delta x_1 = v_(1,x) Delta t` - соломинки относительно лабораторной системы отсчёта и `Delta x^' = u_(x^') Delta t` - жука относительно соломинки, связаны соотношением

    `Delta x_1 =- m/(M + m) Delta x^'`.

    Суммируя элементарные перемещения по всему времени движения и переходя к абсолютным величинам, приходим к ответу на вопрос за­дачи: 

    `S = m/(m + M) L`.

    Пример 8

    Клин массой `2m` и углом наклона к горизонту `alpha (cos alpha = 2//3)` находится на гладкой горизонтальной поверхности стола (см. рис. 9). Через блок, укреплённый на вершине клина, перекинута лёгкая нить, связывающая грузы, массы которых равны `m` и `3m`. Груз массой `3m` может скользить вдоль вертикальной направляющей `AB`, закреплённой на клине. Этот груз удерживают неподвижно на расстоянии `H = 27 sf"см"` от стола, а затем отпускают. В результате грузы и клин движутся поступательно. На какое расстояние `S` сместится клин к мо­менту удара груза массой `3m` о стол? Массы блока и направляющей `AB` считайте пренебрежимо малыми.

                            

    Решение

    Рассмотрим систему тел «клин + грузы» (рис. 10). На каждом элементарном промежутке времени приращение `Delta vecP_("c")` импульса системы равно суммарному импульсу действующих на систему внешних сил (рис. 10): тяжести и нормальной реакции горизонтальной опоры

    `Delta vecP_("c") = (6 m vec g + vec N) Delta t`. 

    Проекции  сил  тяжести и нормальной  реакции на горизонтальную ось нулевые. Следовательно, в процессе движения горизонтальная состав­ляющая импульса системы «клин + грузы» остаётся постоянной, равной своему начальному значению - нулю:

    `(2m + 3m) v_(x,sf"к") + mv_(x,sf"г") = 0`;

    здесь `v_(x,sf"к")` - проекция скорости клина и груза массой `3m` на горизон­тальную ось, `v_(x,sf"г")` - проекция скорости груза массой `m` на эту же ось. В системе отсчёта, связанной с клином, модули любых элементарных перемещений грузов равны вследствие нерастяжимости нити. Следовательно, в этой системе модуль перемещения лёгкого груза в проекции на горизонтальную ось за время движения равен `H cos alpha`. Тогда воспользуемся результатами предыдущей задачи. По правилу сложения скоростей `vecv_("г") = vecv_("к") + vec u`, здесь `vec u` - скорость лёгкого груза в системе отсчёта, связанной с  клином. С учётом этого соотношения закон сохранения импульса принимает вид

    `(2m + 3m) v_(x,"к") + m(v_(x,"к") + u_(x^')) = 0`.

    Отсюда находим связь проекций скорости

    `v_(x,"к") = - m/(6m) u_(x^') = - u_(x^')/6`

    и  элементарных перемещений:

    `Delta x_sf"к" =- (Delta x^')/6`,

    где `Delta x_sf"к"` - перемещение клина относительно лабораторной системы, `Delta x^'` - проекция перемеще­ния лёгкого груза на горизонтальную ось в системе отсчёта, связанной с клином. Суммируя элементарные перемещения по всему времени движения и переходя к абсолютным величинам, приходим к ответу на вопрос задачи:

    `S = (H cos alpha)/6 = (27*2)/(6*3) = 3 sf"см"`.

    Рассмотренные примеры подчёркивают важную роль законов сохранения. Решение прямой задачи динамики, т. е. определение траектории по заданным силам и начальным условиям, упрощается в тех случаях, когда удаётся заменить уравнения Ньютона другими, эквивалентными им, но не содержащими ускорений. Эти уравнения, являющиеся математическим следствием уравнений Ньютона и связывающие скорости (импульсы) точек с их координатами, называют законами сохранения. Проиллюстрируем это на примере задач о столкновениях частиц.

  • §2. Законы Ньютона. Импульс или количество движения материальной точки

    В основе динамики материальной точки лежат законы (аксиомы) Ньютона. Напомним ключевые определения и законы.

    Система отсчёта, в которой  любая материальная точка, не взаимодействующая с другими телами (такая точка называется свободной), движется равномерно и прямолинейно или покоится, называется инерциальной.

    1-й закон:

    инерциальные системы отсчёта (ИСО) существуют

    2-й закон: 

    в ИСО приращение импульса материальной точки пропорционально силе и происходит по направлению силы:

    `Delta vec p = vec F * Delta t`                                                               (1)

    Импульсом (или количеством движения) материальной точки называют физическую величину, определяемую произведением её массы на вектор скорости в  данной системе отсчёта:

    `vec p = m * vec v`.

    `vec F` - сумма сил, действующих на материальную точку. Величину `vec F * Delta t` называют импульсом силы за время от `t` до `t + Delta t`, в течение которого силу можно считать неизменной по величине и направлению. Величину `Delta vec p = vec p (t + Delta t) - vec p (t)` называют приращением импульса материальной точки  за время от `t` до `t + Delta t`. Поэтому второй закон Ньютона для материальной точки можно сформулировать так:

    в ИСО приращение импульса материальной точки  равно импульсу силы.

    Отметим, что при изучении динамики второй закон Ньютона часто формулируют следующим образом:

    в ИСО ускорение материальной точки прямо пропорционально сумме сил, действующих на неё, и обратно пропорционально её массе:

    `vec a = vec F/m`                                                                                 (2)

    Если масса тела остаётся неизменной, то `Delta vec p = Delta (m vec v) = m Delta vec v`, и соотношение (1) принимает вид `m Delta vec v = vec F Delta t`. С учётом `vec a = (Delta vec v)/(Delta t)` приходим к эквивалентности соотношений (1) и (2) в рассматриваемом случае.

    В настоящем Задании представлены задачи, для решения которых привлекается  второй  закон Ньютона (см.(1)), устанавливающий равенство приращений импульса материальной точки и импульса силы.

    3-й закон:

    при взаимодействии двух материальных точек сила `vecF_(12)`, действующая на первую материальную точку со стороны второй, равна по величине и противоположна по направлению силе `vecF_(21)`, действующей со стороны первой материальной точки на вторую:

    `vecF_(12) = - vecF_(21)`.

    Третий закон Ньютона - это совокупность утверждений:

    1) силы возникают парами и имеют одинаковую природу, они приложены к разным материальным точкам,

    2) эти силы равны по величине,

    3) они действуют вдоль одной прямой в противоположных направлениях.

    Заметим, что согласно третьему закону Ньютона обе силы должны быть равны по величине в любой момент времени независимо от движения взаимодействующих тел. Другими словами, если в системе двух взаимодействующих тел изменить положение одного из тел, то это изменение мгновенно скажется на  другом теле, как бы далеко оно ни находилось. На самом деле скорость распространения взаимодействий конечная; она не может превзойти скорость света в вакууме. Поэтому третий закон Ньютона имеет определённые пределы применимости. Однако в классической механике при малых скоростях взаимодействующих тел он выполняется с большой точностью.

    Второй закон Ньютона (уравнение движения) можно представить в виде теоремы об изменении импульса материальной точки:

    `(Delta vec p)/(Delta t) = vec(F)`                                                           (3)

    Скорость изменения импульса материальной точки в инерциальной системе отсчёта равна сумме сил, действующих на эту точку.

    Напомним, что для решения задач динамики материальной точки следует:

    привести «моментальную фотографию» движущегося тела,  указать приложенные к нему силы;

    выбрать инерциальную систему отсчёта;

    составить уравнение (3);

    перейти к проекциям приращения импульса и сил на те или иные направления; 

    решить полученную систему.

    Рассмотрим характерные примеры.

    Пример 1

    К телу, первоначально покоившемуся на шероховатой горизонтальной поверхности, прикладывают в течение времени t1=10 сt_1=10\;\mathrm с горизонтальную силу величиной F=5 HF=5\;\mathrm H. После прекращения действия силы тело движется до остановки t2=40 ct_2=40\;\mathrm c.  Определите величину FтрF_\mathrm{тр} силы трения скольжения, считая её постоянной.

    Решение

    На рис. 1 показаны ИСО и силы, действующие на тело в процессе разгона. По второму закону Ньютона 

    `(Delta vec p)/(Delta t) = M vec g + vec N + vecF_("тр") + vec F`.

    Переходя к проекциям на горизонтальную ось, находим элементарные приращения импульса в процессе разгона

    px=F-Fтрt\triangle p_x=\left(F-F_\mathrm{тр}\right)\triangle t

    и в процессе торможения `(F = 0)`

    px=-Fтрt\triangle p_x=-F_\mathrm{тр}\triangle t.

    Просуммируем все приращения импульса тела от старта до остановки:

    `sum Delta p_x = sum_(0 <= t <= t_1) (F - F_sf"тр") Delta t + sum_(t_1 <= t <= t_1 + t_2) (-F_sf"тр" ) Delta t`.

    Напомним, что для любой физической величины сумма приращений равна разности конечного и начального значений. Тогда

    px конечн-px начальн=F-Fтрt1+-Fтрt2p_{x\;\mathrm{конечн}}-p_{x\;\mathrm{начальн}}=\left(F-F_\mathrm{тр}\right)t_1+\left(-F_\mathrm{тр}\right)t_2.

    С учётом равенств px конеч=0p_{x\;\mathrm{конеч}}=0px начальн=0p_{x\;\mathrm{начальн}}=0 и независимости сил от времени приходим к ответу на вопрос задачи:

    Fтр=t1t1+t2F=1010+40·5=1 HF_\mathrm{тр}=\dfrac{t_1}{t_1+t_2}F=\dfrac{10}{10+40}\cdot5=1\;\mathrm H.

    Далее рассмотрим пример, в котором одна из сил зависит от времени. 

    Пример 2

    На какое максимальное расстояние `L_max` улетит мяч, если в процессе удара футболист действует на мяч постоянной по направлению силой, величина которой изменяется по закону, представленному на  рис. 2.  Длительность  удара τ=8·10-3 c\tau=8\cdot10^{-3}\;\mathrm c,  максимальная  сила Fmax=3,5·103 HF_\max=3,5\cdot10^3\;\mathrm H, масса мяча m=0,5 кгm=0,5\;\mathrm{кг}. Здесь и далее ускорение свободного падения g=10 м/с2g=10\;\mathrm м/\mathrm с^2.   Сопротивление воздуха не учитывайте.  

                        

    Решение

    В процессе удара на мяч действуют две силы: mg=0,5·10=5 Hmg=0,5\cdot10=5\;\mathrm H - тяжести и сила `vec F`, с которой футболист действует на  мяч,                    

              FFmax=3,5·103 HF\leq F_\max=3,5\cdot10^3\;\mathrm H.

    Так как `mg < < F_max`, силой тяжести пренебрежём. Из кинематики известно, что максимальная дальность полёта наблюдается при старте под углом `alpha = pi/4`. Процесс удара показан на рис. 3.   

    По второму закону  Ньютона  приращение  импульса равно импульсу силы `Delta vec p = vec F * Delta t`. Переходя к проекциям приращения импульса и силы на ось `Ox`, получаем 

       `Delta p_x = F Delta t`.

    Просуммируем элементарные приращения импульса мяча за время удара

    `sum Delta p_x = mv - 0 = sum_(0 <= t <= tau) F Delta t`. 

    Импульс  силы  `sum_(0 <= t <= tau) F(t) Delta t` за  время  удара численно равен площади под графиком зависимости этой силы от времени (каждое слагаемое `F(t) Delta t` в импульсе силы можно интерпретировать как площадь элементарного прямоугольника со сторонами `F(t)` и `Delta t` на графике зависимости `F(t)`). Тогда импульс силы `F` за время удара равен 

    `sum_(0 <= t <= tau) F Delta t = (F_max tau)/2`

    и в рассматриваемом случае не зависит от того, в какой именно момент времени сила достигает максимального значения (площадь треугольника равна  половине произведения основания на высоту!). Далее  находим импульс мяча в момент  окончания действия силы

    `mv = 1/2 F_max * tau`.

    Отсюда находим начальную скорость полёта мяча

    `v = (F_max * tau)/(2m) = (3,5 * 10^3 * 8 * 10^-3)/(2 * 0,5) = 28 sf"м/с"`

    и  максимальную дальность (старт под углом `alpha = pi/4`) полёта

    `L_max = (v^2)/g = (28^2)/(10) ~~ 78 sf"м"`.

    В рассматриваемом модельном примере получен несколько завышенный по сравнению с наблюдениями результат.

    На вступительных испытаниях и олимпиадах в вузах России регу­лярно предлагаются задачи динамики, в которых наряду с «традицион­ными» силами: силой тяжести, силой Архимеда и т. д., на тело дейст­вует сила лобового сопротивления. Такая сила  возникает, например, при движении тел в жидкостях и газах. Вопрос о движении тел в жидкостях и газах имеет большое практическое значение. Знакомство с действием такого рода сил уместно начинать, как это принято в физике, с простейших модельных зависимостей, в которых сила сопротивления принимается пропорциональной скорости или её квадрату.

    Пример 3

    Мяч, брошенный с горизонтальной поверхности земли под углом `alpha = 60^@` к горизонту со скоростью `v = 10 sf"м/с"`, упал на землю, имея вертикальную составляющую скорости по абсолютной величине на `delta = 30 %` меньшую, чем при бросании. Найдите время  по­лёта мяча. Считать, что сила сопротивления движению мяча пропорциональна его скорости.

    Решение

    Согласно  второму закону Ньютона приращение импульса пропорционально силе и происходит по направлению силы:

    `m * Delta vec v = (m vec g - k vec v) * Delta t`.

    Переходя к проекциям сил и приращения скорости  на вертикальную ось, получаем   

    `m * Delta v_y = - mg * Delta t - k * v_y * Delta t`.

    Заметим, что элементарное перемещение мяча по вертикали равно `Delta y = v_y * Delta t`,  и перепишем  последнее соотношение в виде:

    `m * Delta v_y = - mg * Delta t - k * Delta y`.

    Просуммируем все приращения вертикальной проекции импульса по всему времени полёта, т. е. от `t = 0` до `t = T`:

    `m * (sum Delta v_y) = - mg * (sum Delta t) - k* (sum Delta y)`.

    Переходя к конечным приращениям, получаем

    `m (v_y (T) - v_y (0)) = - mg (T - 0) - k (y (T) - y (0))`.

    Точки старта и финиша находятся в одной горизонтальной плоскости, поэтому перемещение мяча по вертикали за время полёта нулевое

    `y (T) - y (0) = 0`.

    Тогда  `- (1 - delta) mv_0 sin alpha - mv_0 sin alpha = - mgT`.  Отсюда находим продолжительность полёта мяча:

    `T = (v_0 sin alpha)/(g) (2 - delta) = (10 * sin 60^@)/(10) (2,0 - 0,3) ~~ 1,5  sf"с"`.

    В следующем  примере  рассматривается удар, в ходе которого две  очень большие силы,  «согласованно»  действуют во взаимно перпендикулярных направлениях.

    Пример 4

    Кубик, движущийся поступа­тельно со скоростью `v` (рис. 4) по гладкой горизонтальной поверхности, испытывает соударение с шероховатой вертикальной стенкой.

    Коэффициент трения `mu` скольжения кубика по стенке и угол `alpha` известны. Одна из граней кубика параллельна стенке. Под каким углом `beta` кубик отскочит от стенки? Считайте, что перпендикулярная стенке составляющая скорости кубика в результате соударения не изменяется по величине.         

                               

    Решение

    Силы, действующие на кубик в процессе соударения, показаны на рис. 5.

    По второму закону Ньютона

    `Delta vec p = (m vec g + vecN_("г") + vecF_("тр") + vecN_("в") ) * Delta t`.

    Переходя к проекциям на горизонтальные оси `Ox` и `Oy`, получаем

    `Delta p_x = - F_sf"тр" Delta t`,  `Delta p_y = N_sf"в" Delta t`.

    Просуммируем приращения `Delta p_y = N_sf"в" Delta t` по всему времени `tau` соуда­рения, получим:          

    `sum Delta p_y = p_y (tau) - p_y (0) = mv sin alpha - (- mv sin alpha) = sum_(0 <= t <= tau) N_sf"в" Delta t`.          

    В процессе удара в любой момент времени `F_sf"тр" = mu N_sf"в"`, следовательно, во столько же раз отличаются импульсы этих сил за время соударения

    `sum_(0 <= t <= tau) F_sf"тр" Delta t = mu sum_(0 <= t <= tau) N_sf"в" Delta t = mu 2 mv sin alpha`.

    Тогда легко вычислить проекцию `v_x (tau)` скорости кубика после соударения. Для этого просуммируем приращения 

    `Delta p_x = - F_sf"тр" Delta t = - mu N_sf"в" Delta t`

    по всему времени `tau` соударения, получим:

    `sum Delta p_x = p_x (tau) - p_x (0) = mv_x (tau) - mv cos alpha = - sum _(0 <= t<= tau) F_sf"тр" Delta t =- mu 2 mv sin alpha`.                               

    Отсюда  `v_x (tau) = v (cos alpha - 2 mu sin alpha)`. Далее, считая `v_x (tau) > 0`, получаем

    `bbb"tg"  beta = (v_y (tau))/(v_x (tau)) = (sin alpha)/(cos alpha - 2 mu sin alpha)`.

  • §1. Введение

    Настоящее задание посвящено законам изменения и сохранения им-пульса и энергии для материальной точки и систем материальных точек в механике. Повторение этих разделов вызвано двумя причинами: первая обусловлена важностью этих законов в физике; вторая  причина связана с тем, что часть учащихся в 10-ом классе начинает обучаться в ЗФТШ впервые.

    Обращаем внимание читателя, что перед работой с Заданием ему следует изучить (повторить) соответствующие разделы школьного учебника и выполнить упражнения, представленные в учебнике.

    Механика – наука, изучающая движение тел и способы описания движения и взаимодействия тел.  Для описания механического движе­ния следует выбрать систему отсчёта, представляющую собой тело отсчёта, с которым неподвижно связывают систему координат, и часы для регистрации положения точки в различные моменты времени.

    В механике Ньютона, т. е. при рассмотрении движений со скоростями, малыми по сравнению со скоростью света, показания неподвижных и движущихся часов считаются одинаковыми.

    Выбор систем отсчёта диктуется соображениями удобства и простоты описания движения.

    Для математически точного описания движения используются модели физических тел. Материальная точка модель тела, применяемая в механике в тех случаях, когда размерами тела можно пренебречь по сравнению с характерными расстояниями, на которых рассматривается движение тела. В геометрии для описания таких тел используется понятие точки. Положение материальной точки в пространстве опреде­ляется положением изображающей её геометрической точки. Единст­венная механическая (негеометрическая) характеристика материальной точки – её масса.

  • §3. Скалярное произведение векторов

    1. 

    Определение

    Скалярным произведением  двух векторов `vec a` и `vec b` называется число, равное произведению модулей этих векторов на косинус угла между ними, и обозначается `vec a * vec b`.

    Таким образом,

    `vec a * vec b = a * b * cos alpha`                                                              (6)

    Иногда используют более сложные обозначения для скалярного произведения векторов: `(vec a vec b)` или даже `(vec a, vec b)`.

    Если векторы `vec a` и `vec b` ортогональны `(vec a _|_ vec b)`, то `cos alpha = 0` и поэтому `vec a * vec b = 0`. Скалярное произведение двух векторов также равно нулю, если  хотя бы один из векторов является нулевым.

    Если векторы коллинеарны и одинаково направлены, то `cos alpha = 1`, поэтому скалярное произведение векторов `vec a` и `vec b` равно произведению модулей векторов `vec a` и `vec b`. В частности, скалярное произведение вектора на самого себя равно квадрату его модуля: `vec a * vec a = a^2`.

    2. Имеется ещё одна важная  форма записи скалярного произведения: через проекции векторов в прямоугольной системе координат `xOy`. Пусть в некоторой системе координат векторы `vec a` и `vec b` имеют координаты `(a_x ; a_y)` и `(b_x ; b_y)`. Тогда для скалярного произведения векторов справедлива формула

    `vec a * vec b = a_x b_x + a_y b_y`                                                                     (7)

    Действительно, имеем `vec a * vec b = (a_x vec i + a_y vec j) * (b_x vec i + b_y vec j)`, или после перемножения скобок

    `vec a * vec b = a_x b_x vec i vec i + a_x b_y vec i vec j + a_y b_x vec j vec i + a_y b_y vec j vec j`.

    Учитывая, что векторы `vec i` и `vec j` единичные и взаимно перпендикулярные,

    (`vec i * vec i = vec j * vec j = 1` и `vec i * vec j = vec j * vec i = 0`),  получим (7).

    Уточнение

    (написано по просьбе Володковича Н.А., преподавателя школы Смоленской обл.). Кажущееся привычным перемножение скобок

    `vec a * vec b = (a_x vec i + a_y vec j) * ( b_x vec i + b_y vec j) = a_x b_x vec i vec i + a_x b_y vec i vec j + a_y b_x vec j vec i + a_y b_y vec j vec j` 

    не так очевидно для векторов. Во всяком случае, нужно ещё доказать, что оно согласуется с определением (6) скалярного произведения. Докажем, что

    `(vec a + vec b)(vec c + vec d) = vec a * vec c + vec a * vec d + vec b * vec c + vec b * vec d`.              (*)

    Для этого заметим, что скалярное произведение (6) можно переписать в виде

    `vec a * vec b = a * b_a`                                                                    (6'),

    где `b_a` – проекция вектора `vec b` на направление вектора `vec a`.

    (Можно было записать и иначе:

    `vec a * vec b = a_b * b`                                                                    (6"),

    где `a_b` – проекция вектора `vec a` на направление вектора `vec b`.)

    Далее – цепочка простых выкладок:

    `vec a * (vec c + vec d) = (vec c + vec d) * vec a = a (c_a + d_a) = a * c_a + a * d_a = vec a * vec c + vec a * vec d`,

    `(vec a + vec b)(vec c + vec d) -= (vec a + vec b) * vec e = vec a * vec e + vec b * vec e = vec a * (vec c + vec d) + vec b * (vec c + vec d)`,

    откуда следует равенство (*) (было введено обозначение `vec c + vec d -= vec e`).

    При другом выборе системы координат векторы `vec a` и `vec b` имели бы другие  координаты `(a_x ; a_y)` и `(b_x ; b_y)`. Поэтому могло бы показаться, что в новой системе координат скалярное произведение векторов (7) будет иметь другое значение. На самом деле, согласно (6) величина скалярного произведения останется такой же: модули векторов и угол между ними не зависят от поворотов и сдвигов системы координат.

    Пример 3

    `vec a = (3; lambda)`, `a = 5`. Определите `lambda`.

    Решение

    Согласно формуле (4) имеем `3^2 + lambda ^2 = 5^2`, откуда `lambda = 16`  и  `lamda =+- 4`. Заметим, что условию задачи удовлетворяют два разных вектора (см. рис. 16).

    Пример 4

    Векторы `vec a = (0; 3)` и `vec b = (lambda ; 5)` коллинеарны друг другу. Определите `lambda`.

    Решение

    Вектор `vec a` параллелен оси `Oy` (перпендикулярен оси `Ox`: `a_x = 0`). Поэтому коллинеарный ему вектор `vec b` также должен быть перпендикулярен оси `Ox`, т. е. должно выполняться равенство `b_x = 0`,  или `lambda = 0`.

    Пример 5

    Векторы `vec a = (- 1; 3)` и `vec b = (lambda; 5)` перпендикулярны друг другу. Определите `lambda`.

    Решение

    Векторы `vec a` и `vec b` перпендикулярны друг другу, поэтому равно нулю скалярное произведение этих векторов (см. формулу (6) и вывод после неё). Тогда по формуле (7) для скалярного произведения векторов имеем: `(- 1) * lambda + 3 * 5 = 0`, откуда `lambda = 15`.

    Пример 6

    `vec p = vec b (vec a vec c) - vec c (vec a vec b)`. Докажите, что `vec p _|_ vec a`.

    Решение

    Надо доказать, что скалярное произведение векторов `vec a` и `vec p` равно нулю. В самом деле, `vec a * vec p = (vec a vec b)(vec a vec c) - (vec a vec c)(vec a vec b) -= 0`.

    Пример 7

    Векторы `vec a`, `vec b`, `vec c` составляют треугольник (см. рис. 17).

    Воспользовавшись  свойствами скалярного произведения векторов, докажите теорему косинусов

    `c^2 = a^2 + b^2 - 2 ab cos varphi`                                                           (8)

                             

    Решение

    По условию задачи имеем `vec c = - (vec a + vec b)`. Квадрат модуля  вектора `vec c` можно представить как скалярное произведение его на самого себя: `c^2 = vec c * vec c`. Вычислим это скалярное произведение:

    `vec c * vec c = + (vec a + vec b) * (vec a + vec b) = vec a * vec a + vec a * vec b + vec b * vec a + vec b * vec b = a^2 + b^2 + 2ab cos alpha`.

    Угол `alpha` между векторами `vec a`  и `vec b` и угол `varphi` (см. рис.17) - два смежных угла,   т. е. `alpha = 180^@ - varphi` .  Поэтому  имеем `c^2 = a^2 + b^2 + 2 ab cos (180^2 - varphi)`.

     Пользуясь известной из тригонометрии формулой приведения `cos (180^@ - varphi) =- cos varphi`, получаем формулу (8)

    Пример 8

    Найдите угол `alpha` между векторами `vec a = 3 vec i + 2 vec j` и `vec b = - 2 vec i - vec j`.

    Решение

    По определению скалярного произведения `vec a * vec b = a * b * cos alpha`,  где `alpha` - искомый угол, `a` и `b` - модули векторов `vec a` и `vec b` соответственно. Отсюда `cos alpha = (vec a * vec b)/(a * b)`.  В свою очередь,

     `vec a * vec b = a_x b_x + a_y b_y = 3 * (- 2) + 2 * (- 1) = - 8`,

    `a = sqrt(a_x^2 + a_y^2) = sqrt(3^2 + 2^2) = sqrt13`,

    `b = sqrt(b_x^2 + b_y^2) = sqrt((- 2)^2 + (- 1)^2) = sqrt5`. 

     Тогда  `cos alpha = (- 8)/(sqrt13 * sqrt5) = (- 8)/sqrt(65) ~~ - 0,992`. Отсюда `alpha ~~ 173^@`.