Все статьи » ЗФТШ Физика

Статьи , страница 31

  • §1. Основы молекулярно-кинетической теории

    Под идеальным газом понимают газ, состоящий из молекул, удовлетворяющих двум условиям:

    1) размеры молекул малы по сравнению со средним расстоянием между ними;

    2) силы притяжения и отталкивания между молекулами проявляются только на расстояниях между ними, сравнимых с размерами молекул.

    Молекулы идеального газа могут состоять из одного атома, двух и большего число атомов.

    Для простейшей модели одноатомного идеального газа, представляющей собой совокупность маленьких твёрдых шариков, упруго соударяющихся друг с другом и со стенками сосуда, можно вывести, используя законы механики Ньютона,                                                                       

    основное уравнение молекулярно-кинетической  теории идеального газа: 

    `p=2/3n barE`.                                                                              (1)   

    Здесь `p` – давление газа, $$ n$$ – концентрация молекул (число молекул в единице объёма),  `barE` - средняя кинетическая энергия поступательного движения одной молекулы (сумма кинетической энергии поступательного движения всех молекул в сосуде, делённая на число молекул в сосуде). Вывод этого уравнения дан в школьном учебнике.

    Уравнение (1) оказывается справедливым и для многоатомного идеального газа, молекулы которого могут вращаться и обладать, поэтому, кинетической энергией вращения. Полная кинетическая энергия много-атомной молекулы складывается из кинетической энергии поступательного движения $$ {\displaystyle \frac{E={m}_{0}{v}^{2}}{2}}$$ ($$ {m}_{0}$$ - масса молекулы, $$ v$$ - скорость центра масс молекулы) и кинетической энергии вращения. В случае многоатомного идеального газа в (1) под `barE` подразумевается только средняя кинетическая энергия поступательного движения молекулы: $$ {\displaystyle \frac{\overline{E}={m}_{0}\overline{{v}^{2}}}{2}}$$  где $$ \overline{{v}^{2}}$$ - среднее значение квадрата скорости молекулы.

    Пусть есть смесь нескольких идеальных газов. Для каждого газа можно записать уравнение $$ {p}_{i}={\displaystyle \frac{2}{3}}{n}_{i}{\overline{E}}_{i}$$, где $$ {n}_{i}$$ концентрация молекул - $$ i$$-го газа, $$ {p}_{i}$$ - парциальное давление этого газа (давление при мысленном удалении из сосуда молекул других газов). Поскольку давление на стенку сосуда обусловлено ударами о неё молекул, то общее давление смеси идеальных газов равно сумме парциальных давлений отдельных газов:

    закон Дальтона

    $$ p=\sum _{i}{p}_{i}$$.

    Температуру можно ввести разными способами. Не останавливаясь на них, отметим, что у идеального газа средняя кинетическая энергия поступательного движения молекул `barE` связана с температурой $$ T$$ соотношением:

    $$ \overline{E}={\displaystyle \frac{3}{2}}kT,$$                                                                     (2)

    где $$ k=\mathrm{1,38}·{10}^{-23 }$$ Дж/К - постоянная Больцмана. При этом мы считаем, что движение молекул описывается законами механики Ньютона. В системе СИ температурас $$ T$$ измеряется в градусах Кельвина (К). В быту температуру часто измеряют в градусах Цельсия  ($$ {}^{\circ }\mathrm{C}$$). Температуры, измеряемые по шкале Кельвина $$ T$$ и по шкале Цельсия $$ t$$ связаны численно соотношением: $$ T=t+273$$.

    Итак, температура является мерой средней кинетической энергии поступательного движения молекул: $$ {m}_{0}\overline{{v}^{2}}/2=\frac{3}{2}kT$$.  Величина

    $$ {v}_{\mathrm{кв}}=\sqrt{\overline{{v}^{2}}}=\sqrt{{\displaystyle \frac{3kT}{{m}_{0}}}}$$                                                (3)

    называется средней квадратичной скоростью. Ясно, что $$ {v}_{\mathrm{кв}}=\overline{{v}^{2}}$$. Она характеризует скорость хаотического движения молекул, называемого ещё тепловым движением. Интересно заметить, что средняя квадратичная скорость молекул идеального газа почти не отличается от средней арифметической скорости молекул $$ {v}_{\mathrm{ср}}$$ (среднее значение модуля скорости): $$ {v}_{\mathrm{кв}}\approx \mathrm{1,085}{v}_{\mathrm{ср}}$$. Поэтому под средней скоростью теплового движения молекул идеального газа можно понимать любую из этих скоростей.

  • §2. Уравнение состояния идеального газа

    Связь между давлением, концентрацией и температурой для идеального газа можно получить, исключив `barE` из равенств (1) и (2):

    `p=nkT`.                                                                                              (4)

    Поскольку $$ n={\displaystyle \frac{N}{V}}$$ ($$ N$$ – число молекул в сосуде объёмом $$ V$$), то равенство (4) принимает вид:

    $$ pV=NkT$$.                                                                                    (5)

    Пусть $$ m$$ – масса газа в сосуде, $$ \mu $$ – молярная масса данного газа, тогда $$ \nu ={\displaystyle \frac{m}{\mu }}$$  есть число молей газа в сосуде. Число молекул $$ N$$ в сосуде, число молей газа $$ \nu $$ и постоянная Авогадро $$ {N}_{А}$$ связаны соотношением $$ N=\nu {N}_{А}$$. Подставляя это выражение для $$ N$$ в (5), получаем: $$ pV=\nu {N}_{A}kT$$. Произведение постоянной Авогадро $$ {N}_{А}=\mathrm{6,02}·{10}^{23 }$$ моль$$ {}^{-1}$$ на постоянную Больцмана $$ k$$ называют универсальной газовой постоянной: $$ R={N}_{A}·k\approx \mathrm{8,31}$$  Дж/(моль$$ ·$$К)  Таким образом,

    $$ pV=\nu RT$$.                                                                           (6)

    Это уравнение, связывающее давление `p`, объём  $$ V$$, температуру $$ T$$  (по шкале Кельвина) и число молей идеального газа $$ \nu $$, в записи называется уравнением Менделеева – Клапейрона.

    уравнение Менделеева – Клапейрона

    $$ pV={\displaystyle \frac{m}{\mu }}RT$$                                                                (7)

    Из равенства (7) легко получить зависимость между давлением $$ p$$, плотностью $$ \rho $$ $$ (\rho ={\displaystyle \frac{m}{V}})$$  и температурой $$ T$$ идеального газа

    $$ p={\displaystyle \frac{\rho }{\mu }}RT$$.                                                                  (8) 

    Каждое из уравнений (5), (6) и (7), связывающих три макроскопических параметра газа `p`, $$ V$$ и $$ T$$  и  называется уравнением состояния идеального газа. Здесь, конечно, речь идёт только о газе, находящемся в состоянии термодинамического равновесия, которое означает, что все макроскопические параметры не изменяются со временем.

    Несколько слов о равновесных процессах. Если процесс с идеальным газом (или любой термодинамической системой) идёт достаточно медленно, то давление и температура газа во всём объёме газа успевают выровняться и принимают в каждый момент времени одинаковые по всему объёму значения. Это означает, что газ проходит через последовательность равновесных (почти равновесных) состояний. Такой процесс с газом называется равновесным. Другое название равновесного процесса – квазистатический. Все реальные процессы протекают с конечной скоростью и поэтому неравновесны. Но в ряде случае неравновесностью можно пренебречь. В равновесном процессе в каждый момент времени температура $$ T$$,  давление `p` и объём $$ V$$ газа имеют вполне определённые значения, т. е. существует зависимость между `p` и $$ T$$, $$ V$$ и $$ T$$, `p` и $$ T$$. Это означает, что равновесный процесс можно изображать в виде графиков этих зависимостей. Неравновесный процесс изобразить графически невозможно.

    Напомним ещё раз, что соотношения (4) – (8) справедливы только для идеальных газов. В смеси нескольких идеальных газов уравнения вида (4) – (8) справедливы для каждого газа в отдельности, причём объём $$ V$$ и температура $$ T$$ у всех газов одинаковы, а парциальные давления отдельных газов и общее давление в смеси связаны законом Дальтона.

    Покажем, что для смеси идеальных газов общее давление `p`, объём $$ V$$, температура $$ T$$ и суммарное число молей  связаны равенством

    $$ pV=\nu RT$$                                                                                 (9)

    которое внешне совпадает с равенством (6) для одного газа.

    Запишем уравнение состояния для каждого сорта газа:

    $$ {p}_{1}V={\nu }_{1}RT$$,

    $$ {p}_{2}V={\nu }_{2}RT$$,

    $$ \dots \dots \dots $$

    Сложив все уравнения и учтя, что $$ \nu ={\nu }_{1}+{\nu }_{2}+\cdots $$ и $$ p={p}_{1}+{p}_{2}+\cdots $$
    (по закону Дальтона), получим (9).

    Для смеси идеальных газов можно записать уравнение

    $$ pV={\displaystyle \frac{m}{{\mu }_{\mathrm{ср}}}}RT$$                                                          (10)

    аналогичное уравнению (7) для одного газа. Здесь `p` – давление в смеси, $$ V$$ – объём смеси, $$ m={m}_{1}+{m}_{2}+\cdots $$ – масса смеси, $$ T$$ – температура смеси,   $$ {\mu }_{\mathrm{ср}}={\displaystyle \frac{m}{\nu }}$$средняя молярная масса смеси, состоящей из $$ \nu ={\nu }_{1}+{\nu }_{2}+\cdots $$ молей.

    Действительно, равенство (9) для смеси идеальных газов можно записать в виде $$ pV={\displaystyle \frac{m}{{\displaystyle m/\nu }}}RT$$ Учитывая, что $$ {\displaystyle \frac{m}{\nu }}$$ есть $$ {\mu }_{\mathrm{ср}}$$ получим (10). Например, средняя молярная масса атмосферного воздуха, в котором азот $$ ({\mu }_{{N}_{2}}=28 \mathrm{г}/\mathrm{моль})$$  преобладает над кислородом $$ ({\mu }_{{O}_{2}}=32 \mathrm{г}/\mathrm{моль})$$ равна `29` г/моль

    Поведение реальных газов при достаточно низких температурах и больших плотностях газов уже плохо описывается моделью идеального газа.

    Задача 1

     В  сосуде объёмом `4` л находится `6` г газа под давлением  `80` кПа. Оценить среднюю квадратичную скорость молекул газа.

    Решение

     В задаче $$ V=4 \mathrm{л}=4·{10}^{-3} {\mathrm{м}}^{3}$$, $$ m=6 \mathrm{г} =6·{10}^{-3} \mathrm{кг}$$,  $$ p=80 \mathrm{кПа}=8·{10}^{4} \mathrm{Па}$$.  Запишем уравнение состояния газа `pV=NkT`.

    Если через $$ {m}_{0}$$ обозначить массу молекулы, то $$ N={\displaystyle \frac{m}{{m}_{0}}}$$; $$ {\displaystyle \frac{{m}_{0}{v}_{\mathrm{кв}}^{2}}{2}}={\displaystyle \frac{3}{2}}kT$$.  Исключая из записанных уравнений  $$ N$$ и $$ T$$ находим среднюю квадратичную скорость

    $$ {v}_{\mathrm{кв}}=\sqrt{{\displaystyle \frac{3pV}{m}}}=400 \mathrm{м}/\mathrm{с}$$.

    задача 2

    Идеальный газ изотермически расширяют, затем изохорически нагревают и изобарически возвращают в исходное состояние. Нарисовать графики этого равновесного процесса в координатах  $$ p,V$$; $$ V,T$$; $$p,T$$.

    Решение

    Построим график в координатах $$ p,V$$. В процессе изотермического расширения из состояния `1` в состояние `2` зависимость давления газа $$ p$$ от объёма $$ V$$ имеет вид: $$ p={\displaystyle \frac{\nu RT}{V}}$$,  что следует из уравнения состояния идеального газа. Поскольку температура $$ T$$ постоянна, то $$ p={\displaystyle \frac{\mathrm{const}}{V}}$$, т. е. изотерма `1–2` является гиперболой (рис. 1). В дальнейшем при изохорическом нагревании `V="const"` и зависимость $$ p$$ от $$ V$$ изображается   в  координатах   отрезком  вертикальной  прямой `2-3`. 

    Изобарический процесс изображается отрезком горизонтальной прямой `3–1`. Графики этого процесса в других координатах строятся аналогично и приведены на рис 2 и 3.

    задача 3

     В сосуде находится смесь `10` г углекислого газа и `15` г азота. Найти плотность этой смеси при температуре `27^@"C"` и давлении `150` кПа  Газы считать идеальными.


    Решение

     $$ {m}_{1}=10 \mathrm{г}={10}^{-2} \mathrm{кг}$$ – масса  углекислого газа,  $$ {m}_{2}=15 \mathrm{г} =15·{10}^{-3} \mathrm{кг}$$  –  масса азота;

    $$ {\mu }_{1}=44{\displaystyle \frac{\mathrm{г}}{\mathrm{моль}}}=44·{10}^{-3} {\displaystyle \frac{\mathrm{кг}}{\mathrm{моль}}}$$,

    $$ {\mu }_{2}=28 {\displaystyle \frac{\mathrm{г}}{\mathrm{моль}}}=28·{10}^{-3}{\displaystyle \frac{\mathrm{кг}}{\mathrm{моль}}}$$ – молярные массы углекислого газа и азота; температура и давление $$ T=300 \mathrm{К}$$, $$ p=\mathrm{1,5}·{10}^{5} \mathrm{Па}$$.   

    Запишем уравнение состояния для каждого газа:  $$ {p}_{1}V={\displaystyle \frac{{m}_{1}}{{\mu }_{1}}}RT$$, $$ {p}_{2}V={\displaystyle \frac{{m}_{2}}{{\mu }_{2}}}RT$$. 

    Сложив эти уравнения и учтя, что по закону Дальтона  $$ p={p}_{1}+{p}_{2}$$, получим 

    $$ pV=({\displaystyle \frac{{m}_{1}}{{\mu }_{1}}}+{\displaystyle \frac{{m}_{2}}{{\mu }_{2}}})RT$$.

    Следует отметить, что последнее уравнение можно было бы записать и сразу, если воспользоваться готовым результатом (9).

    Выразим из полученного уравнения объём смеси $$ V$$ и подставим его в выражение для плотности смеси $$ \rho =({m}_{1}+{m}_{2})/V$$. Окончательно,

    $$ \rho ={\displaystyle \frac{({m}_{1}+{m}_{2})p}{({\displaystyle \frac{{m}_{1}}{{\mu }_{1}}}+{\displaystyle \frac{{m}_{2}}{{\mu }_{2}}})RT}}\approx \mathrm{1,97} \mathrm{кг}/{\mathrm{м}}^{3}\approx \mathrm{2,0} \mathrm{кг}/{\mathrm{м}}^{3}$$.


    задача 4

    При комнатной температуре четырёхокись азота частично диссоциирует на двуокись азота: $$ {\mathrm{N}}_{2}{\mathrm{O}}_{4}\to 2{\mathrm{NO}}_{2}$$. В откачанный сосуд объёмом $$ V= 250 {\mathrm{см}}^{3}$$ вводится $$ m=\mathrm{0,92} г$$ жидкой четырёх окиси азота. Когда температура в сосуде увеличивается до `t=27^@"C"`, жидкость полностью испаряется, а давление становится равным $$ p=129 \mathrm{кПа}$$. Какая часть четырёх окиси азота при этом диссоциирует?

    Решение

    Пусть диссоциирует масса $$ {m}_{1}$$. Тогда парциальное давление двуокиси азота $$ {p}_{1}={\displaystyle \frac{{m}_{1}}{{\mu }_{1}V}}RT$$, где $$ {\mu }_{1}=46·{10}^{-3} \mathrm{кг}/\mathrm{моль}$$.  Парциальное давление четырёх окиси азота $$ {p}_{2}={\displaystyle \frac{m-{m}_{1}}{{\mu }_{2}V}}RT$$, где $$ {\mu }_{2}=92·{10}^{-3} \mathrm{кг}/\mathrm{моль}$$.

    По закону Дальтона $$ p={p}_{1}+{p}_{2}$$. Подставив в последнее равенство выражения для $$ {p}_{1}$$ и $$ {p}_{2}$$, получаем:

    $$ {m}_{1}={\displaystyle \frac{{\mu }_{1}({\displaystyle \frac{pV}{RT}}{\mu }_{2}-m)}{{\mu }_{2}-{\mu }_{1}}}\approx \mathrm{0,27} \mathrm{г}$$.

  • §3. Внутренняя энергия

    Возьмём макроскопическое тело и перейдём в систему отсчёта, связанную с этим телом. В состав внутренней энергии тела входят кинетическая энергия поступательного движения и вращательного движения молекул, энергия колебательного движения атомов в молекулах, потенциальная энергия взаимодействия молекул друг с другом, энергия электронов в атомах, внутриядерная энергия и др.

    Будем рассматривать явления, в которых молекулы не изменяют своего строения, а температура ещё не так велика, чтобы была необходимость учитывать энергию колебаний атомов в молекуле. При таких явлениях изменение внутренней энергии тела происходит только за счёт изменения кинетической энергии молекул и потенциальной энергии их взаимодействия друг с другом. Для общего баланса энергии имеет значение не сама внутренняя энергия, а её изменение. Поэтому под внутренней энергией макроскопического тела можно подразумевать только сумму кинетической энергии теплового движения всех молекул и потенциальной энергии их взаимодействия.

    Внутренняя энергия есть функция состояния тела, и определяется макроскопическими параметрами, характеризующими состояние термодинамического равновесия тела.

    Потенциальная энергия взаимодействия молекул идеального газа принимается равной нулю. Поэтому внутренняя энергия идеального газа состоит только из кинетической энергии поступательного и вращательного движения молекул и зависит только от температуры. Внутренняя энергия идеального газа от объёма газа не зависит, поскольку расстояние между молекулами не влияет на внутреннюю энергию.

    Потенциальная энергия взаимодействия молекул реальных газов, жидкостей и твёрдых тел зависит от расстояния между молекулами. В этом случае внутренняя энергия зависит не только от температуры, но и от объёма.

    Найдём выражения для внутренней энергии одноатомного идеального газа. Средняя кинетическая энергия одной молекулы этого газа даётся выражением (2). Поскольку в газе массой `m` и молярной массой `mu` содержится ν=mμ\nu=\dfrac m\mu молей и mμNА\dfrac m\mu N_А молекул, то сумма кинетической энергии всех молекул, содержащихся в массе `m` газа, равна

    mμNА·32kT=32mμRT\dfrac m\mu N_А\cdot\dfrac32kT=\dfrac32\dfrac m\mu RT

    где R=kNАR=kN_А – универсальная газовая постоянная.

    Итак, внутренняя энергия одноатомного идеального газа

    U=32mμRT=32νRTU=\dfrac32\dfrac m\mu RT=\dfrac32\nu RT

    Анализ этой формулы подтверждает высказанное выше утверждение, что внутренняя энергия некоторой массы конкретного идеального газа зависит только от температуры.

  • §4. Работа в термодинамике

    Работа, совершаемая термодинамической системой (телом) над окружающими телами, равна по модулю и противоположна по знаку работе, совершаемой окружающими телами над системой.


    При совершении работы часто встречается случай, когда объём тела меняется. Пусть тело (обычно – газ) находится под давлением $$ p$$ и при произвольном изменении формы изменяет свой объём на малую величину $$ ∆V$$. Работа, совершаемая телом над окружающими телами, равна


    `DeltaA=pDeltaV`.                                                                   (11)





    При положительном $$ ∆V$$ (увеличение объёма газа) работа положительна, при $$ ∆V<0$$ – отрицательна. Вывод этого выражения для работы дан в школьном учебнике для частного случая расширения газа, находящегося в цилиндре под поршнем при постоянном давлении.


    Любой равновесный процесс, в котором давление будет меняться по некоторому закону от объёма, можно разбить на последовательность элементарных процессов с достаточно малым изменением объёма в каждом процессе, вычислить элементарные работы во всех процессах и затем все их сложить. В результате получится работа тела (газа) в процессе с переменным давлением. В координатах `p`, $$ V$$ абсолютная величина этой работы равна площади под кривой, изображающей зависимость `p`от $$ V$$ при переходе из состояния `1` в состояние `2` (рис. 4). Математически работа выражается интегралом:   


    `A=int_(V_1)^(V_2) p(V)dV`.


    В изобарном процессе, когда давление `p="const"`, работа тела над окружающими телами $$ A=p∆V$$, где $$ ∆V$$ изменение объёма тела за весь процесс, т. е. $$ ∆V$$ уже не обязательно мало.


    Задача 5

    Газ переходит из состояния с объёмом $$ {V}_{1}$$ и давлением $$ {p}_{1}$$ в состояние с объёмом $$ {V}_{2}$$ и давлением $$ {p}_{2}$$ в процессе, при котором его давление $$ P$$ зависит от объёма $$ V$$ линейно (рис. 5). Найти работу газа (над окружающими телами).


    Решение

    Работа газа равна заштрихованной на рис. 5 площади трапеции:

    $$ A={\displaystyle \frac{1}{2}}({p}_{1}+{p}_{2})({V}_{2}-{V}_{1})$$.


  • 2. Закон Паскаля

    Рассмотрим связь между давлениями в различных точках жидкости. Будем рассматривать покоящуюся жидкость в неподвижном сосуде. Дополнительное давление в жидкости, возникающее из-за силы тяжести, учитывать не будем.

    Пусть жидкость заключена в замкнутый сосуд произвольной формы (см. рисунок).

    Будем давить на поршень. Покажем, что давление `P_A` в точке `A` равно давлению `P_B` в точке  `B`. Для этого выделим мысленно внутри жидкости тонкий цилиндр, ось которого проходит через точки `A` и `B`, а основания площадью `S` каждое перпендикулярны оси. На части боковой поверхности цилиндра из жидкости со стороны окружающей жидкости действуют силы давления, перпендикулярные оси цилиндра. На основания цилиндра жидкость действует с силами `F_A = P_A S` и `F_B = P_B S`,  направленными вдоль оси `AB`. Поскольку цилиндр находится в покое, то `F_A = F_B`,  т. е. `P_A S = P_B S`. Отсюда `P_A = P_B`. Значит,  давление в точках `A` и `B` одно и то же. Аналогично доказывается равенство давлений в точках `B` и `C` и в точках `C` и `K`. Таким образом, приходим к выводу, что давление во всех точках внутри жидкости одинаково. Поршень давит на жидкость на её границе в одном месте, но это давление ощущается во всей жидкости. Мы получили

    Закон Паскаля

    давление, оказываемое на жидкость в каком-либо одном месте на её границе, передаётся без изменения во все точки жидкости. 

    Этот закон был установлен экспериментально французским физиком и математиком  Блэзом  Паскалем  (1623 - 1662) и носит его имя.

    Всё сказанное в этом параграфе справедливо и для газов. Справедлив для газов и закон Паскаля.

    Отметим, что закон Паскаля выведен и сформулирован здесь при условии отсутствия силы тяжести. Наличие силы тяжести не изменяет сути закона и вносит дополнительную связь между давлениями в различных точках жидкости или газа.

    Закон Паскаля лежит в основе устройства гидравлических машин. Принцип устройства и действия такой машины следующий. Два цилиндрических сосуда разного диаметра с поршнями соединены трубкой и заполнены жидкостью (см. рис.).

    Пусть на малый поршень площадью `S_1` действует сила `F_1`. Тогда в жидкости создаётся давление `P = F_1 //S_1`. На большой поршень площадью `S_2` со стороны жидкости действует сила `F_2 = PS_2 = F_1 S_2 //S_1`. С этой же силой большой поршень может действовать на какое-нибудь тело, препятствующее его перемещению. Во сколько раз `S_2` больше `S_1`, во столько раз и развиваемая поршнем сила `F_2` больше приложенной силы `F_1`. Это используется в гидравлическом прессе, гидравлическом тормозе, гидравлическом домкрате.

    задача 1

    Площадь большого поршня гидравлического домкрата 20 см220\;\mathrm{см}^2, а малого 0,5 см20,5\;\mathrm{см}^2. Груз какой максимальной массы можно поднять этим домкратом, если на малый поршень давить с силой не более `200Н`? Силой трения поршней о стенки цилиндров пренебречь.

    Решение

    Пусть  S1=0,5 см2S_1=0,5\;\mathrm{см}^2S2=20 см2S_2=20\;\mathrm{см}^2F1=200 НF_1=200\;\mathrm Н.  Так как давление во всех точках жидкости одинаково, то

    `F_1 /S_1 =F_2 /S_2`.

    Здесь `F_2` - сила давления жидкости на большой поршень. Отсюда

    F2=F1S2S1=200 Н·20 см20,5 см2=8000 НF_2=\dfrac{F_1S_2}{S_1}=200\;\mathrm Н\cdot\dfrac{20\;\mathrm{см}^2}{0,5\;\mathrm{см}^2}=8000\;\mathrm Н.

    Поднять можно тело с максимальным весом `F_2 = 8000 Н`, что соответствует массе `m = F_2 //g`,  где g=9,8 м/с2g=9,8\;\mathrm м/\mathrm с^2.  Итак, m800 кгm\approx800\;\mathrm{кг}.


  • 3. Гидростатическое давление

    На Земле на все тела действует сила тяжести. Под действием силы тяжести верхние слои жидкости действуют на нижние. Следовательно, в жидкости существует дополнительное давление, обусловленное силой тяжести, называемое гидростатическим давлением.

    Можно показать, что в жидкости, на глубине `H`,  считая от поверхности жидкости в сосуде, гидростатическое давление вычисляется по формуле `P_sf"г" = rho gH`.

    Здесь `rho` - плотность жидкости. В системе единиц СИ  `g = 9,8  sf"м/с"^2`, а давление `P_sf"г"`, плотность `rho` и высота `H`  измеряются в  Па, `sf"кг/м"^3` и `sf"м"` соответственно.

    Полное давление `P` в жидкости, налитой в сосуд, складывается из давления у поверхности жидкости и гидростатического давления. Давление у поверхности жидкости часто равно атмосферному давлению `P_"атм"`, о котором будет сказано в дальнейшем. В этом случае `P = P_sf"г" + P_sf"атм"`.

    Для ответа на некоторые вопросы полезно знать, что на одном горизонтальном уровне давление в жидкости постоянно, а разность давлений `Delta P`  на двух уровнях жидкости `AB` и `MN`, отстоящих друг от друга по высоте на расстояние `H` (см. рисунок), вычисляется по формуле `Delta P = rho g H`, которая аналогична формуле для гидростатического давления.

    Справка

    Греческая  буква  `Delta` (дельта),  стоящая  перед любой величиной, обычно используется  для  обозначения  изменения  этой  величины.

  • 4. Сообщающиеся сосуды

    Сообщающимися называются сосуды, которые имеют связывающие их каналы, заполненные жидкостью (см. рис.).

    Можно показать, что справедлив закон сообщающихся сосудов.

    Закон сообщающихся сосудов:

    в сообщающихся сосудах, заполненных однородной жидкостью, давление во всех точках жидкости, расположенных в одной горизонтальной плоскости, одинаково, независимо от формы сосудов, а поверхности жидкости в сообщающихся сосудах (открытых вверху) устанавливаются на одном уровне (см. рис.).



  • 5. Атмосферное давление. Опыт Торричелли

    Земля окружена воздушной оболочкой, состоящей из смеси газов. Эта оболочка называется атмосферой. Каждый горизонтальный слой атмосферы сжат весом более верхних слоёв. Поэтому давление в нижних слоях атмосферы больше, чем в верхних. При этом и плотность воздуха в нижних слоях значительно больше, чем в верхних. Это связано с тем, что газы под воздействием давления могут сильно уменьшить свой объём. Жидкости же обладают очень малой сжимаемостью и практически не изменяют своей плотности даже при больших давлениях. Атмосферное давление на уровне моря равно примерно 105 Па10^5\;\mathrm{Па}, т. е. 100000 Па100000\;\mathrm{Па}. Это желательно помнить. С увеличением высоты над уровнем моря атмосферное давление уменьшается. На высоте примерно в 5,5 км5,5\;\mathrm{км} оно уменьшается вдвое.

    Значение атмосферного давления впервые определил экспериментально в 1634 г. итальянский учёный Торричелли, создав простейший ртутный барометр. Опыт Торричелли состоит в следующем. Стеклянная трубка длиной около метра, запаянная с одного конца, заполняется полностью ртутью. Затем, закрыв отверстие трубки, её переворачивают и погружают открытым концом в чашу со ртутью (см. рис.).

    Часть ртути из трубки выливается, и в ней остаётся столб ртути высотой `H`. Давление в трубке над ртутью равно нулю (если пренебречь ничтожным давлением паров ртути), так как там - пустота (вакуум):  `P_C = 0`. Давление `P_B` в точке `B` равно давлению `P_A` в точке `A`, поскольку в сообщающихся сосудах - чаше и трубке - точки `A` и `B` находятся на одном уровне. Давление `P_A` равно атмосферному давлению $$ {P}_{\mathrm{атм}}$$.  Поэтому $$ {P}_{B}={P}_{\mathrm{атм}}$$. Разность давлений `P_B - P_C = rho gH`, где `rho` - плотность ртути. Так как $$ {P}_{B}={P}_{\mathrm{атм}}$$  и `P_C = 0`, то $$ {P}_{\mathrm{атм}} =\rho gH$$. Измерив `H` и зная `rho`, можно определить атмосферное давление в условиях опыта. Торричелли нашёл, что для уровня моря H=760 ммH=760\;\mathrm{мм}.

    В опыте Торричелли каждому значению `H` соответствует определённое значение $$ {P}_{\mathrm{атм}}$$. Следовательно, атмосферное давление можно измерять в миллиметрах ртутного столба. Эта единица давления получила специальное название «Торр»: `1`Торр `= 1` мм. рт.ст. При этом высота столба ртути берётся той, которую он имел бы при `0^@"C"`. Атмосферное давление в `760` Торр называется нормальным атмосферным давлением. Значение этого давления называется нормальной (физической) атмосферой и обозначается 1 атм1\;\mathrm{атм}.  Зная плотность ртути  ρ=13595 кг/м3\rho=13595\;\mathrm{кг}/\mathrm м^3, находим по формуле    $$ {P}_{\mathrm{атм}}=\rho gH$$:

    1 атм=760 Торр101325 Па1,013·105 Па1\;\mathrm{атм}=760\;\mathrm{Торр}\approx101325\;\mathrm{Па}\approx1,013\cdot10^5\;\mathrm{Па}.                         

    Умножим равенство $$ {P}_{\mathrm{атм}}=\rho gH$$ на площадь `S` внутреннего сечения трубки: $$ {P}_{\mathrm{атм}}S=\rho gHS$$. Заметим, что последнее равенство можно получить и непосредственно, записав условие равновесия  столба `BC`  ртути (рис. 6). Произведение $$ {P}_{\mathrm{атм}}S$$ равно силе давления `F` на столб ртути `BC` снизу, вызванное наличием атмосферного давления, а `rho gHS` есть вес столба `BC` ртути в трубке. Поэтому говорят, что в опыте Торричелли давление, создаваемое весом столба ртути, уравновешивается атмосферным давлением.

    Замена ртути водой в опыте Торричелли требует высоты трубки более `10` м. Действительно, при нормальном атмосферном давлении 1 атм1\;\mathrm{атм} для значения плотности воды ρ=1000 кг/м3\rho=1000\;\mathrm{кг}/\mathrm м^3 из формулы $$ {P}_{\mathrm{атм}}=\rho gH$$ следует, что H10,3 мH\approx10,3\;\mathrm м. Это означает, что нормальное атмосферное давление уравновешивается столбом воды высотой `10,3` м.   

    Несколько замечаний для решения задач. Полезно помнить, что плотность воды равна 1000 кг/м31000\;\mathrm{кг}/\mathrm м^3 и гидростатическое давление в 105 Па10^5\;\mathrm{Па} создаётся в воде на глубине приблизительно 10 м10\;\mathrm м. Проверьте это, используя формулу для гидростатического давления.

    Поскольку плотность воздуха намного меньше плотности воды, изменением атмосферного давления, связанным с перепадом высоты в несколько метров, можно в ряде случаев пренебречь по сравнению с гидростатическим давлением воды, вызванным таким же перепадом высоты.

    Задача 2

    В сосуд налита вода (см. рис.).

    Расстояние от поверхности воды до дна H=0,5 мH=0,5\;\mathrm м. Площадь дна S=0,1 м2S=0,1\;\mathrm м^2. Найти гидростатическое давление `P_1` и полное давление `P_2` вблизи дна. Найти силу давления воды на дно.

    Решение

    Плотность воды ρ=103 кг/м3\rho=10^3\;\mathrm{кг}/\mathrm м^3. Гидростатическое давление

    $$ {P}_{1}=\rho gH={10}^{3} \mathrm{кг}/{\mathrm{м}}^{3}·\mathrm{9,8} \mathrm{м}/{\mathrm{с}}^{2}·\mathrm{0,5} \mathrm{м}\approx 5·{10}^{3} \mathrm{Па}=5000 \mathrm{Па}$$.

    Полное давление складывается из атмосферного $$ {P}_{\mathrm{атм}}={10}^{5}\mathrm{Па}$$ и гидростатического:

     $$ {P}_{2}={P}_{\mathrm{атм}}+{P}_{1}=100000 \mathrm{Па}+5000 \mathrm{Па}=105000 \mathrm{Па}$$.

    Интересно, что полное давление мало отличается от атмосферного, так как толщина слоя воды достаточно мала. Сила давления воды на дно $$ F={P}_{2}·S=105000 \mathrm{Па}·\mathrm{0,1} {\mathrm{м}}^{2}=10500 H$$.

    Задача 3

    На лёгкий поршень площадью `S`, касающийся поверхности воды, поставили гирю массой `m` (см. рис.).

    Высота слоя  воды в сосуде с вертикальными стенками  `H`. Определить давление в жидкости вблизи дна. Плотность воды `rho`.

    Решение

    На поршень снизу со стороны воды действует направленная вверх сила `F_1 = P_1 S`, где `P_1` давление вблизи поршня. Сверху на поршень действует гиря и атмосферный воздух с силой `F_2 = mg + P_"атм" S`, где g=9,8 м/с2g=9,8\;\mathrm м/\mathrm с^2, $$ {P}_{\mathrm{атм}}={10}^{5} \mathrm{Па}$$ - атмосферное давление. Поршень находится в равновесии. Поэтому `F_1 = F_2`. Итак,  `P_1 S = mg + P_"атм" S`. Отсюда  `P_1 = P_"атм" + (mg)/S`.

    Этот  результат можно писать и сразу, говоря, что давление под поршнем равно атмосферному `P_"атм"` и добавочному давлению  `mg//S`, создаваемому гирей.

    Разность давлений в воде у дна и вблизи поршня: `P_2 - P_1 = rho gH`.

    Отсюда  `P_2 = P_1 + rho gH`.  

    Окончательно, давление у дна `P_2 = P_"атм" + (mg)/S + rho gH`.


  • 6. Закон Архимеда

    На поверхности твёрдого тела, погружённого в жидкость (газ), действуют силы давления. Эти силы увеличиваются с глубиной погружения (см. рис.), и на нижнюю часть тела будет действовать со стороны жидкости большая сила, чем на верхнюю.

    Равнодействующая всех сил давления, действующих на поверхность тела со стороны жидкости, называется выталкивающей силой. Другое название этой силы - сила Архимеда. Истинная причина появления выталкивающей силы - это наличие различного гидростатического давления в разных точках жидкости.

    Закон Архимеда

    выталкивающая сила, действующая на тело, погружённое в жидкость, равна по модулю весу вытесненной жидкости и противоположно ему направлена.

    Закон открыт величайшим механиком и математиком Древней Греции Архимедом (287 - 212 г.г. до н. э.).

    Приведённая формулировка закона Архимеда справедлива, если вся поверхность тела соприкасается с жидкостью или если тело плавает в жидкости, или если тело частично погружено в жидкость через свободную (не соприкасающуюся со стенками) поверхность жидкости.

    Если же часть поверхности тела плотно прилегает к стенке или дну сосуда так, что между ними нет прослойки жидкости, то закон Архимеда неприменим!

    Иллюстрацией к сказанному служит опыт, когда ровную нижнюю поверхность деревянного кубика натирают парафином и плотно приставляют ко дну сосуда (см. рис.).

    Затем осторожно наливают воду. Кубик не всплывает, т. к. со стороны воды на него действует сила, прижимающая его ко дну, а не выталкивающая вверх. Известно, что это представляет опасность для подводной лодки, лёгшей на грунт.

    Закон Архимеда применим и в случае погружения тела в газ.
    Строго говоря, в законе Архимеда вес вытесненной жидкости надо брать в вакууме, а не в воздухе, так как вес жидкости в воздухе меньше веса этой жидкости в вакууме на величину веса воздуха, вытесненного этой жидкостью. Но это различие обычно мало, и им пренебрегают.

    Если тело погружено в жидкость частично, то результирующая выталкивающая сила со стороны жидкости и воздуха равна сумме веса вытесненной жидкости и вытесненного этим телом воздуха. Здесь оба веса берутся в вакууме.

    Задача 4

    Железный предмет, полностью погружённый в воду, весит меньше, чем в воздухе на F=100 HF=100\;\mathrm H.   Определить вес предмета в воздухе. Плотность железа ρ=7900 кг/м3\rho=7900\;\mathrm{кг}/\mathrm м^3.

    Решение

    Выталкивающей силой в воздухе можно пренебречь. Пусть вес тела в воздухе `Q`.  Тогда его вес в воде `Q - rho_в Vg`.  Здесь `V` - объём тела, ρв=1000 кг/м3\rho_\mathrm в=1000\;\mathrm{кг}/\mathrm м^3 - плотность воды, g=9,8 м/с2g=9,8\;\mathrm м/\mathrm с^2. Разность этих весов равна  `F`. Поэтому `Q - (Q - rho_в Vg) = F`. 

    Отсюда `V = F/(rho_в g)`.  Вес тела в воздухе 

    Q=ρgV=Fρρв=100 H·7900 кг/м31000 кг/м3=790 HQ=\rho gV=\dfrac{F\rho}{\rho_\mathrm в}=\dfrac{100\;\mathrm H\cdot7900\;\mathrm{кг}/\mathrm м^3}{1000\;\mathrm{кг}/\mathrm м^3}=790\;\mathrm H.


  • 7. Плавание тел

    Лодка из железа, спущенная на воду, плывёт, а эта же лодка, полностью погружённая в воду (затопленная), тонет. Из этого примера видно, что одно и тоже тело может плавать, а может и тонуть. Всё зависит от того, как тело приведено в контакт с жидкостью. Поэтому имеет смысл рассмотреть два случая взаимодействия тела с жидкостью.

    1-й случай

    Тело плавает в жидкости,  т. е. находится в покое, частично погрузившись в жидкость. Это может быть любое тело, например, кусок дерева или катер. Важен сам факт плавания. При этом тело соприкасается только с жидкостью и воздухом, плавая предоставленным самому себе, свободно. На начальном этапе рассмотрения вопроса о плавании не будем учитывать вес вытесненного воздуха. На тело действует направленная вниз сила тяжести `F_sf"Т"` и направленная вверх сила Архимеда `F_sf"А"`. Поскольку сила тяжести `F_sf"Т"` равна весу тела (в вакууме), а сила Архимеда `F_sf"А"` – весу (в вакууме) вытесненной жидкости, то можно сказать, что вес тела равен весу вытесненной жидкости. При более строгом рассмотрении вопроса с учётом веса вытесненного воздуха можно показать, что вес тела в воздухе равен весу (тоже в воздухе) вытесненной жидкости.

     Итак, если тело плавает в жидкости, то вес тела в воздухе равен весу в воздухе вытесненной им жидкости.

    При решении задач, когда ситуация реальна, различием в весе в воздухе и вакууме обычно пренебрегают, приравнивая вес любого тела силе тяжести, действующей на тело.

    Задача 5

    Кусок льда объёмом V=0,1 м3V=0,1\;\mathrm м^3 плавает в воде. Найти объём  `V_1`  надводной части льда. Плотность воды  ρ1=1 г/см3\rho_1=1\;\mathrm г/\mathrm{см}^3,  плотность льда ρ2=0,9 г/см3\rho_2=0,9\;\mathrm г/\mathrm{см}^3.

    Решение

    Вес льдины `rho_2 Vg`,  вес вытесненной воды `rho_1 (V - V_1)g`. По закону Архимеда  `rho_2 Vg = rho_1 (V - V_1)g`.  Отсюда 

    V1=ρ1-ρ2Vρ1=1-ρ2ρ1·V=0,01 м3V_1=\dfrac{\left(\rho_1-\rho_2\right)V}{\rho_1}=\left(1-\dfrac{\rho_2}{\rho_1}\right)\cdot V=0,01\;\mathrm м^3.

    2-й случай

    Тело полностью погружено в жидкость и отпущено. Возьмём в руки какое-нибудь тело (кусочек дерева, стальной болт), погрузим его полностью в жидкость (например, воду) и будем удерживать неподвижно. На тело со стороны Земли действует вниз сила тяжести FТ=ρТVgF_\mathrm Т=\rho_\mathrm ТVg, а со стороны жидкости - вверх выталкивающая сила по закону Архимеда  FА=ρЖVgF_\mathrm А=\rho_\mathrm ЖVg. Здесь `V` - объём тела, ρТ\rho_\mathrm Т и ρЖ\rho_\mathrm Ж - плотность тела и жидкости. Отпустим тело. Если окажется, что $$F_\mathrm Т\;>\;F_\mathrm А$$,  то тело начнёт двигаться вниз, т. е. тонуть.  Если будет $$F_\mathrm Т\ <\ F_\mathrm А$$, то тело станет двигаться вверх, т. е. всплывать. После всплытия, когда тело будет плавать, объём погружённой в жидкость части тела окажется таким, что будет обеспечено равенство силы Архимеда (уже меньшей, чем величина $$ {F}_{\mathrm{А}}$$) и силы тяжести $$ {F}_{\mathrm{Т}}$$.  Итак, тело будет плавать, если $$\rho_\mathrm ТVg\;<\;\rho_\mathrm ЖVg$$, т. е. $$\rho_\mathrm Т\;<\;\rho_\mathrm Ж$$.  

    Мы получили условие плавания тела: тело, предварительно полностью погружённое в жидкость, плавает в жидкости, если плотность тела меньше плотности жидкости.

    Если плотности тела и жидкости равны, то полностью погружённое в жидкость тело может находиться в равновесии (покое) в любом месте жидкости, т. е. тело плавает внутри жидкости. Реально такая ситуация трудно осуществима, так как добиться строгого равенства плотностей нелегко.

    Условие плавания сформулировано для тела, предварительно полностью погружённого в жидкость. Предварительное полное погружение важно, так как, например, металлическая миска, не полностью погружённая в воду, может плавать, а полностью погружённая утонет.

    Условие плавания сформулировано для однородного тела, т. е. тела, плотность которого одинакова во всех точках тела. Это условие плавания справедливо и для неоднородного тела, например, куска льда с полостью внутри или стеклянной бутылки, заполненной частично водой и закрытой пробкой. В таком случае под плотностью тела надо понимать его среднюю плотность, т. е. отношение массы тела к его объёму.

  • 8. Воздухоплавание

    На тело, удерживаемое неподвижно в воздухе, действует выталкивающая сила, равная по закону Архимеда весу вытесненного этим телом воздуха. Если вес тела (в вакууме) больше веса вытесненного телом воздуха, то отпущенное тело падает вниз. Если вес тела меньше веса вытесненного воздуха, то отпущенное тело поднимается вверх. Это и есть условие воздухоплавания.

    Для осуществления воздухоплавания надо использовать газ, который легче воздуха. Это может быть нагретый воздух. Если суммарный вес оболочки воздушного шара, наполняющего его газа и полезного груза меньше веса вытесненного шаром воздуха, то шар будет подниматься.

    Задача 6

    Какой груз может поднять воздушный шар объёмом V=10 м3V=10\;\mathrm м^3, наполненный гелием? Плотность гелия ρг=0,18 кг/м3\rho_\mathrm г=0,18\;\mathrm{кг}/\mathrm м^3,  плотность воздуха ρв=1,29 кг/м3\rho_\mathrm в=1,29\;\mathrm{кг}/\mathrm м^3.  Масса оболочки шара m0=2,1 кгm_0=2,1\;\mathrm{кг}.

    Решение

    Объёмом груза по сравнению с объёмом шара пренебрегаем. Вес вытесненного воздуха ρвVg\rho_\mathrm вVg, вес гелия ρгVg\rho_\mathrm гVg.   Максимальная масса груза найдётся из условия:  m0g+ρгVg+mg=ρвVgm_0g+\rho_\mathrm гVg+mg=\rho_\mathrm вVg. Отсюда

    m=ρв-ρгV-m0=9 кгm=\left(\rho_\mathrm в-\rho_\mathrm г\right)V-m_0=9\;\mathrm{кг}.


  • Введение

    Часть механики, изучающая условия, при которых тело находится в покое под действием нескольких сил, называется статикой

    В гидростатике рассматриваются силы, возникающие в системе, состоящей из покоящейся жидкости и помещённых в эту жидкость неподвижных тел.

    Силы, появляющиеся в системе из неподвижного газа и помещённых в него покоящихся тел, изучает наука аэростатика.

    В гидростатике и аэростатике используются многие понятия и законы механики и её составной части – статики. Поэтому перед чтением этого задания полезно повторить материал, касающийся понятий массы, плотности, силы, силы тяжести, веса тела, равнодействующей нескольких сил. Напомним кое-что из этого.

    Масса тела `m`, его объём `V` и плотность `rho` тела связаны формулой `m=Vrho`. Сила тяжести, действующая на тело массой `m`, приложена к телу и находится по формуле `F=mg`, где `g~~9,8  "Н"//"кг"=9,8  "м"//"с"^2`  – ускорение свободного падения. Вес тела массой `m` во многих случаях выражается тоже аналогичной формулой `Q=mg`, но вес `Q` приложен к подставке, на которой находится тело.

    Сила, которая оказывает на тело такое же действие, как и несколько одновременно действующих сил, называется равнодействующей этих сил. Если тело находится в покое, то равнодействующая сила равна нулю. В частности, если на тело действуют две силы и тело находится при этом в покое, то эти силы равны по модулю и противоположны по направлению.

    Несколько слов о контрольных вопросах и задачах, предлагаемых в конце задания. Часть вопросов и задач простые, часть сложные. Не смущайтесь, если некоторые из них Вам не удастся решить. У Вас будет возможность вернуться к этому заданию, когда Вы получите назад свою проверенную работу и официальное решение этого задания.

    Желаем удачи!

  • 1. Жидкости и газы. Текучесть. Давление

    Жидкости и газы отличаются от твёрдых тел прежде всего тем, что обладают таким свойством, как текучесть. Текучесть проявляется в способности жидкости и газа принимать форму сосуда. Из-за чего появляется и чем объясняется текучесть, по наличию которой и устанавливают, что данное тело не является твёрдым?

    Многочисленные опытные факты подтверждают наличие в природе веществ (тел), у которых отсутствуют силы, препятствующие сдвигу с бесконечно малыми скоростями одних слоёв этих веществ относительно других, т. е. отсутствуют силы трения покоя, действующие вдоль поверхности соприкасающихся слоёв. Если при этом такое вещество принимает форму сосуда и его объём практически не зависит от формы и вида сосуда, то мы имеем дело с жидкостью. Если же это вещество занимает весь предоставленный ему в любом сосуде объём, то это - газ.

    У твёрдого тела сдвинуть один слой (часть) тела относительно другого без приложения значительных усилий невозможно. У жидкости и газа одни слои (части)  могут скользить по другим слоям под действием ничтожно малых сил. Этим и объясняется текучесть.

    наПример

    Если подуть вдоль поверхности воды, то верхние слои воды придут в движение относительно нижних, причём силы трения между слоями будут тем меньше, чем меньше относительная скорость движения слоёв. Другой пример текучести. Даже очень осторожное, медленное и малое наклонение сосуда с жидкостью приводит к перемещению верхних слоёв жидкости относительно нижних и в результате поверхность жидкости становится снова горизонтальной.

    Сила трения покоя между стенкой сосуда и соприкасающейся с ней неподвижной жидкостью тоже равна нулю.

    Мы здесь не будем рассматривать проявление так называемых сил поверхностного натяжения, возникающих из-за того, что поверхностный слой жидкости ведёт себя подобно тонкой упругой оболочке. Силами поверхностного натяжения объясняется существование капель жидкости, возможность каплям удерживаться на наклонной поверхности твёрдого тела, капиллярность и другое.

    Из всего сказанного выше следует, что в неподвижной жидкости (или газе) слои (части) жидкости действуют друг на друга и на стенки сосуда с силами, направленными перпендикулярно к поверхности их соприкосновения. На рисунке показан сосуд с жидкостью.

    Выделим мысленно из всей жидкости её части в объёмах `1` и `2`. Жидкость в объёме `1` давит на жидкость в объёме `2` с силой `F_1` направленной перпендикулярно к поверхности `AB` их соприкосновения. С такой же по модулю силой `F_2` давит и жидкость `2` на `1`. Это следует из так называемого третьего закона Ньютона, согласно которому тела действуют друг на друга с равными по модулю и противоположными по направлению силами. Жидкость в сосуде давит на часть `MN` стенки сосуда с силой `F_3`, направленной перпендикулярно стенке. Часть `MN` стенки давит на жидкость с такой же силой  `F_4`.

    Величиной, характеризующей взаимодействие частей жидкости или газа друг с другом и со стенками сосуда, служит давление.

    ОПРЕДЕЛЕНИЕ

    Давлением называется величина, равная отношению модуля силы `F` давления, действующей по нормали (перпендикулярно) к плоской поверхности, к площади  `S` этой поверхности: `P=F/S`.

    В системе СИ давление измеряется в $$ \mathrm{Н}/{\mathrm{м}}^{2}$$. Эта единица давления носит название паскаль (Па):          

    1 Па =1 Н/м21\;\mathrm{Па}\;=1\;\mathrm Н/\mathrm м^2

    Уточним, что следует понимать под давлением в жидкости или газе.

    Поместим в жидкость или газ небольшую плоскую пластину. Одну из сторон этой пластины назовём площадкой. Жидкость (газ) давит на площадку с некоторой силой `F`. Если площадь площадки `S`, то давление жидкости на площадку `P = F/S`. Из условия равновесия вырезанной мысленно из жидкости (газа) призмы с основанием в виде прямоугольного треугольника, находящейся в месте расположения площадки, можно вывести, что давление на площадку в жидкости или газе не зависит от ориентации площадки. Вывод приводить не будем. Теперь можно дать определение давления в жидкости или газе.

    определение

    Давлением в некоторой точке жидкости называется давление жидкости на небольшую площадку, произвольно ориентированную и помещённую вблизи этой точки. Аналогично и для газа.






  • Введение

    Традиционно курс физики начинается с изучения механического движения, которое определяют как изменение положения тел или их частей в пространстве относительно друг друга с течением времени. Уже описание движения простейшего объекта - материальной точки (тела, размерами которого в данной задаче можно пренебречь) - требует введения векторных величин: радиус-вектора `vec r (t)` (характеризующего положение точки в пространстве в каждый момент времени `t`), вектора перемещения `Delta vec r` (рис. 1), скорости и др.


    Что же такое векторная величина? Напомним, что некоторые физические величины полностью характе­ризуются единственным числом, которое выражает отношение этой величины к единице измерения. Такие величины называются скалярными. Простейшие примеры их - масса, плотность, температура. Так, температура в Москве `25^@ "C"` полностью задана одним числом (`25^@ "C"`); нельзя, например, сказать, что она направлена под каким-то углом к горизонту, температура никуда не направлена. То же самое относится к массе тела (но не к силе тяжести!), плотности вещества.

    С другой стороны, для характеристи­ки таких физических величин, как перемещение, скорость, сила, необходимо также знать и их направление. Такие величины называются векторными. Они являются предметом изучения специального раздела математики, называемого векторной алгеброй.

  • §1. Определение вектора. Операции над векторами

    1. Основные определения

    Удивительно, но с векторными величинами разной природы (перемещением, скоростью, силой, импульсом и др.) можно работать в значительной мере единообразно - как с геометрическими объектами - геометрическими векторами, или просто векторами, хотя есть и нюансы (см. ниже).

    Определение

    Вектор пред­ставляет собой направленный отрезок прямой, для которого определены правила (законы) сложения с другими векторами, правило вычитания векторов, правило умножения вектора на число, скалярное произведение двух векторов и некоторые другие операции.

    Стрелка компаса - не вектор, т. к. для неё нет таких операций.

    Мы будем рассматривать векторы на плоскости и в соответствии со сложившейся традицией обозначать их латинскими буквами со стрелками наверху, например: `vec v`, `vec F`, `vec a`, `vec b` и т. п. Часто в целях экономии используют упрощённое обозначение - букву с чертой, например, `bar v` или `bar F`.

    Одну из граничных точек вектора называют его началом, а другую - концом. Направление вектора задаётся от начала к концу, причём на чертеже конец вектора отмечают стрелкой. Начало вектора называют также точкой его приложения. Если точка `A` является нача­лом вектора `vec a`, то мы будем говорить, что вектор `vec a` приложен в точке `A` (рис. 2).

    Число, выражающее длину направленного отрезка, называют модулем вектора и обозначают той же буквой, что и сам вектор, но без стрелки наверху, например: модулем вектора `vec v` является число `v`. Часто для обозначения модуля вектора прибегают к помощи знака абсолютной величины и пишут, например, `|vec v|` или `|vec F|`.

    Вектор называется нулевым, если его начало и конец совпадают. Нулевой вектор не имеет определённого направления и его длина (модуль) равна нулю.

    Векторы называются коллинеарными, если они лежат либо на одной прямой, либо на параллельных прямых. Так, например, на рис. 3 векторы `vec a`, `vec b` и `vec c` коллинеарны. 

    Два вектора называются равными, если они коллинеарны, имеют одинаковую длину и одинаковое направление.

    На рис. 4 слева изображены неравные векторы `vec a` и `vec f`, `vec g` и `vec h`, а справа - равные векторы `vec p` и `vec q`. Точка приложения геометрического вектора `vec a` может быть выбрана произвольно. Мы не различаем двух равных векторов, имеющих разные точки приложения и получающихся один из другого параллельным переносом. В соответствии с этим векторы, изучаемые в геометрии, называют свободными (они определены с точностью до точки приложения).

    В физике точка приложения вектора иногда имеет  принципиальное значение. Достаточно вспомнить рычаг: две равные по модулю силы, направленные в одну и ту же сторону, производят на рычаг разное действие, если плечи сил не равны друг другу. И всё же сами силы равны друг другу! Бывают и случаи, когда вектору трудно приписать конкретную точку приложения. Например, если одна система отсчёта движется  относительно другой со скоростью `vec v`, то какой точке  приписать эту скорость?  Всем точкам движущейся системы!

    2. Сложение двух векторов.

    Пусть даны два произвольных вектора `vec a` и `vec b` (рис. 5а). 

    Для нахождения их суммы нужно перенести вектор `vec b` параллельно самому себе так, чтобы его начало совпало с концом вектора `vec a`. Тогда вектор, проведённый из начала вектора `vec a` в конец перенесённого вектора `vec b`, и будет являться суммой `vec a` и `vec b`. На рис. 5б - это вектор `vec c`.

    Описанное правило есть просто определение суммы векторов. Как и в случае с числами, сумма векторов не зависит от порядка слагаемых, и поэтому можно записать

    `vec c = vec a + vec b = vec b + vec a`.                                                 (1)

    Приведённое выше правило геометрического сложения векторов называется правилом треугольника.

    Сумма векторов может быть найдена и по правилу параллелограмма. В этом случае параллельным переносом нужно совместить начала векторов `vec a` и `vec b` и построить на них, как на сторонах,  параллелограмм. Тогда сумма `vec a` и `vec b` будет представлять собой диагональ этого параллелограмма, конкретно - суммой `vec a` и `vec b` будет вектор, начало которого совпадает с общим началом векторов `vec a` и `vec b` конец расположен в противоположной вершине параллелограмма, а длина равна длине указанной диагонали (рис. 5в).

    Оба способа сложения дают идентичный результат и одинаково часто применяются на практике. Когда речь идёт о нахождении суммы трёх и более векторов, часто последовательно используют  правило  треугольника. Поясним сказанное.

    3. Сложение трёх и более векторов. 

    Пусть нужно сложить три вектора `vec a`, `vec b` и `vec d` (рис. 6). 

    Для этого  по правилу треугольника сначала находится сумма любых двух векторов, например `vec a` и `vec b`, потом полученный вектор `vec c = vec a + vec b` по тому же правилу складывается с третьим  вектором  `vec d`. Тогда  полученный  вектор `vec f = vec c + vec d` и  будет представлять собой сумму  трёх  векторов `vec a`, `vec b` и `vec d`: `vec f = vec a + vec b + vec d`. Как и в случае с двумя векторами, порядок слагаемых не влияет на конечный результат.

    Чтобы упростить процесс сложения трёх и более векторов, обычно не находят промежуточные суммы типа `vec c = vec a + vec b`, а применяют правило многоугольника: параллельными переносами из конца первого вектора откладывают второй, из конца второго - откладывают третий, из конца третьего  - четвёртый  и  т.  д. 

    Так,  на рис. 7 вектор  `vec g`  представляет собой сумму векторов `vec a`, `vec b`, `vec d`, `vec e`,  найденную по правилу многоугольника: `vec g = vec a + vec b + vec d + vec e`.

    Замечание

    Не всякая векторная сумма может иметь физический смысл. Не всякие величины вообще имеет смысл складывать. Так,  например, бессмысленно говорить, что, если у меня температура `36,6^@` и у вас тоже `36,6^@`, то вместе у нас температура `73,2^@`, хотя складывать температуры (числа) никто не запрещает. Всё же чаще всего сумма температур представляет собой никому не нужную величину; она редко входит в какие-либо уравнения (входит почти случайно).

    Иное дело – с массой. Если система состоит из тел с массами `m_1`, `m_2`, `m_3` и т. д., то масса всей системы равна `m = m_1 + m_2 + m_3 + ` и т. д. (Если на лифте написано, что максимальный груз, перевозимый лифтом, равен `500` кг, то перед входом в лифт нужно убедиться, что сумма масс вносимых в лифт грузов не превышает `500` кг.) Говорят, что масса – есть аддитивная величина (от английского слова add – добавлять, прибавлять, складывать). А вот температура – не аддитивная величина.

    Сила есть аддитивная векторная величина. Если к телу в точке (или к системе тел в разных точках!) приложены силы `vec(F_1)`, `vec(F_2)`, `vec(F_3)` и т. д., то сумма векторов сил `vec(F_1) + vec(F_2) + vec(F_3) + ...` есть осмысленная и даже очень нужная величина. Например, в условиях равновесия тела сумма всех приложенных к нему сил `vec(F_1) + vec(F_2) + vec(F_3) + ... = 0`, даже если силы приложены в разных точках тела. Причём это относится не только к твёрдым телам. Если нитка подвешена за два конца к двум гвоздям, а в промежутке перекинута еще через какие-нибудь гвозди, то сначала нужно найти силы со стороны каждого из гвоздей и  силу со стороны Земли (силу тяжести) `vec F_1`, `vec(F_2)`, `vec(F_3)`, `…`; при этом говорят, что к нитке приложена сумма сил `vec(F_1) + vec(F_2) + vec(F_3) + ...`; в условиях равновесия эта сумма будет равна нулю.

    Не так со скоростями. Если система состоит из двух частиц, имеющих в некоторый момент времени скорости `vec(v_1)` и `vec(v_2)`, то это не означает, что в этот момент вся система обладает скоростью равной векторной сумме `vec(v_1) + vec(v_2)`. Никто не запрещает складывать векторы скорости разных частиц; но с точки зрения физики вектор `vec(v_1) + vec(v_2)` ничему приписать нельзя. В этом смысле скорость - не аддитивная величина. Суммой скоростей (векторной суммой) интересуются, когда одно движение накладывается на другое (например, Земля вращается вокруг Солнца, но вместе с Солнцем движется вокруг центра Галактики). А вот сумма скоростей отдельных частиц системы (например, сумма скоростей звезд в Галактике) физического интереса не представляет.

    Родственная скорости величина, с которой вы еще не раз встретитесь в курсе физики, импульс материальной точки, равный произведению массы на скорость, `vec p = m vec v` снова - величина аддитивная.

    В последнем равенстве мы встречаемся с умножением вектора на скаляр. Поясним эту процедуру.

    4. Умножение вектора на скаляр. 

    Произведением вектора `vec a` на число `k` называют новый вектор `vec b = k vec a`, коллинеарный вектору `vec a`, направленный в ту же сторону, что и вектор `vec a`, если `k > 0`, и в противоположную сторону, если `k < 0`, а модуль `b` равен

     `b = |k| a`                                                                                (2)

    где `|k|` - абсолютная величина числа `k`. 

    Если два вектора коллинеарны, то они отличаются только скалярным множителем. Наоборот, если два вектора отличаются только ска­лярным множителем, не равным  нулю, то они коллинеарны.      

    В случае, когда `k = 0` или `vec a = 0`, произведение `k vec a` представляет собой нулевой  вектор,  направление которого не определено.

    Если `k = 1`, то согласно (2) `vec b = vec a` и векторы `vec a` и `vec b` равны (рис. 8а).

    При `k = - 1` получим `vec b = - vec a`. Вектор `- vec a` имеет модуль, равный модулю вектора `vec a`, но направлен в противоположную сторону (рис. 8б).

    Два  вектора,  противоположно  направленные и имеющие  равные длины, называются противоположными.

    Импульс тела `vec p = m vec v` коллинеарен вектору скорости и направлен с ней в одну сторону, т. к. массы всех тел положительны. Чуть ранее говорилось об аддитивности импульса. Если система состоит из материальных точек с массами `m_1`, `m_2`, `m_3`, `...`, которые в некоторый момент времени имели скорости `vec(v_1)`, `vec(v_2)`, `vec(v_3)`, `…`, т. е. имели импульсы `vec(p_1) = m_1 vec(v_1)`, `vec(p_2) = m_2 vec(v_2)`, `vec(p_3) = m_3 vec(v_3)`, `…`, то вся система в этот момент обладает импульсом  

    `vec p = vec(p_1) + vec(p_2) + vec(p_3) + ... = m_1 vec(v_1) + m_2 vec(v_2) + m_3 vec(v_3) + ...`.

    При этом каждое из слагаемых здесь должно быть найдено по правилу умножения вектора (скорости данной частицы) на скаляр (её массу), а затем все эти векторы должны быть сложены, например, по правилу многоугольника.

    Вычесть из вектора `vec a` вектор `vec b` означает прибавить к вектору `vec a` вектор   `- vec b`:

    `vec a - vec b = vec a + (- vec b)`


  • §2. Проекция вектора на заданное направление

    1. Проекция вектора на заданное направление. 

    Пусть заданы два вектора `vec a` и `vec b`. Приведём эти векторы к одному началу `O` (рис. 10). Угол, образованный лучами, исходящими из точки `O` и  направленными вдоль векторов `vec a` и `vec b`, называют углом между векторами `vec a` и `vec b`. Обозначим этот угол через `alpha`.

    Число `a_b = a cos alpha` называется проекцией вектора `vec a` на направление вектора `vecb`. Проекция вектора `vec a` получается, если из его конца опустить перпендикуляр на направление вектора `vec b` (рис. 10), тогда расстояние от общего  начала векторов - точки `O` - до точки пересечения указанного перпендикуляра с прямой, на которой лежит вектор `vecb`,  будет равно модулю проекции вектора `vec a` на направление вектора `vec b`.

    Угол `alpha` может принимать различные значения, поэтому в зави­симости от знака `cos alpha` проекция может принимать положительные, отрицательные значения или нуль. Например, если угол `alpha` тупой, т. е. больше, чем `90^@`, но меньше `180^@`,  то косинус такого угла отрицателен (см. рис. 11).

    Проекция равна нулю, если направления векторов `vec a` и `vec b` взаимно перпендикулярны (см. рис. 12).

    Проекции равных векторов на любые направления равны друг другу. Проекции противоположных векторов отличаются знаком.

    Легко показать, что проекция суммы векторов равна алгебраической сумме их проекций и что при умножении вектора на число его проекция умножается на то же число.

    2. Разложение вектора.

    До сих пор мы говорили о сложении векторов. Для решения многих задач бывает необходимо произвести обратную процедуру - разложить вектор на составляющие, например, найти несколько сил, которые своим совместным действием могли бы заменить одну данную силу. Такая операция называется разложением сил.

    Пусть на плоскости задан вектор `vec a` и две пересекающиеся в точке `O`  прямые `AO` и `OB` (см. рис. 13).

    Вектор `vec a` можно представить в виде суммы двух векторов, направленных вдоль заданных прямых. Для этого параллельным переносом совместим начало вектора `vec a` с точкой `O` пересечения прямых. Из конца вектора `vec a` проведём два отрезка прямых, параллельных `AO` и `OB`.  В результате получится параллелограмм. По построению

    `vec a = vec(a_1) + vec(a_2)`                                                                            (*)

    Векторы `vec(a_1)` и `vec(a_2)` называются составляющими вектора `vec a` по заданным направлениям, а само представление вектора в виде суммы (*) - разложением вектора по двум направлениям.

    Пример 1

    В чём разница между проекцией вектора на ось и составляющей (компонентой) вектора вдоль этой оси?

    Ответ

    Проекция вектора - скаляр; составляющая вектора вдоль этой оси - вектор, направленный вдоль этой оси.

    Пример 2

    Пусть `a = 1`, угол между прямыми `AO` и `OB` равен `varphi = 45^@`, а угол между векторами `vec a` и `vec(a_1)` равен `varphi = 15^@`.    Определите модули векторов `vec a_1` и `vec a_2` в разложении (*), а также значения проекций вектора `vec a` на направления `vec(a_1)` и `vec(a_2)` (см. рис. 13).

    Решение

    `a_(a1) = a cos varphi_1 ~~ 0,97`, `a_(a2) = a cos varphi_2 = cos 30^@ ~~ 0,87`.

    Далее по теореме синусов , `a_1/(sin varphi_2)  = a/(sin (180^@ - varphi_1 - varphi_2))`,

    откуда  `a_1 = (sin varphi_2)/(sin (varphi_1 + varphi_2)) = (sin 30^@)/(sin 45^@) ~~ 0,71`

    и аналогично `a_2 = (sin 15^@)/(sin 45^@) ~~ 0,37`.

    3. Проектирование вектора на оси координат. 

    Особенно важен частный случай разложения вектора по двум взаимно перпендикулярным направлениям. Пусть на плоскости задана прямоугольная система координат `xOy` и некоторый вектор `vec a`. Отложим из начала координат вдоль положительного направления осей `Ox` и `Oy` векторы `vec i` и `vec j` соответственно такие, что `|vec i| = 1` и `|vec j| = 1`. Векторы `vec i` и `vec j`  назовём единичными векторами.

    Перенесём  вектор `vec a` так,  чтобы его начало совпало с началом координат. Пусть  в  этом положении он изображается направленным отрезком `AO` (рис. 14).

    Опустим из точки `A` перпендикуляры на оси `Ox` и `Oy`. Тогда  векторы `vec(a_x)` и `vec(a_y)` будут  составляющими  вектора `vec a` по координатным осям, причём вектор `vec(a_x)` будет коллинеарен вектору `vec i`, а вектор `vec(a_y)` - коллинеарен вектору `vecj`. Следовательно, существуют такие  числа `a_x` и `a_y`, что `vec(a_x) = a_x vec i` и `vec(a_y) = a_y vec j`. Таким образом, вектор `vec a` может быть представлен в виде разложения по осям:

    `vec a = vec(a_x) + vec(a_y) = a_x vec i + a_y vec j`.                                                         (3)

    Числа `a_x` и `a_y` суть проекции вектора `vec a` на направления векторов `vec i` и `vec j` соответственно, то есть на оси `Ox` и `Oy`. Используется и иная, чем (3), форма записи векторов, а именно `vec a = (a_x ; a_y)`.

    Иногда говорят о составляющей вектора вдоль одной единственной оси - без указания второй. Просто молчаливо предполагается, что вторая ось перпендикулярна первой (но почему-то не нарисована).

    Пусть угол между положительным направлением оси `Ox` и вектором `vec a` равен `alpha` (рис.14). Тогда `a_x = a cos alpha`, `a_y = a sin alpha`.

    В зависимости от значения угла `alpha` проекции вектора `vec a` на оси прямоугольной системы координат могут быть положительными, отрицательными или равными нулю.

    Зная проекции вектора `vec a` на оси координат, можно найти его вели­чину и направление по формулам:

    `a = sqrt( a_x^2 + a_y^2)`                                                                                 (4)

    и 

    `"tg"  alpha = (a_y)/(a_x)`                                                                                 (5)

    причём знаки `a_x` и `a_y` будут указывать на то, какому квадранту при­надлежит значение `alpha`.

    4. Пусть теперь нам задано векторное равенство `vec a + vec b = vec c` (рис. 15).

    Проектируя все векторы на оси координат, получим очевидные равенства 

    `c_x = a_x + b_x`,  `c_y = a_y + b_y`,

    или

    `c_x = a cos alpha + b cos beta`,

    `c_y = a sin alpha + b sin beta`,

    т. е. по проекциям  векторов `vec a` и `vec b` легко находятся проекции суммарного вектора `vec c`.

  • §3. Скалярное произведение векторов

    1. 

    Определение

    Скалярным произведением  двух векторов `vec a` и `vec b` называется число, равное произведению модулей этих векторов на косинус угла между ними, и обозначается `vec a * vec b`.

    Таким образом,

    `vec a * vec b = a * b * cos alpha`                                                              (6)

    Иногда используют более сложные обозначения для скалярного произведения векторов: `(vec a vec b)` или даже `(vec a, vec b)`.

    Если векторы `vec a` и `vec b` ортогональны `(vec a _|_ vec b)`, то `cos alpha = 0` и поэтому `vec a * vec b = 0`. Скалярное произведение двух векторов также равно нулю, если  хотя бы один из векторов является нулевым.

    Если векторы коллинеарны и одинаково направлены, то `cos alpha = 1`, поэтому скалярное произведение векторов `vec a` и `vec b` равно произведению модулей векторов `vec a` и `vec b`. В частности, скалярное произведение вектора на самого себя равно квадрату его модуля: `vec a * vec a = a^2`.

    2. Имеется ещё одна важная  форма записи скалярного произведения: через проекции векторов в прямоугольной системе координат `xOy`. Пусть в некоторой системе координат векторы `vec a` и `vec b` имеют координаты `(a_x ; a_y)` и `(b_x ; b_y)`. Тогда для скалярного произведения векторов справедлива формула

    `vec a * vec b = a_x b_x + a_y b_y`                                                                     (7)

    Действительно, имеем `vec a * vec b = (a_x vec i + a_y vec j) * (b_x vec i + b_y vec j)`, или после перемножения скобок

    `vec a * vec b = a_x b_x vec i vec i + a_x b_y vec i vec j + a_y b_x vec j vec i + a_y b_y vec j vec j`.

    Учитывая, что векторы `vec i` и `vec j` единичные и взаимно перпендикулярные,

    (`vec i * vec i = vec j * vec j = 1` и `vec i * vec j = vec j * vec i = 0`),  получим (7).

    Уточнение

    (написано по просьбе Володковича Н.А., преподавателя школы Смоленской обл.). Кажущееся привычным перемножение скобок

    `vec a * vec b = (a_x vec i + a_y vec j) * ( b_x vec i + b_y vec j) = a_x b_x vec i vec i + a_x b_y vec i vec j + a_y b_x vec j vec i + a_y b_y vec j vec j` 

    не так очевидно для векторов. Во всяком случае, нужно ещё доказать, что оно согласуется с определением (6) скалярного произведения. Докажем, что

    `(vec a + vec b)(vec c + vec d) = vec a * vec c + vec a * vec d + vec b * vec c + vec b * vec d`.              (*)

    Для этого заметим, что скалярное произведение (6) можно переписать в виде

    `vec a * vec b = a * b_a`                                                                    (6'),

    где `b_a` – проекция вектора `vec b` на направление вектора `vec a`.

    (Можно было записать и иначе:

    `vec a * vec b = a_b * b`                                                                    (6"),

    где `a_b` – проекция вектора `vec a` на направление вектора `vec b`.)

    Далее – цепочка простых выкладок:

    `vec a * (vec c + vec d) = (vec c + vec d) * vec a = a (c_a + d_a) = a * c_a + a * d_a = vec a * vec c + vec a * vec d`,

    `(vec a + vec b)(vec c + vec d) -= (vec a + vec b) * vec e = vec a * vec e + vec b * vec e = vec a * (vec c + vec d) + vec b * (vec c + vec d)`,

    откуда следует равенство (*) (было введено обозначение `vec c + vec d -= vec e`).

    При другом выборе системы координат векторы `vec a` и `vec b` имели бы другие  координаты `(a_x ; a_y)` и `(b_x ; b_y)`. Поэтому могло бы показаться, что в новой системе координат скалярное произведение векторов (7) будет иметь другое значение. На самом деле, согласно (6) величина скалярного произведения останется такой же: модули векторов и угол между ними не зависят от поворотов и сдвигов системы координат.

    Пример 3

    `vec a = (3; lambda)`, `a = 5`. Определите `lambda`.

    Решение

    Согласно формуле (4) имеем `3^2 + lambda ^2 = 5^2`, откуда `lambda = 16`  и  `lamda =+- 4`. Заметим, что условию задачи удовлетворяют два разных вектора (см. рис. 16).

    Пример 4

    Векторы `vec a = (0; 3)` и `vec b = (lambda ; 5)` коллинеарны друг другу. Определите `lambda`.

    Решение

    Вектор `vec a` параллелен оси `Oy` (перпендикулярен оси `Ox`: `a_x = 0`). Поэтому коллинеарный ему вектор `vec b` также должен быть перпендикулярен оси `Ox`, т. е. должно выполняться равенство `b_x = 0`,  или `lambda = 0`.

    Пример 5

    Векторы `vec a = (- 1; 3)` и `vec b = (lambda; 5)` перпендикулярны друг другу. Определите `lambda`.

    Решение

    Векторы `vec a` и `vec b` перпендикулярны друг другу, поэтому равно нулю скалярное произведение этих векторов (см. формулу (6) и вывод после неё). Тогда по формуле (7) для скалярного произведения векторов имеем: `(- 1) * lambda + 3 * 5 = 0`, откуда `lambda = 15`.

    Пример 6

    `vec p = vec b (vec a vec c) - vec c (vec a vec b)`. Докажите, что `vec p _|_ vec a`.

    Решение

    Надо доказать, что скалярное произведение векторов `vec a` и `vec p` равно нулю. В самом деле, `vec a * vec p = (vec a vec b)(vec a vec c) - (vec a vec c)(vec a vec b) -= 0`.

    Пример 7

    Векторы `vec a`, `vec b`, `vec c` составляют треугольник (см. рис. 17).

    Воспользовавшись  свойствами скалярного произведения векторов, докажите теорему косинусов

    `c^2 = a^2 + b^2 - 2 ab cos varphi`                                                           (8)

                             

    Решение

    По условию задачи имеем `vec c = - (vec a + vec b)`. Квадрат модуля  вектора `vec c` можно представить как скалярное произведение его на самого себя: `c^2 = vec c * vec c`. Вычислим это скалярное произведение:

    `vec c * vec c = + (vec a + vec b) * (vec a + vec b) = vec a * vec a + vec a * vec b + vec b * vec a + vec b * vec b = a^2 + b^2 + 2ab cos alpha`.

    Угол `alpha` между векторами `vec a`  и `vec b` и угол `varphi` (см. рис.17) - два смежных угла,   т. е. `alpha = 180^@ - varphi` .  Поэтому  имеем `c^2 = a^2 + b^2 + 2 ab cos (180^2 - varphi)`.

     Пользуясь известной из тригонометрии формулой приведения `cos (180^@ - varphi) =- cos varphi`, получаем формулу (8)

    Пример 8

    Найдите угол `alpha` между векторами `vec a = 3 vec i + 2 vec j` и `vec b = - 2 vec i - vec j`.

    Решение

    По определению скалярного произведения `vec a * vec b = a * b * cos alpha`,  где `alpha` - искомый угол, `a` и `b` - модули векторов `vec a` и `vec b` соответственно. Отсюда `cos alpha = (vec a * vec b)/(a * b)`.  В свою очередь,

     `vec a * vec b = a_x b_x + a_y b_y = 3 * (- 2) + 2 * (- 1) = - 8`,

    `a = sqrt(a_x^2 + a_y^2) = sqrt(3^2 + 2^2) = sqrt13`,

    `b = sqrt(b_x^2 + b_y^2) = sqrt((- 2)^2 + (- 1)^2) = sqrt5`. 

     Тогда  `cos alpha = (- 8)/(sqrt13 * sqrt5) = (- 8)/sqrt(65) ~~ - 0,992`. Отсюда `alpha ~~ 173^@`.



  • §4. Примеры из физики

    Простейшие примеры векторов в физике - скорость и сила.

    1. Всякое движение можно представить как результат сложения нескольких движений, его составляющих. Скорость результирующего движения изображается по величине и направлению диагональю параллелограмма, построенного на отрезках, изображающих составляющие скорости, как на сторонах. Рассмотрим конкретный пример.

    Пример 9

    Рыбак переправляется на лодке `A` через реку, которая течёт в сторону, указанную стрелкой (рис. 18). Пусть скорость течения воды `vec(v_1)` изображается по величине и направлению отрезком `AB`, а скорость `vec(v_2)` движения лодки относительно воды под влиянием усилий гребца изображается отрезком `AC` (в стоячей воде лодка двигалась бы по направлению `AC` со  скоростью `vec(v_2)`). Лодка будет двигаться относительно берега по направлению `AM` со скоростью `vec v`, изображаемой диагональю `AD` параллелограмма, постро­енного на векторах `vec(v_1)` и `vec(v_2)` (в данном случае параллелограмм `ABCD` является прямоугольником).

    2. Сила - как векторная величина - всегда имеет определённое направление, модуль, а также точку приложения.

    Часто встречаются случаи, когда на тело действуют несколько сил. Тогда бывает удобно заменить их одной силой, которая производит на тело такое же действие, как и несколько одновременно действующих сил. Такую силу (если она существует) называют равнодействующей. Нахождение равнодействующей нескольких сил осуществляется с по­мощью правил векторного сложения, при этом слагаемые силы назы­вают составляющими.

    Так, несколько сил, действующих на одну и ту же точку тела, всегда можно заменить одной равнодействующей, как бы ни были направлены силы  и каковы бы ни были их величины. Пусть, например, на тело действуют  четыре  силы `vec(F_1)`, `vec(F_2)`,  `vec(F_3)` и `vec(F_4)`, приложенные  к  одной  точке `O` и лежащие в одной плоскости (рис. 19). Тогда их равнодействующая `vec F` будет равна векторной  сумме  этих  сил,  найденной   по  правилу   многоугольника (рис. 20).

                       

    Пример 10

    Найти равнодействующую `vec R` трёх равных по модулю сил, приложенных к телу в одной точке и расположенных в одной плоскости, если углы между всеми силами равны между собой.

    `F_1 = F_2 = F_3 = F`.

    Решение

    См. рис. 21. Углы между парами векторов  `vec(F_1)` и `vec(F_2)`, `vec(F_2)` и `vec(F_3)`, а также между векторами `vec(F_1)` и `vec(F_3)`, равны друг другу и равны `120^@`. Сложим силы `vec(F_2)` и `vec(F_3)` по правилу параллелограмма. Вследствие равенства модулей сил `vec(F_2)` и `vec(F_3)` этот параллелограмм есть ромб. Сумма сил `vec(F_2) + vec(F_3)` есть диагональ ромба, поэтому углы между парами векторов `vec(F_2)` и `vec(F_2) + vec(F_3)`, а также `vec(F_3)` и `vec(F_2) + vec(F_3)` равны по `60^@`, т. е. векторы `vec(F_1)` и `vec(F_2) + vec(F_3)` направлены вдоль одной прямой, но в противоположные стороны. Силовой параллелограмм, построенный на векторах `vec(F_2)` и `vec(F_3)`, состоит из двух равносторонних треугольников, поэтому модуль силы

    `|vec(F_2) + vec(F_3)| = F_2 = F_3 = F = F_1`,  т. е  `vec F_1 = - (vec(F_2) + vec(F_3))`, 

    откуда следует  `vec(F_1) + vec(F_2) + vec(F_3) = 0`.

    Пример 11*

    К телу приложено `6` сил, лежащих в одной плоскости и составляющих друг с другом углы в `60^@`. Силы последовательно равны `1`, `2`, `3`, `4`, `5` и `6 Н`. Найти равнодействующую `vec R`  этих шести сил.

    Решение

    Сложение сил по правилу многоугольника здесь нецелесообразно. Поступим иначе.  Сложим сначала попарно силы, направленные вдоль одной прямой (см. рис. 22 а, б, в). 

    Получим

     `|vec(F_2) + vec(F_4)| = 4 - 1 = 3`,

    аналогично  `|vec(F_2) + vec(F_5)| = 5 - 2 = 3`  и `|vec(F_3) + vec(F_6)| = 6 - 3 = 3`.

    Сумма сил `vec(F_2) + vec(F_5)` направлена вдоль вектора `vec(F_5)`. Туда же направлена и сумма сил `vec(F_1) + vec(F_4) + vec(F_3) + vec(F_6)`, причём модуль этой силы равен `3`. В итоге получаем, что сумма всех шести сил `vec(F_1) + vec(F_2) + vec(F_3) + vec(F_4) + vec(F_5) + vec(F_6)` направлена вдоль направления силы `vec(F_5)`, а модуль этой силы `|vec(F_1) + vec(F_2) + vec(F_3) + vec(F_4) + vec(F_5) + vec(F_6)| = 3 + 3 = 6 Н`.

    Пример 12*

    Найти равнодействующую `vec R` пяти равных по модулю сил, приложенных к телу в одной точке и расположенных в одной плоскости, если углы между всеми соседними силами равны между собой (см. рис. 23). (Эти углы, разумеется, равны `360^@ //5 = 72^@`.) 

                        

    Решение

    В отличие от предыдущего примера здесь мы имеем нечётное число сил, поэтому невозможно образовать из них целое число пар. Поступим иначе. Возьмём какую-нибудь силу, например, `vec(F_1)`, а остальные сгруппируем в пары и попарно сложим их (см. рис. 24):

     `vec(F_2) + vec(F_5)` и `vec(F_3) + vec(F_4)`.

    Почему удобна именно такая группировка сил в пары? Дело в том, что обе суммы сил (и `vec(F_2) + vec(F_5)` и `vec(F_3) + vec(F_4)`)  направлены вдоль линии действия силы `vec(F_1)`. Ясно, что равнодействующая всех сил будет направлена вдоль линии действия силы `vec(F_1)`. Модули сумм сил легко найти из геометрии. Например, в силовом параллелограмме, построенном на векторах `vec(F_2)` и `vec(F_5)`, который является ромбом, длина диагонали ромба (модуль силы `vec(F_2) + vec(F_5)`) равна удвоенной половинке диагонали, а та легко ищется из любого из четырёх прямоугольных треугольников, на которые ромб разбивается диагоналями. В результате

    `|vec(F_2) + vec(F_5) | = 2F cos 72^@`,

    где `F` - модуль любой из пяти исходных сил. Аналогично

    `|vec(F_3) + vec(F_4)| = 2F cos 36^@`.

    В итоге для модуля искомой силы получаем формулу

    `R = F(1 + 2 cos 72^@ - 2 cos 36^@)`      (*).

    Для углов `72^@` и `36^@` нет таких простых формул, как для углов `30^@`, `45^@` или `60^@`. Пользуясь калькулятором, можно, однако, показать, что согласно формуле (*) `R = 0`.

    Имеется и более красивое доказательство того, что результирующий вектор есть нулевой вектор. В самом деле, мы довольно произвольно взяли в качестве силы, которой не хватило пары, силу `vec(F_1)`. Если бы в качестве такой взять силу `vec(F_2)`, а в пары объединить `vec(F_1)` и `vec(F_3)` (одна пара) и `vec(F_4)` и `vec(F_5)`, то, повторив рассуждения, получим, что равнодействующая всех пяти сил `vec R` должна быть направлена вдоль линии действия силы `vec(F_2)`. Возможно ли, чтобы вектор был одновременно направлен вдоль двух несовпадающих друг с другом направлений (и `vec(F_1)`, и `vec(F_2)`; а на самом деле, как догадался читатель, ещё и вдоль направления действия сил `vec(F_3)`, `vec(F_4)` и `vec(F_5)`!)? Ненулевым вектор не может быть! Остаётся одна возможность: суммарный вектор – нулевой!


    В примерах 10 и 11 мы искали по правилу параллелограмма суммы сил.

    В примере 12 нас  интересовала лишь проекция равнодействующей силы на направление (например, силы `vec(F_1)`).

    В следующих примерах наш интерес будет также скорее не к равнодействующей силе, а только к каким-то её проекциям.

    Пример 13

    Электрический фонарь весом `Q = 16 Н` укреплён, как показано на рис. 25. 

    Определите отношение натяжений `T_1` и `T_2` в проволоках `BA` и `BC`, углы наклона которых даны на рисунке.

                          

    Решение

    В условиях равновесия сумма всех сил, приложенных к точке `B`, равна нулю. Поэтому проекция равнодействующей всех сил на горизонтальное направление тоже равна нулю. Проекция силы со стороны проволоки, идущей к фонарю, на это направление равна нулю (эта сила вертикальна). Остаются вклады от двух натяжений со стороны проволок `BA` и `BC`. Горизонтальную ось направим слева направо. Тогда имеем:  T1, гор+T2, гор=0T_{1,\;\mathrm{гор}}+T_{2,\;\mathrm{гор}}=0 (см. рис. 26), т. е.

    `T_1 * cos 60^@ - T_2 cos 45^@ = 0`

    (или `T_1 * sin 30^@ - T_2 sin 45^@ = 0`), откуда получаем `T_1//T_2 = sqrt2`.

    Пример 14*

    Однородная массивная верёвка подвешена за два конца на разных высотах (см. рис. 27). Масса верёвки `m`.  Углы, которые составляет верёвка с вертикалью в точках закрепления, равны `30^@` и `60^@`.

    Определите силы натяжения верёвки вблизи её точек крепления.

                                  

    Решение

    Задача кажется очень трудной, т. к. не ясно, какую роль играет неизвестная нам форма верёвки, которую она примет под действием сил тяжести всех частей верёвки. (В предыдущем примере мы не интересовались провисанием проволок под действием силы тяжести, молчаливо считая провисание малым.) И всё же задача в той постановке, в какой дана,  имеет простое решение. Мысленно проведём горизонтальную ось слева направо. Поскольку верёвка находится в равновесии, то сумма проекций всех сил на горизонтальное направление равна нулю. Сила тяжести верёвки имеет нулевую проекцию на это направление (эта сила направлена вертикально). Снова остаются вклады от двух натяжений (см. рис. 28):

    T1, гор+T2, гор=0T_{1,\;\mathrm{гор}}+T_{2,\;\mathrm{гор}}=0, или `- T_1 * sin 30^@ + T_2 sin 60^@ = 0`.

    Полагая `sin 30^@ = 1//2` и `sin 60^@ = sqrt3 //2`, находим `T_1 // T_2 = sqrt3`. Мысленно проведём ещё и вертикальную ось, направив её вниз. Сумма проекций всех сил на эту ось также равна нулю:

    `mg - T_1 cos 30^@ - T_2 cos 60^@ = 0`.

    Учитывая найденное ранее соотношение между `T_1` и `T_2` и значения `cos 60^@ = 1//2` и `cos 30^@ = sqrt3 //2`, получаем:

    `mg - sqrt3 * T_2 * sqrt3 //2 - T_2 //2 = 0`,  

    откуда

    `T_2 = mg//2` и `T_1 = sqrt3 mg//2`.

    Пример 15

    На гладкой наклонной плоскости с углом наклона `alpha` лежит брусок массой `m`. Какую горизонтальную силу нужно приложить к бруску, чтобы он находился в покое (рис. 29)? 

    Определите также модуль нормальной силы реакции на брусок со стороны наклонной плоскости.

                                     


    Решение

    Брусок по условию задачи  покоится. Значит, сумма всех сил, приложенных к бруску, равна нулю. Равны нулю и суммы проекций сил на любые направления,  в частности, на направление вдоль наклонной плоскости и перпендикулярное ему. Нормальная сила реакции `vec N` со стороны наклонной плоскости имеет равную нулю составляющую вдоль наклонной плоскости.

    Проекция сила тяжести `m vec g` на ось `Ox` вдоль наклонной плоскости (рис. 30) равна `- mg sin alpha`, а проекция горизонтальной силы `F` на эту ось равна `F cos alpha`. Других сил вдоль наклонной плоскости не действует (плоскость, по условию задачи, гладкая, т. е. сила трения пренебрежимо мала). Приравнивая нулю сумму проекций на ось `Ox` всех сил, действующих на тело, получаем: `- mg sin alpha + F cos alpha = 0`, откуда находим

      `F = mg  (sin alpha)/(cos alpha) = mg * bbb"tg"  alpha`.     

    Для отыскания `N` обратимся к проекциям сил на направление `Oy`. Приравняем нулю и сумму проекций на ось `Oy`:

     `N - mg cos alpha - F sin alpha = 0`,        

    откуда `N = mg cos alpha + F sin alpha`, или с учётом найденного значения `F`:

    `N = mg cos alpha + mg  (sin^2 alpha)/(cos alpha) = mg  (cos^2 alpha + sin^2 alpha)/(cos alpha)`,

    тогда с учётом основного тригонометрического тождества, `sin^2 alpha + cos^2 alpha = 1`, получаем окончательно

    `N = (mg)/(cos alpha)`.

    Пример 16

    На шероховатой поверхности доски лежит брусок массой `m`. К нему приложена сила, направленная под углом `alpha` к горизонту (см. рис. 31). 

    Определите модуль нормальной силы реакции со стороны поверхности.

                     

    Решение

    Поскольку брусок не проваливается и не подскакивает вверх, то сумма проекций сил на вертикальную ось равна нулю:

    `N + F * sin alpha - mg = 0`,

    (см. рис. 32), откуда находим

                     `N = mg - F * sin alpha`.

    Замечание

    Часто совершенно безосновательно приравнивают силу реакции `N` силе тяжести `mg`. Мы видим, что даже в случае горизонтальной поверхности это в общем случае не так. Для наклонной плоскости это тоже не так. В предыдущем примере нормальная сила реакции равнялась `mg//cos alpha`. Кстати, если бы удерживающая сила `F` действовала там не вдоль горизонтали, а вдоль наклонной плоскости, то для удержания бруска на наклонной плоскости потребовалась бы сила величиной `F = mg sin alpha`, а нормальная сила реакции была бы равна `N = mg cos alpha` (и снова не равнялась бы `mg`!)  

    Докажите это самостоятельно.

    Пример 17

    Самолёт взлетает с аэродрома со скоростью v=220 км/чv=220\;\mathrm{км}/\mathrm ч под углом `alpha = 20^@` к горизонту. Найдите модули горизонтальной и вертикальной составляющих скорости самолёта.

    Решение

    (См. рис. 33). В данном примере мы имеем дело с весьма простым случаем разложения скорости на два взаимно перпендикулярных направления:  

    `vec v = vec(v _sf"гор") + vec(v_sf"верт")`,

    vгор=v cos α207 км/чv_\mathrm{гор}=v\;\cos\;\alpha\approx207\;\mathrm{км}/\mathrm ч,  vверт=v sin α75 км/чv_\mathrm{верт}=v\;\sin\;\alpha\approx75\;\mathrm{км}/\mathrm ч.

    Пример 18

    В  безветренную  погоду  самолёт  летит на север со   скоростью 180 км/ч180\;\mathrm{км}/\mathrm ч (50 м/с50\;\mathrm м/\mathrm с) относительно земли. С какой скоростью относительно земли будет лететь самолёт, если дует западный ветер со скоростью   10 м/с10\;\mathrm м/\mathrm с?

    Решение

    (См. рис. 34). В данном случае мы имеем дело со сложением движений: `vec(v_sf"с") = vec(v_sf"св") + vec(v_sf"в")`, где `vec(v_sf"св")` - скорость самолёта относительно воздуха (модуль которой равен скорости самолёта относительно земли в безветренную погоду), а `vec(v_sf"в")` - скорость воздуха. Далее по теореме Пифагора получаем:

    vс=502+102=260051 м/сv_\mathrm с=\sqrt{50^2+10^2}=\sqrt{2600}\approx51\;\mathrm м/\mathrm с.

    Пример 19

    Лодка пытается пересечь реку, текущую со скоростью u=3 км/чu=3\;\mathrm{км}/\mathrm ч. Скорость лодки в стоячей воде v=5 км/чv=5\;\mathrm{км}/\mathrm ч. Под каким углом `alpha` к нормали к берегу надо направить лодку, чтобы она двигалась поперек реки (без сноса)? Какой будет при этом модуль скорости лодки `v` относительно берега?

    Решение

    Как и в примере 9, мы также имеем дело со случаем сложения движений. Но там было проще: не требовалось выбирать никакой стратегии, рыбак лишь наблюдал, как снесёт его лодку течением воды в реке. Если бы вода в реке покоилась, то, направив корпус лодки под углом `alpha` к нормали, мы заставили бы её двигаться в направлении вектора `vec V` (см. рис. 35). В действительности, вода в реке не стоячая, а имеет скорость `vec u` Поэтому сносимая течением лодка будет двигаться в направлении вектора `vec v` таком, что `vec v = vec V + vec u`. Учитывая, что оба треугольника в параллелограмме на рис. 35 прямоугольные (по условию, лодка должна двигаться перпендикулярно берегам), находим

    `sin alpha = u//V = 3//5`, `alpha ~~ 37^@`,

    а по теореме Пифагора v=V2-u2=4 м/сv=\sqrt{V^2-u^2}=4\;\mathrm м/\mathrm с.

    Пример 20*

    Лодка  пытается  пересечь  реку, текущую  со    скоростью u=5 км/чu=5\;\mathrm{км}/\mathrm ч. Скорость лодки в стоячей воде V=3 км/чV=3\;\mathrm{км}/\mathrm ч.   Под каким углом `alpha` к нормали к берегу надо направить корпус лодки, чтобы её снесло как можно меньше? Под каким углом `beta` к нормали к берегу будет при этом плыть лодка?

    Решение

    В данном примере скорость лодки относительно воды меньше, чем скорость воды в реке, `V < u`, поэтому реализовать план из предыдущего примера (рис. 35) невозможно. Наша цель состоит в том, чтобы направить корпус лодки под таким углом `alpha` к нормали к берегу, чтобы сносимая течением лодка двигалась под углом `beta`, по возможности наименьшим (см. рис. 36 ф, б, в).

    В данном примере складывать скорости (лодки относительно воды `vec V` и воды в реке `vec u`) удобно по правилу треугольника, а не параллелограмма: приставим начало вектора `vec V` к концу вектора `vec u`. Выбирая оптимальный план (с наименьшим углом сноса), будем мысленно поворачивать вектор `vec V`. При этом конец вектора будет описывать окружность с центром в конце вектора `vec u`. Из рисунков видно, что минимальному углу сноса лодки `beta` соответствует случай, когда вектор `vec v = vec V + vec u` направлен по касательной к этой окружности. При этом вектор `vec V _|_ vec v` т. е. треугольник скоростей на  рис. 36 в прямоугольный. Отсюда получаем:

    `sin alpha = V//u = 3//5`;  `alpha ~~37^@`; `beta = 90^@ - alpha ~~53^@`.   

    Пример 21*

    Лодку вытягивают из воды, стоя на крутом берегу и выбирая верёвку, которая привязана к носу лодки, со скоростью `v` (см. рис. 37).

    Какой будет скорость лодки `u` в момент, когда верёвка будет составлять угол `alpha` с горизонтом? Верёвка нерастяжима.

    Решение

    Традиционная ошибка решающих эту задачу состоит в том, что пытаются разложить движение лодки на два направления – горизонтальное и вертикальное, делая (неправильное!) построение, как показано на рис. 38а и получая неверный ответ `u = v * cos alpha`. Что здесь неправильно? В отличие от самолёта из примера 17, который двигался под отличным от нуля углом к горизонту (см. рис. 33), здесь лодка движется горизонтально! Сделаем другое разложение скорости лодки `vec u` по двум направлениям – вдоль верёвки (в данный момент времени!) и перпендикулярно ей (см. рис. 38б).

    Проекция вектора `vec u` на направление верёвки будет равна скорости `v`, с которой выбирают верёвку: `v = u cos alpha`, поэтому `u = v/(cos alpha)`.

    Поясним ещё, почему проекция вектора `vec u` на направление верёвки будет равна скорости `v` с которой выбирают верёвку. Если мы имеем абсолютно твердое тело (АТТ), деформациями в котором можно пренебречь, или нерастяжимую нить (но уже максимально натянутую), то как бы ни двигались АТТ или нерастяжимая нить, они будут обладать следующим свойством. Возьмём две произвольные точки `A` и `B` нити или АТТ и мысленно соединим их прямой. Тогда составляющие скоростей выбранных точек вдоль этой прямой в любой момент времени будут равны друг другу: vA=vB\overrightarrow{v_{A\parallel}}=\overrightarrow{v_{B\parallel}} (см. рис. 39). В противном случае изменялось бы расстояние между точками `A` и `B`. Составляющие скорости, перпендикулярные отрезку прямой `AB`, могут быть при этом любыми.

    Пример 22

    Две лодки 1 и 2 буксируют третью лодку с помощью двух тросов (см. рис. 40). В некоторый момент времени силы натяжения тросов, идущих от лодок 1 и 2, равны друг другу по модулю и равны `F`. Угол между тросами равен `2 alpha`. Какая равнодействующая сила приложена к буксируемой лодке со стороны тянущих её лодок? Чему будет равна эта сила в случае малого угла `alpha`  (когда буксирующие лодки тянут третью лодку почти в одном направлении)?

    Решение

    Две силы нужно сложить по правилу параллелограмма, который в данном случае будет ещё и ромбом с перпендикулярными друг другу диагоналями, разбивающими его на четыре равных прямоугольных треугольника. Из геометрии рис. 41 видно, что модуль равнодействующей силы `R` равен удвоенной длине прилежащего катета: `R = 2F cos alpha`. При стремлении угла между направлениями тросов к нулю `R -> 2F`   (`cos alpha -> 1`  при  `alpha -> 0`).

    Хитрее оказывается похожая задача, когда заданы не силы, а скорости.

    Пример 23*

    Две лодки 1 и 2 буксируют третью лодку с помощью двух тросов (см. рис. 42). В некоторый момент времени модули скоростей лодок 1 и 2 равны друг другу и равны `v_1 = v_2 = v`. Найти модуль и направление скорости буксируемой лодки `u`. Тросы нерастяжимы. Чему будет равна эта скорость в случае малого угла `alpha`  (когда буксирующие лодки тянут третью лодку почти в одном направлении)?

                    

    Решение

    Ясно, что «решение» `u = 2v cos alpha` (как в предыдущем примере) не подходит, т. к. при `alpha -> 0` мы получили бы, что `u -> 2v`, чего не может быть. Если, например, две собаки в упряжке бегут с одинаковыми скоростями `v` в одном направлении, то и скорость упряжки будет равна этой же скорости `v` (если, конечно, упряжка не отцепилась или к ней не подключили дополнительно мотор).

    Решение задачи такое же, как в примере 21. В данном примере важнейшими словами являются «Тросы нерастяжимы». Ясно, что правильное построение, учитывающее это условие, должно быть таким, как на рис. 43, откуда немедленно получаем `v = u cos alpha`, поэтому `u = v/(cos alpha)`. Тогда в предельном случае, когда `alpha -> 0`, имеем `u -> v`,  как и должно быть.

    Заметим, что четырёхугольник на рис. 43 весьма мало похож на параллелограмм из предыдущего примера. Еще меньше будет похож на параллелограмм этот четырёхугольник, когда модули скоростей `v_1 != v_2` (см. рис. 44).

    Пример 24*

    Две лодки буксируют третью с помощью двух тросов (рис. 45). В некоторый момент времени скорость 2-ой лодки в 2 раза больше, чем скорость 1-ой, `v_2 = 2v_1 = 2v`, а угол между тросами равен `90^@`. В каком направлении и с какой скоростью движется в этот момент буксируемая лодка? Тросы нерастяжимы.

          

    Решение

    В данном случае четырёхугольник на рис. 44 будет прямоугольником  - см. рис. 46 (т. е. всё же параллелограммом).

    По определению тангенса угла  `"tg"varphi _1 = v_2 //v_1 = 2`, откуда, пользуясь калькулятором, находим `varphi _1 ~~63^@`; `varphi _2 = 90^@ - varphi _1 ~~ 27^@`.                

    Модуль скорости буксируемой лодки найдём по теореме Пифагора (раз уж у нас «случайно» появились прямоугольные треугольники):    

    `u = sqrt(v_1^2 + v_2^2) = sqrt(v^2 + (2v)^2) = sqrt5 * v ~~ 2,2 v`. 



  • §5. Задачи на столкновения и законы сохранения импульса и энергии

    В физике под столкновениями понимают процессы взаимодействия  между телами (частицами) в широком смысле слова, а не только в буквальном - как соприкосновение тел. Сталкивающиеся тела на большом расстоянии являются свободными. Проходя друг мимо друга, тела взаимодействуют между собой, в результате могут происходить различные процессы - тела могут соединиться в одно тело (абсолютно неупругий удар), могут возникать новые тела и, наконец, может иметь место упругое столкновение, при котором тела после некоторого сближения вновь расходятся без изменения своего внутреннего состояния. Столкновения, сопровождающиеся изменением внутреннего состояния тел, называются неупругими. Тела (частицы), участвующие в столкновении, характеризуются (до и после столкновения)  импульсами, энергиями. Процесс столкновения сводится к изменению этих величин в результате взаимодействия. Законы сохранения энергии и импульса позволяют достаточно просто устанавливать соотношения между различными физическими величинами при столкновении тел. Особенно ценным здесь является то обстоятельство, что зачастую законы сохранения могут быть использованы даже в тех случаях, когда действующие силы не известны. Так обстоит дело, например, в физике элементарных частиц.

    Происходящие в обычных условиях столкновения макроскопи­ческих тел почти всегда бывают в той или иной степени неупругими - уже хотя бы потому, что они сопровождаются некоторым нагреванием тел, т. е. переходом части их кинетической энергии в тепло. Тем не ме­нее, в физике понятие об упругих столкновениях играет важную роль - с такими столкновениями часто приходится иметь дело в физическом эксперименте в области атомных явлений, да и обычные столкновения можно часто с достаточной степенью точности считать упругими.

    Сохранение импульса тел (частиц) при столкновении обусловлено тем, что совокупность тел, участвующих в столкновении, составляет либо изолированную систему, т. е. на тела, входящие в систему, не действуют внешние силы, либо замкнутую: внешние силы отличны от нуля, а сумма внешних сил равна нулю. Несколько сложнее обстоит дело с применением закона сохранения энергии при столкновениях. Обращение к сохранению энергии  требует порой учёта различных форм внутренней энергии.

    Можно сказать, что действие законов сохранения импульса и энергии в процессах столкновения подтверждено широким спектром опытных данных.

    Переходя к характерным примерам, отметим, что исследование столкновений традиционно проводится как в лабораторной системе отсчёта (ЛСО), т. е. в инерциальной системе отсчёта, связанной с лабораторией, где проводится опыт, так и в системе центра масс, с которой Вы познакомитесь в следующих Заданиях. Напомним также, что центральным ударом шаров (шайб), называют удар, при котором скорости шаров (шайб) направлены вдоль прямой, проходящей через их центры.

    Неупругие столкновения

    Пример 9

    Частица массой `m` с кинетической энергией `K` сталкивается с неподвижной частицей массой `M`. Найдите приращение `Q` внутренней энергии системы частиц в результате абсолютно неупругого столкновения («слипания»).

    Решение

    Рассмотрим абсолютно неупругий удар двух тел в ЛСО. Налетающая частица движется до столкновения в положительном направлении оси `Ox` со скоростью `vec v`, кинетическая энергия частицы `K = (mv^2)/2`. В результате абсолютно неупругого удара (слипания) час­тицы движутся с одинаковой скоростью `vec u`. По закону сохранения им­пульса

    `mv = (m + M) u`.

    По закону сохранения  энергии

    `(mv^2)/2 = ((m + M)u^2)/2 + Q`.

    Из приведённых соотношений находим

    `Q = M/(m + M) K`.

     Отметим, что в предельных случаях

     `Q = K`,

    `m < < M`,

    `Q = M/m K < < K`,

    `m > > M`.

    Как видим, при неупругом столкновении лёгкой частицы с массивной (например, электрона с атомом) происходит почти полный переход её кинетической энергии во внутреннюю энергию массивной частицы.

    При равенстве масс  `(m = M)`  `Q = K/2`.

    Отсюда следует, например, что при столкновении двух одинаковых ав­томобилей, один из которых неподвижен, а другой движется по на­правлению к нему, половина кинетической энергии идёт на разруше­ние.

    Упругие столкновения

    Пример 10

    На гладкой горизонтальной поверхности лежит гладкий шар массой `M`. На него налетает гладкий шар того же радиуса массой `m`, движущийся со скоростью `vec v`. Происходит упругий центральный удар шаров. Найдите скорости `vecv_1` и `vecv_2` шаров после соударения. При каком условии налетающий шар будет двигаться после соударения в прежнем направлении?

    Решение

    Задачу рассмотрим в ЛСО, ось `Ox` которой направим по линии центров шаров в момент соударения. Внешние силы, действующие на  шары в  процессе соударения, это силы тяжести и силы нормальной реакции опоры. Их сумма равна нулю. Следовательно, импульс системы шаров в процессе взаимодействия не изменяется. По закону сохранения импульса

    `m vec v = m vecv_1 + M vecv_2`.

    Переходя к проекциям на ось `Ox`, получаем 

    `mv = mv_(1x) + Mv_2`,

    здесь учтено, что направление скорости налетающего шара после соударения не известно. По закону сохранения энергии

    `(mv^2)/2 = (mv_(1x)^2)/2 + (Mv_2^2)/2`.

    Полученные соотношения перепишем в виде

    `m(v - v_(1x)) = Mv_2`,

    `m(v^2 - v_(1x)^2) = Mv_2^2`.

    Разделив второе равенство на первое `(v != v_(1x))`, приходим к линейной системе `v_2 = v + v_(1x)`,  `m(v - v_(1x)) = Mv_2`,  решение которой имеет вид

    `v_(1x) = (m - M)/(m + M) v`,

    `v_2 = (2m)/(m + M) v`.

    Налетающий шар будет двигаться после соударения в прежнем направ­лении `(v_(1x) > 0)` при `m > M`,  т. е. если масса налетающего шара больше массы по­коящегося шара.

    Пример 11

    Две гладкие упругие круглые шайбы движутся поступательно по гладкой горизонтальной поверхности. Скорости `vecv_1` и `vecv_2` шайб непосредственно перед соударением известны и показаны на рис. 11. Найдите скорости `vecv_(1)^'` и `vecv_(2)^'` шайб после абсолютно упругого нецентрального соударения. Массы шайб `m_1` и `m_2`.

    Решение

    Задачу рассмотрим в ИСО, оси координат `Ox` и `Oy` которой лежат в горизонтальной плоскости, при  этом ось `Ox` направлена по линии  центров шайб в момент соударения (рис. 11).

    В  течение  времени  соударения на систему шайб действуют только вертикальные внешние силы: это силы тяжести и силы нормальной реакции. Их сумма равна нулю. Тогда импульс системы шайб в процессе взаимодействия  сохраняется:                               

    `vecp_1 + vecp_2 = vecp_(1)^' + vecp_(2)^'`,               

    здесь `vecp_1 = m_1 vecv_1`, `vecp_2 = m_2 vecv_2`, `vecp_(1)^'= m_1 vecv_(1)^'`, `vecp_(2)^' = m_2 vecv_(2)^'` - импульсы шайб до и после соударения.

    Так как шайбы идеально гладкие, то в процессе соударения внут­ренние силы -силы упругого взаимодействия - направлены только по оси `Ox`. Эти силы не изменяют `y`-составляющие импульсов шайб. Тогда из `p_(1y) = p_(1y)^'`, `p_(2y) =  p_(2y)^'`  находим `y`-составляющие скоростей шайб после соударения:

     `v_(1y)^' = v_(1y)`,   `v_(2y)^' = v_(2y)`,

    т. е. в проекции на ось `Oy` скорости шайб в результате соударения не изменились.

    Найдём `x`-составляющие скоростей шайб после упругого соударения. При таком соударении сохраняется кинетическая энергия

    `(m_1 (v_(1x)^2 + v_(1y)^2))/2 + (m_2 (v_(2x)^2 + v_(2y)^2))/2 = (m_1 ((v_(1x)^')^2 + (v_(1y)^')^2))/2 + (m_2 ((v_(2x)^')^2 + (v_(2y)^')^2))/2`.

    С учётом равенства `y`-составляющих скоростей шайб до и после со­ударения последнее равенство принимает вид:

    `(m_1 v_(1x)^2)/2 + (m_2 v_(2x)^2)/2 = (m_1 (v_(1x)^')^2)/2 + (m_2 (v_(2x)^')^2)/2`.

    Обратимся к закону сохранения импульса и перейдём к проекциям им­пульсов шайб на ось  `Ox`:

    `m_1 v_(1x) + m_2 v_(2x) = m_1 v_(1x)^' + m_2 v_(2x)^'`.

    Таким образом, исходная задача сведена к задаче об абсолютно упру­гом центральном ударе: именно такой вид приняли бы законы сохра­нения энергии и импульса, если бы скорости шайб были направлены по линии центров. Полученную нелинейную систему уравнений можно свести к линейной. Для этого следует (как и в предыдущей задаче) в обоих уравнениях по одну сторону знака равенства объединить слагае­мые, относящиеся к первой шайбе, а по другую - ко второй, и разде­лить `(v_(1x) != v_(1x)^')` полученные соотношения. Это приводит к линей­ному уравнению

    `v_(1x) + v_(1x)^' = v_(2x) + v_(2x)^'`.

    Решая систему из двух последних уравнений, находим

    `v_(1x)^' = ((m_1 - m_2) v_(1x) + 2m_2 v_(2x))/(m_1 + m_2)`,

    `v_(2x)^' = (2m_1 v_(1x) + (m_2 - m_1) v_(2x))/(m_1 + m_2)`.

    Полученные соотношения для `v_(1x)^'`, `v_(1y)^'` и `v_(2x)^'`, `v_(2y)^'` решают вопрос о проекциях и величинах скоростей шайб после соударения

     `v_1^' = sqrt((v_(1x)^')^2 + (v_(1y)^')^2)`,      `v_2^' = sqrt((v_(2x)^')^2 + (v_(2y)^')^2)`, 

    а также об углах `alpha_1` и `alpha_2`, которые векторы скорости `vecv_(1)^'` и `vecv_(2)^'` образуют с положительным направлением оси `Ox`,

    `bbb"tg"  alpha_1 = (v_(1y)^')/(v_(1x)^')`,   `bbb"tg"  alpha_2 = (v_(2y)^')/(v_(2x)^')`.

    Построенное в общем виде решение задач упругого центрального и нецентрального соударений открывает дорогу к анализу целого ряда задач, для которых рассмотренная модель соответствует характеру взаимодействия тел (частиц). Приведём пример.

    Пример 12

    Гладкая круглая шайба массой `m_1` движется со скоростью `vec v` вдоль хорды, расстояние до которой от центра гладкого тонкого однородного обруча  равно `R//2` (рис. 12). Обруч массой `m_2` и радиусом `R` лежит на гладком горизонтальном столе. Через какое время `tau` после первого удара шайба окажется  на  минимальном  расстоянии   от   центра   движущегося обруча? Каково это расстояние? Удар считайте абсолютно упругим.

    Решение

    Воспользуемся результатами, полученными в предыдущем примере. В ЛСО, ось `Ox` которой направлена по линии центров шайбы и обруча в момент соударения, проекции скоростей шайбы и центра обруча на ось `Ox`  после соударения равны соответственно

    `v_(1x)^' = ((m_1 - m_2)v_(1x) + 2m_2 v_(2x))/(m_1 + m_2) = ((m_1 - m_2)v_(1x))/(m_1 + m_2)`,

    `v_(2x)^' = (2m_1 v_(1x) + (m_2 - m_1)v_(2x))/(m_1 + m_2) = (2m_1 v_(1x))/(m_1 + m_2)`,

    здесь `v_(1x) = vcos  pi/6` - проекция скорости шайбы на ось `Ox` до соударе­ния, `v_(2x) = 0` - обруч до соударения покоился.

    Из этих соотношений следует, что в системе отсчёта, связанной с обручем, проекция скорости шайбы на линию центров после соударения

    `v_(1xsf"отн") = v_(1x)^' - v_(2x)^' =- v_(1x) =- vcos  pi/6`

    просто изменила знак, а перпендикулярная линии центров составляющая, как было  показано, в рассматриваемом соударении  не изменяется. Следовательно, в системе, связанной с обручем, шайба отразится по закону «угол падения равен углу отражения», и минимальное расстояние от шайбы до центра обруча снова будет равно `R//2`. Искомое время

    `tau = (R cos^(2)   pi/6)/|v_(1xsf"отн")| = cos  pi/6 R/v = sqrt3/2 R/v`.

  • §2. Законы Ньютона. Импульс или количество движения материальной точки

    В основе динамики материальной точки лежат законы (аксиомы) Ньютона. Напомним ключевые определения и законы.

    Система отсчёта, в которой  любая материальная точка, не взаимодействующая с другими телами (такая точка называется свободной), движется равномерно и прямолинейно или покоится, называется инерциальной.

    1-й закон

    инерциальные системы отсчёта (ИСО) существуют

    2-й закон  

    в ИСО приращение импульса материальной точки пропорционально силе и происходит по направлению силы:

    `Delta vec p = vec F * Delta t`                                                               (1)

    Импульсом (или количеством движения) материальной точки называют физическую величину, определяемую произведением её массы на вектор скорости в  данной системе отсчёта:

    `vec p = m * vec v`.

    `vec F` - сумма сил, действующих на материальную точку. Величину `vec F * Delta t` называют импульсом силы за время от `t` до `t + Delta t`, в течение которого силу можно считать неизменной по величине и направлению. Величину `Delta vec p = vec p (t + Delta t) - vec p (t)` называют приращением импульса материальной точки  за время от `t` до `t + Delta t`. Поэтому второй закон Ньютона для материальной точки можно сформулировать так:

    в ИСО приращение импульса материальной точки  равно импульсу силы.

    Отметим, что при изучении динамики второй закон Ньютона часто формулируют следующим образом:

    в ИСО ускорение материальной точки прямо пропорционально сумме сил, действующих на неё, и обратно пропорционально её массе:

    `vec a = vec F/m`                                                                                 (2)

    Если масса тела остаётся неизменной, то `Delta vec p = Delta (m vec v) = m Delta vec v`, и соотношение (1) принимает вид `m Delta vec v = vec F Delta t`. С учётом `vec a = (Delta vec v)/(Delta t)` приходим к эквивалентности соотношений (1) и (2) в рассматриваемом случае.

    В настоящем Задании представлены задачи, для решения которых привлекается  второй  закон Ньютона (см.(1)), устанавливающий равенство приращений импульса материальной точки и импульса силы.

    3-й закон

    при взаимодействии двух материальных точек сила `vecF_(12)`, действующая на первую материальную точку со стороны второй, равна по величине и противоположна по направлению силе `vecF_(21)`, действующей со стороны первой материальной точки на вторую:

    `vecF_(12) = - vecF_(21)`.

    Третий закон Ньютона - это совокупность утверждений:

    1) силы возникают парами и имеют одинаковую природу, они приложены к разным материальным точкам,

    2) эти силы равны по величине,

    3) они действуют вдоль одной прямой в противоположных направлениях.

    Заметим, что согласно третьему закону Ньютона обе силы должны быть равны по величине в любой момент времени независимо от движения взаимодействующих тел. Другими словами, если в системе двух взаимодействующих тел изменить положение одного из тел, то это изменение мгновенно скажется на  другом теле, как бы далеко оно ни находилось. На самом деле скорость распространения взаимодействий конечная; она не может превзойти скорость света в вакууме. Поэтому третий закон Ньютона имеет определённые пределы применимости. Однако в классической механике при малых скоростях взаимодействующих тел он выполняется с большой точностью.

    Второй закон Ньютона (уравнение движения) можно представить в виде теоремы об изменении импульса материальной точки:

    `(Delta vec p)/(Delta t) = vec(F)`                                                           (3)

    Скорость изменения импульса материальной точки в инерциальной системе отсчёта равна сумме сил, действующих на эту точку.

    Напомним, что для решения задач динамики материальной точки следует:

    привести «моментальную фотографию» движущегося тела,  указать приложенные к нему силы;

    выбрать инерциальную систему отсчёта;

    составить уравнение (3);

    перейти к проекциям приращения импульса и сил на те или иные направления; 

    решить полученную систему.

    Рассмотрим характерные примеры.

    Пример 1

    К телу, первоначально покоившемуся на шероховатой горизонтальной поверхности, прикладывают в течение времени t1=10 сt_1=10\;\mathrm с горизонтальную силу величиной F=5 HF=5\;\mathrm H. После прекращения действия силы тело движется до остановки t2=40 ct_2=40\;\mathrm c.  Определите величину $$ {F}_{\mathrm{тр}}$$ силы трения скольжения, считая её постоянной.

    Решение

    На рис. 1 показаны ИСО и силы, действующие на тело в процессе разгона. По второму закону Ньютона 

    `(Delta vec p)/(Delta t) = M vec g + vec N + vecF_("тр") + vec F`.

    Переходя к проекциям на горизонтальную ось, находим элементарные приращения импульса в процессе разгона

    $$ ∆{p}_{x}=\left(F-{F}_{\mathrm{тр}}\right)∆t$$

    и в процессе торможения `(F = 0)`

    $$ ∆{p}_{x}=-{F}_{\mathrm{тр}}∆t$$.

    Просуммируем все приращения импульса тела от старта до остановки:

    `sum Delta p_x = sum_(0 <= t <= t_1) (F - F_sf"тр") Delta t + sum_(t_1 <= t <= t_1 + t_2) (-F_sf"тр" ) Delta t`.

    Напомним, что для любой физической величины сумма приращений равна разности конечного и начального значений. Тогда

    px конечн-px начальн=F-Fтрt1+-Fтрt2p_{x\;\mathrm{конечн}}-p_{x\;\mathrm{начальн}}=\left(F-F_\mathrm{тр}\right)t_1+\left(-F_\mathrm{тр}\right)t_2.

    С учётом равенств px конеч=0p_{x\;\mathrm{конеч}}=0px начальн=0p_{x\;\mathrm{начальн}}=0 и независимости сил от времени приходим к ответу на вопрос задачи:

    Fтр=t1t1+t2F=1010+40·5=1 HF_\mathrm{тр}=\dfrac{t_1}{t_1+t_2}F=\dfrac{10}{10+40}\cdot5=1\;\mathrm H.

    Далее рассмотрим пример, в котором одна из сил зависит от времени. 

    Пример 2

    На какое максимальное расстояние `L_max` улетит мяч, если в процессе удара футболист действует на мяч постоянной по направлению силой, величина которой изменяется по закону, представленному на  рис. 2.  Длительность  удара τ=8·10-3 c\tau=8\cdot10^{-3}\;\mathrm c,  максимальная  сила Fmax=3,5·103 HF_\max=3,5\cdot10^3\;\mathrm H, масса мяча m=0,5 кгm=0,5\;\mathrm{кг}. Здесь и далее ускорение свободного падения g=10 м/с2g=10\;\mathrm м/\mathrm с^2.   Сопротивление воздуха не учитывайте.  

                        

    Решение

    В процессе удара на мяч действуют две силы: mg=0,5·10=5 Hmg=0,5\cdot10=5\;\mathrm H - тяжести и сила `vec F`, с которой футболист действует на  мяч,                    

              FFmax=3,5·103 HF\leq F_\max=3,5\cdot10^3\;\mathrm H.

    Так как `mg < < F_max`, силой тяжести пренебрежём. Из кинематики известно, что максимальная дальность полёта наблюдается при старте под углом `alpha = pi/4`. Процесс удара показан на рис. 3.   

    По второму закону  Ньютона  приращение  импульса равно импульсу силы `Delta vec p = vec F * Delta t`. Переходя к проекциям приращения импульса и силы на ось `Ox`, получаем 

       `Delta p_x = F Delta t`.

    Просуммируем элементарные приращения импульса мяча за время удара

    `sum Delta p_x = mv - 0 = sum_(0 <= t <= tau) F Delta t`. 

    Импульс  силы  `sum_(0 <= t <= tau) F(t) Delta t` за  время  удара численно равен площади под графиком зависимости этой силы от времени (каждое слагаемое `F(t) Delta t` в импульсе силы можно интерпретировать как площадь элементарного прямоугольника со сторонами `F(t)` и `Delta t` на графике зависимости `F(t)`). Тогда импульс силы `F` за время удара равен 

    `sum_(0 <= t <= tau) F Delta t = (F_max tau)/2`

    и в рассматриваемом случае не зависит от того, в какой именно момент времени сила достигает максимального значения (площадь треугольника равна  половине произведения основания на высоту!). Далее  находим импульс мяча в момент  окончания действия силы

    `mv = 1/2 F_max * tau`.

    Отсюда находим начальную скорость полёта мяча

    `v = (F_max * tau)/(2m) = (3,5 * 10^3 * 8 * 10^-3)/(2 * 0,5) = 28 sf"м/с"`

    и  максимальную дальность (старт под углом `alpha = pi/4`) полёта

    `L_max = (v^2)/g = (28^2)/(10) ~~ 78 sf"м"`.

    В рассматриваемом модельном примере получен несколько завышенный по сравнению с наблюдениями результат.

    На вступительных испытаниях и олимпиадах в вузах России регу­лярно предлагаются задачи динамики, в которых наряду с «традицион­ными» силами: силой тяжести, силой Архимеда и т. д., на тело дейст­вует сила лобового сопротивления. Такая сила  возникает, например, при движении тел в жидкостях и газах. Вопрос о движении тел в жидкостях и газах имеет большое практическое значение. Знакомство с действием такого рода сил уместно начинать, как это принято в физике, с простейших модельных зависимостей, в которых сила сопротивления принимается пропорциональной скорости или её квадрату.

    Пример 3

    Мяч, брошенный с горизонтальной поверхности земли под углом `alpha = 60^@` к горизонту со скоростью `v = 10 sf"м/с"`, упал на землю, имея вертикальную составляющую скорости по абсолютной величине на `delta = 30 %` меньшую, чем при бросании. Найдите время  по­лёта мяча. Считать, что сила сопротивления движению мяча пропорциональна его скорости.

    Решение

    Согласно  второму закону Ньютона приращение импульса пропорционально силе и происходит по направлению силы:

    `m * Delta vec v = (m vec g - k vec v) * Delta t`.

    Переходя к проекциям сил и приращения скорости  на вертикальную ось, получаем   

    `m * Delta v_y = - mg * Delta t - k * v_y * Delta t`.

    Заметим, что элементарное перемещение мяча по вертикали равно `Delta y = v_y * Delta t`,  и перепишем  последнее соотношение в виде:

    `m * Delta v_y = - mg * Delta t - k * Delta y`.

    Просуммируем все приращения вертикальной проекции импульса по всему времени полёта, т. е. от `t = 0` до `t = T`:

    `m * (sum Delta v_y) = - mg * (sum Delta t) - k* (sum Delta y)`.

    Переходя к конечным приращениям, получаем

    `m (v_y (T) - v_y (0)) = - mg (T - 0) - k (y (T) - y (0))`.

    Точки старта и финиша находятся в одной горизонтальной плоскости, поэтому перемещение мяча по вертикали за время полёта нулевое

    `y (T) - y (0) = 0`.

    Тогда  `- (1 - delta) mv_0 sin alpha - mv_0 sin alpha = - mgT`.  Отсюда находим продолжительность полёта мяча:

    `T = (v_0 sin alpha)/(g) (2 - delta) = (10 * sin 60^@)/(10) (2,0 - 0,3) ~~ 1,5  sf"с"`.

    В следующем  примере  рассматривается удар, в ходе которого две  очень большие силы,  «согласованно»  действуют во взаимно перпендикулярных направлениях.

    Пример 4

    Кубик, движущийся поступа­тельно со скоростью `v` (рис. 4) по гладкой горизонтальной поверхности, испытывает соударение с шероховатой вертикальной стенкой.

    Коэффициент трения `mu` скольжения кубика по стенке и угол `alpha` известны. Одна из граней кубика параллельна стенке. Под каким углом `beta` кубик отскочит от стенки? Считайте, что перпендикулярная стенке составляющая скорости кубика в результате соударения не изменяется по величине.         

                               

    Решение

    Силы, действующие на кубик в процессе соударения, показаны на рис. 5.

    По второму закону Ньютона

    `Delta vec p = (m vec g + vecN_("г") + vecF_("тр") + vecN_("в") ) * Delta t`.

    Переходя к проекциям на горизонтальные оси `Ox` и `Oy`, получаем

    `Delta p_x = - F_sf"тр" Delta t`,  `Delta p_y = N_sf"в" Delta t`.

    Просуммируем приращения `Delta p_y = N_sf"в" Delta t` по всему времени `tau` соуда­рения, получим:          

    `sum Delta p_y = p_y (tau) - p_y (0) = mv sin alpha - (- mv sin alpha) = sum_(0 <= t <= tau) N_sf"в" Delta t`.          

    В процессе удара в любой момент времени `F_sf"тр" = mu N_sf"в"`, следовательно, во столько же раз отличаются импульсы этих сил за время соударения

    `sum_(0 <= t <= tau) F_sf"тр" Delta t = mu sum_(0 <= t <= tau) N_sf"в" Delta t = mu 2 mv sin alpha`.

    Тогда легко вычислить проекцию `v_x (tau)` скорости кубика после соударения. Для этого просуммируем приращения 

    `Delta p_x = - F_sf"тр" Delta t = - mu N_sf"в" Delta t`

    по всему времени `tau` соударения, получим:

    `sum Delta p_x = p_x (tau) - p_x (0) = mv_x (tau) - mv cos alpha = - sum _(0 <= t<= tau) F_sf"тр" Delta t =- mu 2 mv sin alpha`.                               

    Отсюда  `v_x (tau) = v (cos alpha - 2 mu sin alpha)`. Далее, считая `v_x (tau) > 0`, получаем

    `bbb"tg"  beta = (v_y (tau))/(v_x (tau)) = (sin alpha)/(cos alpha - 2 mu sin alpha)`.