Все статьи » ЗФТШ Физика

Статьи , страница 36

  • §1. Электрический ток и сила тока

    В рамках электростатики были изучены взаимодействия неподвижных зарядов. Теперь мы переходим к рассмотрению движущихся зарядов. 

    Электрический ток

    это упорядоченное движение электрических зарядов.


    Носители заряда

    это заряженные частицы, которые перемещаются и тем самым переносят заряд. В металлах носителями заряда являются электроны, в растворах – электроны и ионы, в полупроводниках – электроны и дырки, в вакууме – любые заряженные частицы.

    Сила тока I

    это величина, равная отношению суммарного заряда `Deltaq`, протёкшего за некоторое время `Deltat` через поперечное сечение проводника, к этому промежутку времени `Deltat:`

     `I=(Deltaq)/(Deltat)`.                                                               (1.1)


    Напомним, что в международной системе единиц СИ заряд измеряется в кулонах (Кл), время – в секундах (с), а сила тока – в амперах (А).

    Если в создании тока принимают участие частицы обоих знаков и они пересекают поперечное сечение `AB` проводника в обоих направлениях (рис. 1.1), то величина `Deltaq` может быть представлена в виде:

    `Deltaq=Deltaq_"вправо"-Deltaq_"влево"`,                                (1.2)

    где     

                           `Deltaq_"вправо"=|Deltaq_"вправо"^+|-|Deltaq_"вправо"^-|`,                                 (1.3)

     `Deltaq_"влево"=|Deltaq_"влево"^+|-|Deltaq_"влево"^-|`.                             (1.4)


    Индексы «`+`» и «`-`» отмечают знак зарядов, индекс «вправо» обозначает заряды, протёкшие через поперечное сечение проводника в том направлении, которое выбрано в качестве положительного для силы тока, а индекс «влево» – в обратном направлении.

    Обратите внимание, что выбор положительного направления для силы тока является произвольным, так как, выбирая какое-то направление, мы никоим образом не утверждаем, что ток будет течь именно в этом направлении, мы лишь договариваемся считать силу тока, текущего в этом направлении, положительной, а силу тока, текущего в обратном направлении, – отрицательной. Фактическим же направлением тока называется направление движения положительных зарядов (точнее, то направление, при выборе которого в качестве положительного сила тока, найденная из (1.1) с учётом (1.2), (1.3) и (1.4), оказывается положительной).

    Ток в металлах (наиболее распространённых на практике проводниках) создаётся только электронами, заряд которых `e=-1,6*10^(-19)` Кл. Положительно заряженные частицы (ядра атомов) при этом не движутся. Поэтому получается, что направление тока противоположно направлению движения электронов в цепи. Некоторая нелогичность ситуации объясняется исторически: понятие знака заряда (а значит, и направления тока) было введено задолго до экспериментального определения типа носителей заряда в металлах. Когда же выяснилось, что их знак изначально не угадали, то менять определение направления тока в силу сложившейся традиции уже не стали, тем более, что такой выбор – всего лишь вопрос обозначений, а не физической сути явлений.      

    Постоянный ток

    это такой ток, сила которого не зависит от времени. 

    В 11-х классе вы также будете изучать переменный ток – ток, сила которого зависит от времени.

  • 5. Количество теплоты. Теплоёмкость

    Внутренняя энергия тела зависит от его температуры и внешних условий - объёма и т. д. Если внешние условия остаются неизменными, т. е. объём и другие параметры постоянны, то внутренняя энергия тела зависит только от его температуры.

    Изменить внутреннюю энергию тела можно, не только нагревая его в пламени или совершая над ним механическую работу (без изменения положения тела, например, работа силы трения), но и приводя его в контакт с другим телом, имеющим температуру, отличную от температуры данного тела, т. е. посредством теплопередачи.

    Количество внутренней энергии, которое тело приобретает или теряет в процессе теплопередачи, и называется «количеством теплоты». Количество теплоты принято обозначать буквой `Q`. Если внутренняя энергия тела в процессе теплопередачи увеличивается, то теплоте приписывают знак плюс, и говорят, что телу сообщили теплоту `Q`. При уменьшении внутренней энергии в процессе теплопередачи теплота считается отрицательной, и говорят, что от тела отняли (или отвели) количество теплоты `Q`.

    Количество теплоты можно измерять в тех же единицах, в которых измеряется и механическая энергия. В системе СИ - это `1` джоуль. Существует и другая единица измерения теплоты - калория. Калория - это количество теплоты, необходимое для нагревания `1` г воды на `1^@ "C"`. Соотношение между этими единицами было установлено Джоулем: `1` кал `= 4,18` Дж. Это означает, что за счёт работы в `4,18` кДж температура `1` килограмма воды повысится на `1` градус.

    Количество теплоты, необходимое для нагревания тела на `1^@ "C"`, называется теплоёмкостью тела. Теплоёмкость тела обозначается буквой `C`. Если телу сообщили небольшое количество теплоты `Delta Q`, а температура тела изменилась на `Delta t` градусов, то                         

    `C = (DeltaQ)/(Deltat)`.  (1.1)

    Опыт показывает, что при обычных температурах `(200-500 sf"К")` теплоёмкость большинства твёрдых и жидких тел почти не зависит от температуры. Для большинства расчётов будем принимать, что теплоёмкость какого-нибудь вещества есть величина постоянная.

    Кроме теплоёмкости тела `C` вводят ещё удельную теплоёмкость `c` - теплоёмкость единицы массы вещества. Именно эта величина обычно приводится в справочниках физических величин. Удельная теплоёмкость `c` связана с теплоёмкостью тела `C` и массой `m` тела соотношением:

    `C = c*m`. (1.2)

    Приведённые формулы позволяют рассчитать, какое количество теплоты `Q` надо передать телу массы `m`, чтобы повысить его температуру от значения `t_1` до значения `t_2`:

    `Q=C*Deltat=C*(t_2 - t_1)=c*m*(t_2 - t_1 )`. (1.3)

    Если тело окружить оболочкой, плохо проводящей тепло, то температура тела, если оно предоставлено самому себе, будет оставаться в течение длительного времени практически постоянной. Таких идеальных оболочек в природе, конечно, не существует, но можно создать оболочки, которые по своим свойствам приближаются к таковым.

    Примерами могут служить обшивка космических кораблей, сосуды Дьюара, применяемые в физике и технике. Сосуд Дьюара представляет собой стеклянный или металлический баллон с двойными зеркальными стенками, между которыми создан высокий вакуум. Стеклянная колба домашнего термоса тоже является сосудом Дьюара.

    Теплоизолирующей является оболочка калориметра – прибора, позволяющего измерять количество теплоты. Калориметр представляет собой большой тонкостенный стакан, поставленный на кусочки пробки внутрь другого большого стакана так, чтобы между стенками оставался слой воздуха, и закрытый сверху теплонепроводящей крышкой.

    Если в калориметре привести в тепловой контакт два или несколько тел, имеющих различные температуры, и подождать, то через некоторое время внутри калориметра установится тепловое равновесие. В процессе перехода в тепловое равновесие одни тела будут отдавать тепло (суммарное количество теплоты `Q_(sf"отд")`), другие будут получать тепло (суммарное количество теплоты `Q_(sf"пол")`). А так как калориметр и содержащиеся в нём тела не обмениваются теплом с окружающим пространством, а только между собой, то можно записать соотношение, называемое также уравнением теплового баланса:

    `Q_(sf"пол") = Q_(sf"отд")` (1.4)

    В ряде тепловых процессов тепло может поглощаться или выделяться телом без изменения его температуры. Такие тепловые процессы имеют место при изменении агрегатного состояния вещества - плавлении, кристаллизации, испарении, конденсации и кипении. Коротко остановимся на основных характеристиках этих процессов.

    Плавление – процесс превращения кристаллического твёрдого тела в жидкость. Процесс плавления происходит при постоянной температуре, тепло при этом поглощается.

    Удельная теплота плавления `lambda` равна количеству теплоты, необходимому для того, чтобы расплавить `1` кг кристаллического вещества, взятого при температуре плавления. Количество теплоты `Q_(sf"пл")`, которое потребуется для перевода твёрдого тела массы  `m` при температуре плавления в жидкое состояние, равно

    `Q_(sf"пл") = lambda * m`. (1.5)

    Поскольку температура плавления остаётся постоянной, то количество теплоты, сообщаемое телу, идёт на увеличение потенциальной энергии взаимодействия молекул, при этом происходит разрушение кристаллической решётки.

    Процесс кристаллизации – это процесс, обратный процессу плавления. При кристаллизации жидкость превращается в твёрдое тело и выделяется количество теплоты, также определяемое формулой (1.5).

    Испарение – это процесс превращения жидкости в пар. Испарение происходит с открытой поверхности жидкости. В процессе испарения жидкость покидают самые быстрые молекулы, т. е. молекулы, способные преодолеть силы притяжения со стороны молекул жидкости. Вследствие этого, если жидкость теплоизолирована, то в процессе испарения она охлаждается.

    Удельная теплота парообразования `L` равна количеству теплоты, необходимому для того, чтобы превратить в пар `1` кг жидкости. Количество теплоты `Q_(sf"исп")`, которое потребуется для перевода в парообразное состояние жидкость массой `m` равно

    `Q_(sf"исп") =L*m`. (1.6)

    Конденсация – процесс, обратный процессу испарения. При конденсации пар переходит в жидкость. При этом выделяется тепло. Количество теплоты, выделяющейся при конденсации пара, определяется по формуле (1.6).

    Кипение – процесс, при котором давление насыщенных паров жидкости равно атмосферному давлению, поэтому испарение происходит не только с поверхности, но и по всему объёму (в жидкости всегда имеются пузырьки воздуха, при кипении давление паров в них достигает атмосферного, и пузырьки поднимаются вверх).



  • 6. Примеры решения задач
    Задача 1

    В электрический чайник налили холодную воду при температуре  `t_1 = 10^@ "C"`. Через время `tau =10` мин после включения чайника вода закипела. Через какое время она полностью испарится? Потерями теплоты пренебречь. Удельная теплоёмкость воды `c_(sf"в") = 4200  sf"Дж"//(sf"кг" * sf"К")`, удельная теплота парообразования воды `L_(sf"в") =2,26 *10^6  sf"Дж"//sf"кг"`.

    Решение

    Для испарения воды массой `m` при температуре кипения необходимо количество теплоты `Q_1 =mL_(sf"в")`, где `L_(sf"в")` - удельная теплота парообразования воды.

    Пусть воде от нагревателя чайника в единицу времени поступает количество теплоты `q`, а `tau_1` - время, необходимое для испарения всей воды, нагретой до температуры кипения. Тогда справедливо соотношение

    `Q_1 = mL_(sf"в") =q tau_1`.

    Количество теплоты `Q_2`, поступившее от нагревателя за время `tau` и нагревшее воду от начальной температуры  `t_1 = 10^@ "C"` до температуры кипения `t_2 =100^@ "C"`, равно

    `Q_2 = q tau = c_(sf"в")m (t_2 - t_1)`,

    где `c_(sf"в")` - удельная теплоёмкость воды. Отсюда для массы воды получаем

    `m= (q tau)/(c_(sf"в") (t_2 - t_1))`.

    Подставляя это выражение в соотношение для `Q_1`, имеем

    `q*tau_1 = (L_(sf"в")q tau)/(c_(sf"в") (t_2 - t_1))`.

    Отсюда для времени испарения воды получаем

    τ1=Lв·τcв·t2-t1=2,26·106 Дж/кг·600 с 4,2·103 Дж/(кг·К)·90 К1 час.\tau_1=\dfrac{L_\mathrm в\cdot\tau}{c_\mathrm в\cdot\left(t_2-t_1\right)}=\dfrac{2,26\cdot10^6\;\mathrm{Дж}/\mathrm{кг}\cdot600\;\mathrm с\;}{4,2\cdot10^3\;\mathrm{Дж}/(\mathrm{кг}\cdot\mathrm К)\cdot90\;\mathrm К}\approx1\;\mathrm{час}.

    Задача 2

    Найдите расход бензина автомобиля (в литрах) на `L = 100` км пути при скорости `v=90` км/ч. Мощность двигателя автомобиля `P=30` кВт, коэффициент полезного действия `eta =25%`.

    Решение

    Количество теплоты `Q`, которое выделяется при сгорании бензина объёмом `V`, зависит от удельной теплоты сгорания `q` данного вида топлива (для бензина `q=46 sf"МДж"//sf"кг"`)  и массы `m` сгоревшего топлива. С учётом того, что `m=rho V` (для бензина `rho = 700  sf"кг"//sf"м"^3`), получаем

    `Q=qm=q rho V`.

    Часть энергии, выделяемой при сгорании бензина, используется для создания полезной мощности `P`. Если двигатель, развивая постоянную мощность `P`, проработал в течение времени `tau`, то совершённая им работа `A` равна `P tau`. Эффективность преобразования теплоты `Q` сгорания топлива в механическую работу `A` двигателя характеризуется коэффициентом полезного действия (КПД) двигателя `eta`

    `eta=A/Q * 100% = (P tau)/Q *100% = (P tau)/(q rho V) * 100%`.

    Время работы двигателя `tau = L//v`. Из полученных соотношений для величины расхода бензина находим

    `V = (100%)/(eta) * (P*L)/(q*rho *v) ~~(100%)/(25%) * (30*10^3  sf"Дж"//sf"c" * 10^5 sf"м")/(46 * 10^6 sf"Дж"//sf"кг" * 700 sf"кг"//sf"м"^3 * 25 sf"м"//sf"с") ~~14,9 sf"л"`.

    Следовательно, расход бензина для автомобиля с указанными характеристиками составляет примерно `15` литров на `100` км пути.

    Задача 3

    При выстреле из ружья стальная дробь массой `m=45` г вылетает со скоростью `v=600` м/с. Считая, что `80%` энергии, высвободившейся при сгорании порохового заряда массой `M=9` г, переходит в кинетическую энергию пули и её внутреннюю энергию, определите, на сколько градусов повысилась температура пули. Удельная теплота сгорания пороха `q=3 sf"МДж"//sf"кг"`, удельная теплоёмкость стали `c_(sf"ст") = 500 sf"Дж" //(sf"кг" * sf"К")`.

    Решение

    При сгорании пороха массой `M` выделяется энергия (теплота) `Q=qM`, где `q` -удельная теплота сгорания пороха. По условию задачи `80%` этой энергии переходит в кинетическую энергию `K` дроби и её внутреннюю энергию. Следовательно, внутренняя энергия дроби изменяется, и пусть `Delta U` - величина этого изменения. Тогда справедливо следующее соотношение

    `0,8 Q=K+Delta U`.

    Перепишем его, учитывая выражения для кинетической энергии дроби `K=mv^2 //2` и изменения внутренней энергии `Delta U = c_(sf"ст") mDelta t`, где `Delta t` - изменение температуры дроби (искомая величина). Получаем

    `0,8 qM=(mv^2)/(2) +c_sf"ст" mDelta t`.

    Отсюда для изменения температуры находим

    `Delta t= (1,6 qM - mv^2)/(2 c_(sf"ст") m) = 600 sf"К"`.

    Задача 4

    Как велика масса стальной детали, нагретой предварительно до `500^@ "C"`, если при опускании её в калориметр, содержащий `18,6` л воды при температуре `13^@ "C"`, последняя нагрелась до `35^@ "C"`. Теплоёмкостью калориметра и потерями теплоты на испарение воды пренебречь. Удельная теплоёмкость стали `c_(sf"ст") = 500 sf"Дж"//(sf"кг" * sf"К")`.

    Решение

    Во время рассматриваемого теплового процесса стальная деталь массой `M_(sf"ст")` охлаждается от температуры `t_1 =500^@ "C"` до температуры `t=35^@ "C"`, отдавая при этом количество теплоты `Q_(sf"ст")`:

    `Q_(sf"ст") = c_(sf"ст") M_(sf"ст") (t_1 -t)`.

    За это же время вода массой `M_sf"в" =18,6` кг нагревается от температуры `t_2 =13^@ "C"` до температуры `t=35^@ "C"`, получив при этом количество теплоты `Q_(sf"в")`:

    `Q_sf"в" = c_sf"в" M_sf"в" (t-t_2)`.

    Уравнение теплового баланса для данного теплового процесса можно записать следующим образом:

    Qотд=Qст=cстMстt1-t=Qпол=Qв=cвMвt-t2Q_\mathrm{отд}=Q_\mathrm{ст}=c_\mathrm{ст}M_\mathrm{ст}\left(t_1-t\right)=Q_\mathrm{пол}=Q_\mathrm в=c_\mathrm вM_\mathrm в\left(t-t_2\right).

    Здесь учтено, что по условию задачи испарением воды можно пренебречь, т. е. теплота, выделяемая при охлаждении стальной детали, идёт только на нагревание воды.

    Из последнего соотношения для массы стальной детали получаем

    Mст=свMвt-t2cстt1-t=4200 Дж/(кг·К)·18,6 кг·35°C-13°C500 Дж/(кг·К)·500°C-35°C7,4 кгM_\mathrm{ст}=\dfrac{с_\mathrm вM_\mathrm в\left(t-t_2\right)}{c_\mathrm{ст}\left(t_1-t\right)}=\dfrac{4200\;\mathrm{Дж}/(\mathrm{кг}\cdot\mathrm К)\cdot18,6\;\mathrm{кг}\cdot\left(35^\circ\mathrm C-13^\circ\mathrm C\right)}{500\;\mathrm{Дж}/(\mathrm{кг}\cdot\mathrm К)\cdot\left(500^\circ\mathrm C-35^\circ\mathrm C\right)}\approx7,4\;\mathrm{кг}.

    Задача 5

    В калориметр, где в состоянии теплового равновесия находился мокрый снег (смесь льда и воды) массой `m=250` г, долили `M=1` кг воды при температуре `t_1 =20^@ "C"`. После того, как снег растаял, и установилось тепловое равновесие, в калориметре оказалась вода при температуре `t_2 =5^@ "C"`. Сколько воды содержалось в снегу? Потерями теплоты и теплоёмкостью калориметра пренебречь.

    Решение

    Конечное агрегатное состояние системы по условию задачи - вода. Мокрый снег (смесь льда и воды при температуре `t_0 =0^@ "C"`) получает теплоту от находящейся в калориметре воды.

    Часть теплоты, подведённой мокрому снегу, идёт на плавление находящегося в снегу льда (пусть масса льда `m_(sf"л")`). Для плавления льда при температуре плавления необходимо количество теплоты `Q_sf"пол,1"`:

    `Q_(sf"пол,1") = m_sf"л" lambda_sf"л"`.

    На нагревание получившейся из мокрого снега воды массой `m=250` г от температуры `t_0 = 0^@ "C"` до температуры `t_2 = 5^@ "C"` требуется количество теплоты `Q_sf"пол,2"`

    `Q_sf"пол,2" = c_sf"в" m (t_2 - t_0)`.

    Таким образом, суммарное количество теплоты `Q_sf"пол"`, получаемое мокрым снегом, а затем водой, равно

    `Q_sf"пол"=Q_sf"пол,1" + Q_sf"пол,2"=m_(sf"л") lambda_(sf"л") + c_(sf"в") m (t_2 - t_0)`.

    Вода, первоначально находившаяся в калориметре, охлаждается от температуры `t_1 = 20^@ "C"` до температуры `t_2 =5^@ "C"`, отдавая при этом количество теплоты `Q_sf"отд"`

    `Q_sf"отд" = с_sf"в" M (t_1 - t_2)`.

    Уравнение теплового баланса для данного теплового процесса можно записать следующим образом:

    `Q_sf"отд" = с_sf"в" M (t_1 - t_2)=Q_sf"пол" = m_sf"л" lambda_sf"л" + c_sf"в" m (t_2 - t_0)`.

    Отсюда для массы  льда, находившегося в мокром снегу, получаем

    `m_sf"л" = (Mc_sf"в" (t_1 - t_2) - mc_sf"в" (t_2 - t_0))/(lambda_sf"л") ~~170 sf"г"`.

    Масса же воды, содержавшейся в мокром снегу, равна `78` г.

    Пример 6

    В холодную воду, взятую в количестве `12` кг, впускают `1` кг водяного пара при температуре `t_sf"п" = 100^@ "C"`. Температура воды после конденсации в ней пара поднялась до `t=70^@ "C"`. Какова была первоначальная температура воды? Потерями теплоты пренебречь.

    Решение

    Попав в холодную воду, пар массой `m_sf"п" = 1` кг конденсируется, выделяя количество теплоты `Q_1 = m_sf"п"L_sf"в"`. Здесь `L_sf"в"` - удельная теплота конденсации водяного пара. Получившаяся при конденсации пара вода охлаждается от температуры  `t_sf"п" =100^@ "C"` до `t=70^@ "C"`, отдавая холодной воде количество теплоты `Q_2 = c_sf"в" * m_sf"п" * (t_sf"п" - t)`.

    Для нагревания холодной воды массы `m_sf"в" =12` кг от начальной температуры `t_sf"в"` до температуры `t=70^@ "C"` требуется количество теплоты `Q_3 = c_sf"в" * m_sf"в" * (t-t_sf"в")`.

    Составим уравнение теплового баланса для рассматриваемого теплового процесса:

    `Q_sf"отд" = Q_1 + Q_2 = L_sf"в" m_sf"п" + c_sf"в" m_sf"п" (t_sf"п" - t) = Q_sf"пол" = Q_3 = c_sf"в" m_sf"в" (t-t_sf"в")`.

    Решая полученное уравнение, для начальной температуры воды находим:

    `t_sf"в" = t- (L_sf"в" m_sf"п") / (c_sf"в" m_sf"в")  -   (m_sf"п")/(m_sf"в") * (t_sf"п" - t) = 23^@ "C"`.

  • Введение

    Слово «электричество» может вызвать представление о сложной современной технике: компьютерах, телевизорах, электродвигателях и т. д. Но электричество играет в нашей жизни гораздо более серьёзную роль. Действительно, согласно современной теории строения вещества, силы, действующие между атомами и молекулами, в результате чего образуются жидкие и твёрдые тела, – это электрические силы. Они ответственны и за обмен веществ, происходящий в человеческом организме. Даже когда мы что-нибудь тянем или толкаем, это оказывается результатом действия электрических сил между молекулами руки и того предмета, на который мы воздействуем. И вообще, большинство сил (например, силы упругости, силы реакции опоры) сегодня принято считать электрическими силами, действующими между атомами. Сила тяжести, однако, не относится к электрическим силам.

    Электрические явления известны с древних времён, но лишь в последние два столетия они были досконально изучены. По современным представлениям вся совокупность электрических и магнитных явлений есть проявление существования, движения и взаимодействия электрических зарядов. В настоящем Задании мы познакомимся с основными понятиями, определениями и законами, утвердившимися при описании электрических явлений.

  • § 1. Электрический заряд и электрическое поле

    1.1. Статическое электричество.
    Электрический заряд и его свойства

    Слово электричество происходит от  греческого названия янтаря – ελεκτρον. Янтарь – это окаменевшая смола хвойных деревьев; древние заметили, что если натереть янтарь куском шерстяной ткани, то он будет притягивать  лёгкие  предметы  и  пыль. В конце  XVI  века  английский  учёный У. Гильберт обнаружил, что таким же свойством обладают стекло и ряд других веществ, натёртых шёлком. Теперь мы говорим, что в этих случаях тела, благодаря трению, приобретают электрический заряд, а сами тела называем заряженными.

    Все ли электрические заряды одинаковы или существуют различные их виды? Опыт показывает, что существует два и только два вида зарядов, причём заряды одного вида отталкиваются, а заряды разных видов притягиваются. Мы говорим, что одноимённые заряды отталкиваются, а разноимённые притягиваются.

    Американский учёный Б. Франклин (XVIII век) назвал эти два вида зарядов положительными и отрицательными. Какой заряд как назвать было совершенно безразлично; Франклин предложил считать заряд наэлектризованной стеклянной палочки положительным. В таком случае заряд, появляющийся на янтаре, потёртом о шерсть, будет отрицательным. Этого соглашения придерживаются и по сей день.

    О заряженных телах говорят, что одни тела наэлектризованы сильнее, а другие слабее. Для того чтобы такие утверждения имели смысл, следует установить количественную меру, позволяющую сравнивать степени наэлектризованности тел. Мерой наэлектризованности любого тела является электрический заряд  `Q` этого тела (латинские буквы `q` и `Q` традиционно используются для обозначения заряда). В свою очередь, незаряженные тела называют электронейтральными, или просто нейтральными, их заряд равен нулю.

    В международной системе единиц (сокращенно СИ) единицей измерения заряда служит кулон (Кл) (в честь французского учёного Шарля Кулона, установившего в 1785 г. закон взаимодействия точечных зарядов). Определение этой единицы в СИ даётся через единицу измерения силы тока и будет представлено ниже.

    Развитие науки о природе привело не только к открытию элементарных частиц (протонов, электронов, нейтронов и др.), но и показало, что электрический заряд не может существовать сам по себе, без элементарной частицы – носителя заряда.

    Важными свойствами заряда являются его делимость и независимость от скорости.

    Экспериментально установлена делимость электрического заряда и существование его наименьшей порции. Эту наименьшую величину электрического заряда называют элементарным зарядом `e=1,6*10^(-19)`Кл. Несмотря на значительные экспериментальные усилия, к настоящему времени не обнаружены в свободном состоянии носители с зарядом `|q|<e`, где `e` - элементарный заряд.

    Носителями электрического заряда являются элементарные частицы, например, электроны (заряд каждого `q_e=-e=-1,6*10^(-19)`Кл), протоны (заряд каждого `q_p=e=1,6*10^(-19)`Кл). Экспериментально установлено, что отрицательный заряд электрона равен (с высокой точностью) по абсолютному значению положительному заряду протона. Величина заряда любого тела кратна элементарному заряду.

    Пример 1

    Металлическому шару путём удаления части электронов сообщается заряд `Q=2,0*10^(-6)` Кл. Сколько электронов удалено с шара? На сколько изменится масса шара? Элементарный заряд `e=1,6*10^(-19)`Кл, масса электрона  `m_e=0,9*10^(-30)`кг.

    Решение

    Количество удалённых электронов найдём из равенства

    `N=(-Q)/(-e)=(2,0*10^(-6))/(1,6*10^(-19))=1,25*10^(13)`.

    Масса электронов, удалённых с шара,

    `m=N*m_e=1,25*10^(13)*0,9*10^(-30)=1,125*10^(-17)`кг

    даёт ответ на второй вопрос задачи. Отметим, что убыль массы шара очень мала.

    Независимость элементарного заряда от скорости носителя доказывается фактом электронейтральности атомов, в которых вследствие различия масс электрона и протона лёгкие электроны, видимо, движутся значительно быстрее массивных протонов. Если бы заряд зависел от скорости, нейтральность атомов не могла бы соблюдаться. Так что независимость заряда от скорости принимается в качестве одного из экспериментальных фактов,  на которых строится теория электричества.

    Лишь в XIX веке стало ясно: причина существования электрического заряда кроется в самих атомах. Позднее (в другом Задании) мы обсудим строение атома и развитие представлений о нём более подробно; здесь же кратко остановимся на основных идеях, которые помогут нам лучше понять природу электричества.

    1.2. Объяснение явления электризации

    По современным представлениям атом состоит из массивного положительно заряженного ядра, состоящего из протонов и нейтронов, и движущихся вокруг ядра отрицательно заряженных электронов. В нормальном состоянии положительный заряд ядра (его носителями являются находящиеся в ядре протоны) равен по величине (т. е. по модулю) отрицательному заряду электронов, и атом в целом электрически нейтрален. Однако атом может терять или приобретать один или несколько электронов. Тогда его заряд будет положительным или отрицательным, и такой атом называется ионом.

    В твёрдом теле ядра атомов могут колебаться, оставаясь вблизи фиксированных положений, в то время как часть электронов движется свободно. Электризацию трением можно объяснить тем, что в различных веществах ядра удерживают электроны с различной силой. Когда пластмассовая линейка, которую натирают бумажной салфеткой, приобретает отрицательный заряд, это означает, что электроны в бумажной салфетке удерживаются слабее, чем в пластмассе, и часть их переходит с салфетки на линейку. Положительный заряд салфетки равен по величине отрицательному заряду, приобретённому линейкой. Таким образом,  при электризации тел заряды не создаются, а перераспределяются. Этим и объясняется явление электризации: электроны удаляются из тела или заимствуются у атомов другого тела, но не уничтожаются и не создаются вновь. Следует заметить, что при описанном способе электризации трение не играет принципиальной роли: сдавливая тела,  мы просто сближаем их поверхности, которые без этого соприкасались бы в немногих точках вследствие неровностей и выступов.

    Наэлектризовать тело можно и другими способами. Например, приведя незаряженное тело в соприкосновение с заряженным. Возможна электризация через влияние, т. е. без непосредственного контакта. Опыт показывает, что под действием заряженного тела на незаряженном может происходить перераспределение электронов или упорядочение молекул (или атомов), вследствие чего части незаряженного тела оказываются наэлектризованными. Это явление получило название электризации через влияние, или электростатической индукции, а заряды, возникающие вследствие перераспределения (упорядочения), индуцированными.

    Электризация у некоторых веществ может происходить под действием электромагнитных волн: электроны покидают облучаемую поверхность, в результате тело заряжается положительно. Это явление называется фотоэлектрическим эффектом, или кратко фотоэффектом.

    Пример 2

    В результате действия ультрафиолетового электромагнитного излучения на первоначально незаряженное тело его поверхность покинуло `N=4,0*10^(10)` электронов. Найдите заряд `Q` тела? Элементарный заряд `e=1,6*10^(-19)`Кл.

    Решение

    Положительный заряд тела будет обусловлен некомпенсированным электронами зарядом `Q=N*e=4,0*10^(10)*1,6*10^(-19)=6,4*10^(-9)`Кл.

    1.3. Проводники и изоляторы

    По поведению зарядов в наэлектризованном теле все вещества делятся на проводники и изоляторы (диэлектрики). В диэлектриках сообщённый им заряд остаётся в том месте, куда он был помещён при электризации. В проводниках сообщённый заряд может свободно перемещаться по всему телу. Именно поэтому проводящие тела можно заряжать электризацией через влияние. Почти все природные материалы попадают в одну из этих двух резко различных категорий. Есть, однако, вещества (среди которых следует назвать кремний, германий, углерод), принадлежащие к промежуточной, но тоже резко обособленной категории. Их называют полупроводниками.

    С точки зрения атомной теории электроны в изоляторах связаны с атомами очень прочно, в то время как в проводниках многие электроны связаны с атомами очень слабо и могут свободно перемещаться внутри вещества. Такие электроны называют «свободными», или электронами проводимости. Слово «свободными» взято в кавычки, так как свойства электронов в металле значительно отличаются от свойств действительно свободных электронов в вакууме. В металлических телах – проводниках электричества – число свободных электронов огромно. Проиллюстрируем это утверждение на следующем примере.

    Пример 3

    Оцените число `n` свободных электронов в `V=1"м"^3` меди, считая, что в меди в среднем в расчёте на один атом свободным является один электрон. Плотность меди `rho=8,9*10^3 "кг"//"м"^3`, в `M=64` г меди содержится  `N_A=6,02*10^(23)` атомов.

    Решение

    Согласно условию число свободных электронов в любом объёме меди равно числу атомов в нём. Поэтому определим число атомов в объёме `V`.  Для этого следует массу меди `rhoV` разделить на `M` и умножить на `N_A`, т. е.

    `N=(rhoV)/M N_A=(8,9*10^3*1)/(64*10^(-3))*6,02*10^(23)~~8,4*10^(28)`.

    Найденная величина называется концентрацией носителей.

    1.4. Закон сохранения электрического заряда

    Сохранение электрического заряда представляет собой важнейшее известное из опыта его свойство: в изолированной системе алгебраическая сумма зарядов всех тел остаётся неизменной. Справедливость этого закона подтверждается не только в процессах электризации, но и в наблюдениях над огромным числом рождений, уничтожений и взаимных превращений элементарных частиц. Закон сохранения электрического  заряда – один  из  самых фундаментальных  законов  природы. Неизвестно ни одного случая его нарушения. Даже в тех случаях, когда происходит рождение новой заряженной частицы, обязательно одновременно рождается другая частица с равным по величине и противоположным по знаку зарядом.

    Электрический заряд элементарной частицы не зависит ни от выбора системы отсчёта, ни от состояния движения частицы, ни от её взаимодействия с другими частицами. Поэтому и заряд макроскопического тела не зависит ни от движения составляющих его частиц, ни от движения тела как целого.

    Пример 4

    Два одинаковых проводящих шарика, несущих заряды `Q_1=-9,0*10^(-9)` Кл и `Q_2=2,0*10^(-9)` Кл, приводят в соприкосновение и удаляют друг от друга. Какими станут заряды `Q_1^'` и `Q_2^'` шариков?

    Решение

    После приведения шариков в соприкосновение заряды, свободно перемещающиеся в проводниках, придут в движение и разделятся поровну между шариками. Действительно у зарядов «нет оснований предпочесть» один из шариков: «с точки зрения зарядов» шарики неотличимы. Тогда `Q_1^'=Q_2^'`. Заряды шариков найдём по закону сохранения электрического заряда:

    `Q_1+Q_2=2Q_1^'`.

    Отсюда `Q_1^'=(Q_1+Q_2)/2=(-9,0*10^(-9)+2,0*10^(-9))/2=-3,5*10^(-9)` Кл.

    Соображения симметрии, использованные при решении задачи, являются важнейшими в физике, к ним мы будем неоднократно обращаться в дальнейшем в различных разделах курса физики.

    Пример 5

    Свободный нейтрон `n` - незаряженная частица – распадается на протон `p`, электрон  `e^-` и электронное антинейтрино ν~e\widetilde{\nu}_e. Схему этой реакции записывают в виде np+e-+ν~en\rightarrow p+e^-+\widetilde{\nu}_e. Найдите заряд `q` антинейтрино.

    Решение

    По условию нейтрон – незаряженная частица. Заряды протона и электрона равны соответственно `e` и `-e`. Из закона сохранения заряда следует, что заряд нейтрона равен сумме зарядов продуктов реакции, т. е. протона, электрона и антинейтрино:

    `0=e+(-e)+q`.

    Отсюда `q=0`.

    Заряд электронного антинейтрино равен нулю.

    1.5. Взаимодействие заряженных тел. Электрическое поле

    Заряженные тела воздействуют друг на друга. Сила взаимодействия двух зарядов зависит от величин этих зарядов и от расстояния межу ними. Долгое время оставалось неясным, посредством чего взаимодействуют заряженные тела, если они не вступают в непосредственный контакт друг с другом. Кулон был убеждён, что промежуточная среда, т. е. «пустота» между зарядами никакого участия во взаимодействии не принимает.

    Такая точка зрения, несомненно, была навеяна впечатляющими успехами ньютоновской теории тяготения, блестяще подтверждавшейся астрономическими наблюдениями. Однако сам Ньютон писал: «Непонятно, каким образом неодушевлённая косная материя, без посредства чего-либо иного, что нематериально, могла бы действовать на другое тело без взаимного прикосновения».

    В 30-е годы XIX века английским естествоиспытателем М. Фарадеем была введена в физику идея поля как материальной среды, посредством которой осуществляется любое взаимодействие пространственно удалённых тел. М. Фарадей считал, что «материя присутствует везде, и нет промежуточного пространства, не занятого ею». Фарадей развил последовательную концепцию электромагнитного поля, основанную на идее конечной скорости распространения взаимодействия. Законченная теория электромагнитного поля в строгой математической форме была через 30 лет развита другим английским физиком, Дж. Максвеллом.

    По современным представлениям электрические заряды наделяют окружающее их пространство особыми физическими свойствами – создают электрическое поле. Основным свойством поля является то, что на находящуюся в этом поле заряженную частицу, действует некоторая сила, т. е. взаимодействие электрических зарядов осуществляется посредством создаваемых ими полей. Поле, создаваемое неподвижными зарядами, не изменяется со временем и называется электростатическим.

    Таким образом, электрическое поле представляет собой особый вид материи (отличный от вещества), которое создаётся электрическими зарядами и которое обнаруживается по действию на электрические заряды. Более подробно взаимодействие электрических зарядов и электрические поля, создаваемые зарядами, будут рассмотрены в десятом классе, а мы перейдём к изучению вопросов, связанных с электрическим током.

  • § 2. Электрический ток

    2.1. Электрический ток в проводниках.
    Направление электрического тока. Сила и плотность тока

    Направленное движение электрических зарядов называется электрическим током. Носителями зарядов в зависимости от типа проводника могут быть электроны и ионы. В металлических проводниках – это свободные электроны, или электроны проводимости, в гальванических ваннах, т. е. в растворах электролитов, – положительные и отрицательные ионы. Тела или вещества, в которых можно создать электрический ток, называют проводниками электрического тока. Проводниками являются все металлы, водные растворы солей или кислот, ионизованные газы.

    При движении свободных заряженных частиц происходит перенос заряда. Количественной характеристикой – силой II тока – принято считать скорость переноса заряда через любое поперечное сечение проводника, т. е. количество заряда, перемещённого через «контрольную поверхность», на которой осуществляется подсчёт пересёкшего её заряда, в единицу времени:

     `I=q/t`,                                                     (1)


    где `q` – заряд, прошедший через произвольное фиксированное поперечное сечение проводника за время от `0` до `t`. Если сила тока не изменяется со временем, ток называют постоянным. Единица измерения силы тока в системе СИ называется ампером (А) (в честь А.М. Ампера – французского учёного XIX века) и вводится через магнитное взаимодействие токов.

    Один ампер есть сила такого тока, поддерживаемого в двух бесконечных (очень длинных) прямолинейных параллельных проводниках ничтожно малой площади поперечного сечения, расположенных на расстоянии `1`м в вакууме, при котором в расчёте на `1` метр длины проводника действует сила  `F=2*10^(-7) "Н"`.

    Единица измерения силы тока ампер, наряду с метром, секундой, килограммом, является основной единицей системы СИ. Единица измерения заряда кулон (Кл) является производной и вводится в соответствии с (1): один кулон – это электрический заряд, проходящий через поперечное сечение проводника при силе тока 1A1\mathrm A за 1c1\mathrm c, т. е. 1Кл=1A·1c.1\mathrm{Кл}=1\mathrm A\cdot1\mathrm c.

    За направление электрического тока принимают направление, в котором движутся положительно заряженные носители тока.

    Отношение силы `I` тока к площади `S` поперечного сечения проводника называется плотностью тока:

    `j=I/S`,                                                       (2)


    которая равна силе тока в расчёте на единицу площади поперечного сечения.

    Пример 6

    По проводу течёт постоянный ток. Через произвольное поперечное сечение за время  `t=2` мин протёк заряд `q=1,2` Кл. Найдите силу `I` тока в проводе и его плотность `j`. Площадь поперечного сечения проводника `S=0,5 "мм"^2`.

    Решение

    Силу тока определим по формуле (1):

    I=qt=1,2120=0,01AI=\dfrac qt=\dfrac{1,2}{120}=0,01\mathrm A,

     плотность тока найдём по формуле (2):

    `j=I/S=(0,01)/(0,5*10^(-6))=2*10^4"А"//"м"^2`.

    Пример 7

    Согласно модели, предложенной Нильсом Бором, в основном состоянии атома водорода электрон движется вокруг покоящегося протона по круговой орбите радиуса `r=0,53*10^(-10)` м со скоростью `v=2,2*10^6` м/с. Какой величине `I` тока эквивалентно движение электрона по орбите? Каково направление этого тока? Элементарный заряд `e=1,6*10^(-19)` Кл.

    Решение

    В рассматриваемой модели электрон обращается вокруг протона с периодом  `T=(2pir)/v`.    За `t=1` с электрон пересечёт любую контрольную поверхность, на которой происходит подсчёт переносимого заряда, `nu=1/T` раз. Тогда через эту поверхность за `t=1` с пройдёт заряд `q=e*nu`, т. е. сила эквивалентного тока в соответствии с (1) равна

    `I=q/t=enu=ev/(2pir)=1,6*10^(-19) *(2,2*10^6)/(2*3,14*0,53*10^(-10))~~1,06*10^(-3) "А"`.

    Поскольку электрон – отрицательно заряженная частица, то направление рассматриваемого тока противоположно направлению движения электронов.

    2.2. Электрические цепи. Источники электрического тока

    Электрический ток течёт в электрических цепях, представляющих собой различные приборы и устройства, соединённые проводниками.

    Если бы носители заряда, приведённые в движение в замкнутом проводнике, не взаимодействовали с ионами, то они двигались бы бесконечно долго. Такой ток можно наблюдать в некоторых веществах при весьма низких температурах; удельное сопротивление таких веществ – их называют сверхпроводниками – равно нулю при этих температурах.

    Но в большинстве проводников при протекании тока движущиеся заряженные частицы взаимодействуют с неподвижными и теряют кинетическую энергию.

    Для получения постоянного тока, т. е. не изменяющегося с течением времени, на заряды в электрической цепи должны действовать не только силы электрического поля, но и другие силы, отличные от сил электрического взаимодействия. Такие силы получили общее название сторонних электродвижущих сил. Всякое устройство, в котором возникают сторонние силы, называют источником тока. Источниками тока являются, например, батарейки, аккумуляторы и т. д.

    Сторонние силы в источниках возникают по разным причинам. В химических источниках, например, в автомобильном аккумуляторе или в гальваническом элементе, они возникают благодаря химическим реакциям в области контакта пластин аккумулятора или электродов батарейки с жидким электролитом. В фотоэлементе они возникают в результате действия электромагнитного излучения на электроны в металле или полупроводнике. В генераторах на электростанции сторонние силы возникают в проводниках при движении их в магнитном поле.

    Если воспользоваться гидростатической аналогией, то силы электрического поля в электрической цепи можно уподобить силе тяжести, стремящейся выравнивать уровни жидкости в сообщающихся сосудах; источник тока с действующими в нём сторонними электродвижущими силами можно сравнить с насосом, работающим против силы тяжести и восстанавливающим разность уровней в сосудах, несмотря на течение жидкости.

    Источник тока по результатам своего действия представляет собой устройство, отделяющее положительные заряды от отрицательных. После разделения заряды перемещаются на полюса (электроды) источника. При этом один из электродов заряжается положительно, другой отрицательно. И если к источнику подключить проводник, то эти заряды действуют на заряды проводника вблизи полюсов, те в свою очередь действуют на соседние и т. д. В результате этих коллективных взаимодействий в цепи на поверхности проводника возникает такое распределение зарядов, которое обеспечивает существование внутри проводника электрического поля, а в проводнике под действием сил этого поля течёт электрический ток.

    2.3. Электрическое напряжение. Работа и мощность
    электрического тока. Тепловое действие тока

    В электрической цепи, подключённой к источнику, возникают электрические силы, действующие на носители зарядов и приводящие их в движение. Пусть под действием электрической силы `F` частица, несущая заряд `q`, переместилась вдоль проводника из точки `1` в точку `2`, а сила `F` совершила над заряженной частицей работу `A_(12)`. Отношение работы `A_(12)` электрической силы над зарядом `q` при перемещении его из точки `1` в точку `2` к самому заряду qq называют электрическим напряжением между точками `1` и `2`:

     `U_(12)=(A_(12))/q`.                                                  (3)

    Единицей измерения напряжения в СИ является вольт (В).

    За один вольт принимается напряжение на концах проводника, при котором работа сил электрического поля по перемещению через этот проводник заряда в один кулон равна одному джоулю.

    Эта единица  названа в честь итальянского физика А. Вольта, который в 1800 г. изобрёл электрическую батарею и впервые получил с её помощью постоянный ток, устойчиво поддерживавшийся в электрической цепи. Это открытие ознаменовало начало новой эпохи, полностью преобразившей нашу цивилизацию: современная жизнь немыслима без использования электрического тока.

    В соотношении (3) индексы `1` и `2` можно опустить, если помнить, что `1` – это точка «старта», `2` – точка «финиша».

    Зная напряжение `U` на концах проводника и силу тока `I`, текущего в проводнике в течение времени `t` постоянного тока, вычислим заряд `q=I*t`, который протечёт за указанное время по проводнику. Тогда за это время силы электрического поля в проводнике совершат работу

     `A=q*U=I*t*U`.                                             (4)

    Это позволяет судить о скорости совершения работы электрическими силами, т. е. о мощности, развиваемой силами электрического поля. Из (4) следует, что в проводнике, напряжение на концах которого равно `U`, а сила тока `I`, силы электрического поля в единицу времени совершают работу

    `P=A/t=I*U`.                                                (5)

    Напомним, что единицей измерения мощности в СИ служит ватт (Вт).

    Очень часто работу и мощность электрических сил называют соответственно работой и мощностью электрического тока, тем самым подчёркивают, что это работа по поддержанию электрического тока в цепи.

    Пример 8

    По проводнику в течение `T=1` мин течёт постоянный ток силой `I=0,2` А. Напряжение на проводнике `U=1,5` В. Какую работу `A` совершают электрические силы в проводнике за указанное время? Найдите мощность `P` электрического тока в проводнике.

    Решение

    За время `T` через проводник пройдёт заряд `Q=I*T`. Работа сил электрического поля над этим зарядом в соответствии с (4) равна

    `A=Q*U=I*T*U=0,2*60*1,5=18` Дж.

    Для ответа на второй вопрос задачи воспользуемся соотношением (5):

    `P=I*U=0,2*1,5=0,3` Вт.

    Заметим, что в повседневной жизни, рассчитываясь «за электричество», мы оплачиваем расход электроэнергии – работу электрических сил, а не мощность. И здесь принято работу электрических сил выражать во внесистемных единицах – киловатт-часах:

    `1` кВт`*`ч`=1000`Вт`*3600`с`=3,6*10^6`Дж

    Работа электрического тока может идти на изменение механической и внутренней энергий проводника. Например, в результате протекания электрического тока через электродвигатель его ротор (подвижная часть, способная вращаться, в отличие от статора) раскручивается. При этом большая часть работы электрических сил идёт на увеличение механической энергии ротора, а также других тел, с которыми ротор связан теми или иными механизмами. Другая часть работы электрического тока (в современных электродвигателях один – два процента) идёт на изменение внутренней энергии обмоток двигателя, что приводит к их нагреванию (обмотка электродвигателя представляет собой катушку, изготовленную обычно из меди, с большим числом витков).

    Обсудим тепловое действие электрического тока более подробно. Из опыта известно, что электрический ток нагревает проводник. Объясняется это явление тем, что свободные электроны в металлах, перемещаясь под действием сил электрического поля, взаимодействуют с ионами вещества и передают им свою энергию. В результате увеличивается энергия колебаний ионов в проводнике, его температура растёт, при этом говорят, что в проводнике за некоторое время `t` выделяется количество теплоты `Q_("тепл")`. Если проводник с током неподвижен и величина тока постоянна, то работа электрических сил идёт на изменение внутренней энергии проводника. По закону сохранения энергии это количество равно работе сил электрического поля (4) в проводнике за то же самое время,      т. е.

     `Q_("тепл")=I*t*U`.                                             (6)

    Отсюда мощность `P` тепловыделения, т. е. количество теплоты, выделяющейся в единицу времени на участке цепи, где напряжение равно `U`, а сила тока равна `I` составляет

    `P=(Q_("тепл"))/t=U*I`.                                            (7) 

    Пример 9

    По спирали электроплитки, подключённой к источнику с напряжением `U=120` В, протекает постоянный ток силой `I=5` А в течение `T=1` ч. Какое количество теплоты `Q_("тепл")`  отдаёт при этом плитка в окружающую среду?

    Решение

    В окружающую среду будет передано то количество теплоты, которое выделится в спирали нагревательного элемента плитки за указанное время. По формуле (6) находим:

    `Q_("тепл") =I*T*U=5*3600*120=2,16*10^6` Дж.

    Пример 10

    Электродвигатель, включённый в электрическую сеть с напряжением `U=24` В, за время `T=1` ч работы совершил механическую работу `A=1680` кДж. Сила тока в обмотке `I=20` А. Найдите мощность `P` электрического тока и коэффициент полезного действия  `eta` двигателя. Какое количество теплоты `Q_("тепл")` выделится в обмотке?

    Решение

    Мощность электрического тока найдём по формуле (5):

    `P=I*U=20*24=480` Вт.

    По определению коэффициент полезного действия (КПД) `eta` двигателя равен отношению полезной механической работы `A` к работе электрических сил `A_("эл")`, умноженному на `100%`. С учётом выражения (4) для работы электрических сил находим КПД электродвигателя:

    `eta=A/(A_("эл"))*100%=A/(UIT)*100%=(1680*10^3)/(24*20*3600)*100%~~97%`.

    Количество `Q_("тепл")` теплоты, выделившейся в обмотке, найдём по закону сохранения энергии `A_("эл")=A+Q_("тепл")`. Отсюда  `Q_("тепл")=A_("эл")-A=UIT-A=24*20*3600-1680*10^3=48*10^3` Дж.

    2.4. Закон Ома. Электрическое сопротивление.
    Закон Джоуля – Ленца

    Как отмечалось выше, для поддержания постоянного тока в проводнике, т. е. движения электронов с постоянной скоростью, необходимо непрерывное действие сил электрического поля на носители заряда. Это означает, что электроны в проводниках движутся «с трением», иначе говоря, проводники обладают электрическим сопротивлением.

    Если состояние проводника остаётся неизменным (не изменяется его температура и т. д.), то для каждого проводника существует однозначная зависимость между напряжением `U` на концах проводника и силой `I` тока в нём `I=f(U)`. Она называется вольтамперной характеристикой данного проводника.

    Для многих проводников эта зависимость особенно проста – линейная: сила тока прямо пропорциональна приложенному напряжению, т. е.

     `I=1/RU`,                                                 (8)

    где `R` – электрическое сопротивление проводника (постоянная при неизменных условиях величина).

    Этот закон носит название закона Ома. Немецкий физик Г. Ом в 1827 г. в результате серии экспериментов установил, что для широкого класса проводников сила `I` электрического тока в проводнике пропорциональна напряжению `U` на концах проводника.

    Сопротивление `R` проводника зависит от рода вещества проводника, от его размеров и формы, а также от состояния проводника.

    Единицей сопротивления в СИ является один Ом (Ом). За один Ом принимается сопротивление такого проводника, в котором при напряжении между его концами один вольт течёт постоянный ток силой один ампер: `1`Ом`=1`В`//1`A.

    Вытекающее из закона Ома (8) соотношение

     `R=U/I`                                                 (9)

    можно рассматривать и как определение сопротивления по приведённой формуле.

    Г. Ом установил, что для проводников  RR не зависит от U.U. 

    В технических приложениях для описания процессов в электрических цепях часто используется понятие  вольтамперной характеристики. Для проводников, подчиняющихся закону Ома (8), графиком зависимости силы `I` тока в проводнике от напряжения `U` на нём будет прямая линия, проходящая через начало координат (см. рис. 1). При этом говорят, что проводник имеет линейную вольтамперную характеристику.

    В то же время для полупроводников, электронных ламп, диодов, транзисторов зависимость `I=f(U)` носит сложный характер, и такие элементы называют нелинейными (или неомическими). Для таких элементов величина `R`, вычисленная по формуле `R=U/I`, зависит от `U`. В частности, при измерении вольтамперной характеристики лампочки накаливания с вольфрамовой нитью мы обнаружим, что она имеет вид, схематически показанный на рис. 2. Искривление вольтамперной характеристики связано с нагревом нити и увеличением сопротивления нити накала с ростом температуры. В некоторых устройствах, таких как диод, сопротивление зависит от направления тока.


    Обсудим вопрос о тепловыделении в проводнике. С учётом закона Ома (8) формула (7) для мощности тепловыделения принимает вид:

    `P=U*I=U^2/R=I^2R`.                                      (10)

    Другими словами, если через резистор `R` протекает постоянный ток силой `I`, то за `t` секунд в резисторе выделяется количество теплоты, равное

    `Q_("тепл")=P*t=U^2/R*t=I^2*R*t`.                               (11)

    Соотношения (10), (11) являются математическим выражением закона, открытого в XIX веке практически одновременно и независимо английским физиком Д. Джоулем и русским физиком Э.Х. Ленцем.

    Обратим внимание, что полученный закон является прямым следствием закона сохранения энергии в применении к движению электрических зарядов под действием сил электрического поля.

    2.5 Расчёт сопротивления проводника.
    Удельное сопротивление

    Причиной электрического сопротивления является взаимодействие электронов с ионами кристаллической решётки. Зависимость сопротивления проводника от его размеров и вещества, из которого изготовлен проводник, на опытах изучил Г. Ом. Он установил, что сопротивление проволоки длиной `l` и площадью поперечного сечения `S` определяется по формуле

    `R=rho l/S`                                               (12)

    где `rho` – удельное сопротивление вещества, из которого изготовлен проводник. Эту величину определяют экспериментально, результаты измерений удельного сопротивления приводят в физических справочниках (и в справочных разделах задачников по физике).

    В соответствии с формулой (12) единицей удельного сопротивления в СИ служит Ом`*`м.

    Удельное сопротивление вещества зависит от температуры. Для металлов с ростом температуры растёт и удельное сопротивление. У электролитов наблюдается обратная зависимость. Эти обстоятельства следует учитывать на практике при расчётах спиралей электронагревательных приборов,   нитей лампочек накаливаний т. д.

    Пример 11

    Резистор сопротивлением `R=38` Ом изготовлен из медного провода кругового сечения массой `m=11,2` г. Найдите длину `l` провода. Удельное сопротивление меди `rho=1,7*10^(-8)` Ом`*`м, плотность меди `delta=8,9*10^3 "кг"//"м"^3`. Обратите внимание, что в настоящем примере приняты обозначения: `delta` – плотность, `rho` – удельное сопротивление.

    Решение

    Обозначим площадь поперечного сечения проводника `S`. Тогда объём проводника равен  `V=S*l`, его масса `m=delta*V=delta*S*l`. По формуле (12) сопротивление проводника равно `R=rhol/S`.

    Исключая `S` из двух последних соотношений, приходим к ответу на вопрос задачи:

    `l=sqrt((mR)/(rho delta))=sqrt((11,2*10^(-3)*38)/(1,7*10^(-8)*8,9*10^3))~~53` м.

    2.6. Соединение проводников в электрической цепи

    В электрических цепях, с которыми мы встречаемся на практике, проводники могут быть соединены различными способами. Наиболее простые способы соединения известны как последовательное и параллельное соединения резисторов.

    Рассмотрим участок ABAB цепи, в котором резисторы с сопротивлениями `R_1` и `R_2` соединены последовательно (рис. 3). Поставим вопрос: каким сопротивлением `R_("экв")`, подключённым между точками `A` и `B`, можно заменить последовательно соединенные сопротивления `R_1` и `R_2` так, чтобы напряжение на участке `AB` и сила тока, текущего от `A` к `B`, остались неизменными?

    Для ответа на поставленный вопрос заметим, что при последовательном соединении сила тока во всех проводниках одинакова – иначе заряды накапливались бы (или исчезали) в каких-то точках цепи. Так что `I=I_1=I_2`.

    Далее: работа сил электрического поля над любым зарядом при перемещении его из `A` в `B` будет равна сумме работ электрических сил над этим зарядом, совершаемых силами поля при его перемещении в каждом проводнике.

    Отсюда следует, что напряжение на `AB` равно сумме напряжений на резисторах

    UAB=U1+U2=I·R1+R2.U_{AB}=U_1+U_2=I\cdot\left(R_1+R_2\right).

    В эквивалентной схеме сила II тока и напряжение UABU_{AB} «не заметили» замены `R_1` и `R_2` на `R_("экв")`. В этом случае по закону Ома `U_(AB)=I*R_("экв")`. Из сопоставления двух последних равенств находим

     `R_("экв")=R_1+R_2`.                                           (13)

    Этот результат легко обобщается на случай `n` последовательно соединённых резисторов `R_1,R_2,...,R_n`. В этом случае (рекомендуем лично выполнить соответствующий вывод):

    `R_("экв")=sum_(i=1)^n R_i=R_1+R_2+...+R_n`.

    Рассмотрим теперь участок `AB` цепи, в котором резисторы с сопротивлениями `R_1` и `R_2` соединены параллельно (см. рис. 4). Поставим вопрос: каким сопротивлением `R_("экв")`, подключённым между точками `A` и `B`,  можно заменить параллельно соединённые `R_1` и `R_2` так, чтобы напряжение на участке `AB` и сила тока, текущего к узлу `A` и вытекающего из узла `B` остались неизменными?

    Для ответа на поставленный вопрос заметим, что при параллельном соединении проводников работа сил электрического поля в расчёте на единичный заряд (см. (3)) в проводниках одинакова (иначе нарушался бы закон сохранения энергии). Это означает, что напряжения на параллельно соединённых проводниках одинаковы. Обозначим его `U_(AB)`. Силу тока в каждом проводнике определим по закону Ома:  `I_1=(U_(AB))/R_1`,  `I_2=(U_(AB))/R_2`.

    Далее, в любом узле, т. е. точке, где сходятся более двух проводов, по закону сохранения электрического заряда сумма токов, втекающих в узел, равна сумме токов, вытекающих из него. Отсюда следует, что в рассматриваемой задаче (рис. 4) сила `I` тока на входе и на выходе равна сумме сил токов в отдельных ветвях параллельной цепи:

    `I=I_1+I_2=(U_(AB))/R_1+(U_(AB))/R_2=U_(AB)(1/R_1+1/R_2)`.

    В эквивалентной схеме сила II тока и напряжение UABU_\mathrm{AB} связаны с `R_("экв")` законом Ома (8) I=UABRэквI=\dfrac{U_\mathrm{AB}}{R_\mathrm{экв}}. Два последних равенства справедливы при любых значениях, входящих в них величин `I` и `U_(AB)` если

    `1/(R_("экв"))=1/R_1+1/R_2`.                                (14)

    Этот результат легко обобщается на случай `n` параллельно соединённых резисторов `R_1, R_2, ..., R_n`. В этом случае

    `1/(R_("экв"))=1/R_1+1/R_2+...+1/R_n`.     

    Пример 12

    Между точками `A` и `B` электрической цепи подключены резисторы `R_1=10` Ом, `R_2=20` Ом, `R_3=30` Ом, как показано на рис. 5. Найдите эквивалентное сопротивление `R_(AB)` этого участка цепи.

    Решение

    Эквивалентное сопротивление `R_(12)` цепочки последовательно соединённых резисторов `R_1` и `R_2` найдём по формуле (13)

    `R_(12)=R_1+R_2`.

    Заменяя эти резисторы эквивалентным сопротивлением, получаем участок цепи, в котором к точкам `A` и `B` параллельно присоединены резисторы `R_(12)` и `R_3`. Тогда искомое эквивалентное сопротивление найдём из (14)

    `1/(R_("экв"))=1/(R_(12))+1/(R_3)`,

    `R_("экв")=(R_(12)R_3)/(R_(12)+R_3)=((R_1+R_2)R_3)/(R_1+R_2+R_3)=((10+20)30)/(10+20+30)=15`Ом.

    Пример 13

    Лестничная цепь состоит из последовательности `N` одинаковых звеньев (рис. 6 а). Последнее звено замкнуто резистором `R`. При какой величине отношения `R/r` сопротивление цепи не зависит от числа звеньев?

    Решение

    Сопротивление цепи не будет зависеть от числа звеньев, если эквивалентное сопротивление последнего звена (рис. 6 б) будет равно `R`. Из решения предыдущей задачи получаем:

    `1/R=1/r+1/(r+R)`.

    Отсюда находим `R/r=(sqrt5-1)/2~~0,618`.

    2.7. Измерения силы тока и напряжения в электрических цепях.
    Амперметр и вольтметр

    Для измерения токов и напряжений в электрических цепях используются амперметры и вольтметры, основным элементом которых служит гальванометр – прибор, предназначенный для измерения величин токов. Эти измерения могут быть основаны на одном из действий тока: тепловом, физическом, химическом. Гальванометр, градуированный на величину тока, называется амперметром. По закону Ома (8) напряжение и сила тока связаны прямо пропорциональной зависимостью, поэтому гальванометр можно градуировать и на напряжение. Такой прибор называют вольтметром.

    В этом задании мы не будем касаться вопросов, связанных с конкретным устройством электроизмерительных приборов, с их системами и принципами работы. Остановимся лишь на требованиях, предъявляемых к внутренним сопротивлениям амперметров и вольтметров. Важно, чтобы при включении в цепь для измерений эти приборы вносили как можно меньшее искажение в измеряемую величину.

    Амперметр включается в цепь последовательно. Если сопротивление амперметра `R_"а"` и его подключают к участку цепи с сопротивлением `R_"ц"` (рис. 7а), то эквивалентное сопротивление участка цепи и амперметра в соответствии с (13) равно `R=R_"ц"+R_"а"=R_"ц"(1+(R"а")/R_"ц")`.

    Отсюда следует, что амперметр не будет заметно изменять сопротивление участка цепи, если его собственное (внутреннее) сопротивление будет мало по сравнению с сопротивлением участка цепи.

    Чтобы добиться этого, гальванометр снабжают шунтом (синоним – добавочный путь): вход и выход гальванометра соединяются некоторым сопротивлением, обеспечивающим параллельный гальванометру дополнительный путь для тока (рис. 7 б). Поэтому внутреннее сопротивление амперметра меньше, чем у применённого в нём гальванометра. (Читателю рекомендуется лично убедиться в этом с помощью соотношения (14).) Амперметр называется идеальным, если его внутреннее сопротивление можно считать равным нулю.

    Вольтметр подключается к электрической цепи параллельно тому участку, напряжение на котором требуется измерить. Присоединив, например, вольтметр с сопротивлением  `R_"в"` параллельно лампочке с сопротивлением `R_"л"` (рис. 8 а), получим участок цепи, эквивалентное сопротивление которого вычисляется по формуле (14)  `R=R_"л" (R"в")/(R_"л"+R_"в")`.

    Отсюда следует, что чем больше сопротивление вольтметра по сравнению с сопротивлением лампочки, тем меньше эквивалентное сопротивление будет отличаться от сопротивления лампочки. Вывод: чтобы процесс измерения меньше искажал значение измеряемого напряжения, собственное (внутреннее) сопротивление вольтметра должно быть как можно больше. Поэтому в вольтметре последовательно гальванометру включают некоторое сопротивление (рис. 8б). Внутреннее сопротивление такого вольтметра, как правило, во много раз больше сопротивления входящего в него гальванометра. Вольтметр называется идеальным, если его внутреннее сопротивление можно считать бесконечно большим.

    Каждый измерительный прибор рассчитан на определённый интервал значений измеряемой величины. И в соответствии с этим проградуирована его шкала. Для расширения пределов измерений в амперметре можно использовать добавочный шунт, а в вольтметре – добавочное сопротивление. Найдём значения этих сопротивлений, увеличивающих максимальную измеряемую величину тока или напряжения в  раз.

    2.8. Шунт к амперметру

    Если амперметр рассчитан на силу тока `I_m`, а с его помощью необходимо измерять силу тока в `n` раз большую (см. рис. 9), то в этом случае, подключив параллельно амперметру шунт, разделим ток силой `nI_m` на два тока: один из них силой `I_m` будет течь через амперметр, тогда через шунт будет протекать ток силой `I_"ш"=(n-1)I_m`.

    Поскольку шунт включён параллельно амперметру, то напряжения на шунте `U_"ш"=(n-1)I_mR_"ш"`  и амперметре `U_"А"=I_mR_"А"`  равны. Из равенства напряжений

    `I_mR_"А"=(n-1)I_mR_"ш"`

    находим

    `R_"ш"=(R_"А")/(n-1)`                                                  (15)

    2.9. Добавочное сопротивление к вольтметру

    Если вольтметр рассчитан на максимальное напряжение `U_max`, а с его помощью необходимо измерять напряжение, в `n` раз большее, то, подключив последовательно с вольтметром добавочное сопротивление `R_2` (рис. 10), разделим напряжение `n*U_max` на два слагаемых: одно из них – это напряжение UmaxU_\max на вольтметре, второе – напряжение n-1Umax\left(n-1\right)U_\max на добавочном сопротивлении.

    Поскольку добавочное сопротивление включено последовательно с вольтметром, то через вольтметр и добавочное сопротивление течёт одинаковый ток, т. е. справедливо равенство

    `(U_max)/(R_"в")=((n-1)U_max)/(R_"д")`.

    Отсюда                                     

    `R_"д"=(n-1)R_"в"`.                                       (16)


    Пример 14

    Шкала гальванометра имеет `N=100` делений, цена деления δ=1мкА.\delta=1\mathrm{мкА}.. Внутреннее сопротивление гальванометра RG=1,0 кОм.R_G=1,0\;\mathrm{кОм}.. Как из этого прибора сделать вольтметр для измерения напряжений до U=100 ВU=100\;\mathrm В или амперметр для измерения токов силой до I=1AI=1\mathrm A?

    Решение

    Максимально допустимый ток `I_max` через гальванометр равен цене деления, умноженной на число делений: `I_max=delta*N=1*100=100` мкА. При максимальном токе напряжение на приборе максимально и по закону Ома (8) равно

    `U_max=I_max*R_G=10^(-4)*10^3=0,1` В.

    Для использования этого гальванометра в качестве амперметра для измерения токов силой до `I=1` А необходимо параллельно с ним включить шунт, сопротивление которого найдём по формуле (15):

    Rш=RGn-1=RGIImax-1=103110-4-10,1  Ом.R_\mathrm ш=\dfrac{R_\mathrm G}{n-1}=\dfrac{R_\mathrm G}{{\displaystyle\dfrac I{I_\max}}-1}=\dfrac{10^3}{{\displaystyle\dfrac1{10^{-4}}}-1}\approx0,1\;\;\mathrm{Ом}.

    В этом случае максимальному отклонению стрелки на шкале гальванометра соответствует ток в цепи силой `I=1` А.

    Для использования этого гальванометра в качестве вольтметра для измерения напряжений до `U=100` В необходимо последовательно с ним включить добавочное сопротивление, величину которого найдём из (16):

    `R_"д"=(U/U_max -1)R_G=((100)/(0,1)-1)*10^3=999` кОм.

    В этом случае максимальному отклонению стрелки на шкале гальванометра соответствует напряжение между точками подключения  `U=100` В.

    Пример 15

    Для измерения сопротивления `R` проводника собрана электрическая цепь, показанная на рис. 11. Вольтметр `V` показывает напряжение `U_V=5` В. Показание амперметра `A` равно `I_A=25` мА. Найдите величину `R` сопротивления проводника. Внутренне сопротивление вольтметра `R_V=1,0` кОм. Внутреннее сопротивление амперметра `R_A=2,0` Ом.

    Решение

    Ток `I_A`, протекающий через амперметр, равен сумме токов `I_V` и `I_R`, протекающих через вольтметр и амперметр соответственно. Напряжения на резисторе `U_R=I_R*R` и вольтметре `U_V=I_V*R_V` одинаковы и равны показанию `U_V` вольтметра. Таким образом, приходим к системе уравнений

    IA=IV+IR,UV=IV·RV=IR·R,\left\{\begin{array}{l}I_A=I_V+I_R,\\U_V=I_V\cdot R_V=I_R\cdot R,\end{array}\right.

    решение которой

    R=UVIA-UVRV=525·10-3-5103=250 Ом.R=\dfrac{U_V}{I_A-{\displaystyle\dfrac{U_V}{R_V}}}=\dfrac5{25\cdot10^{-3}-{\displaystyle\dfrac5{10^3}}}=250\;\mathrm{Ом}.

    определяет величину `R` сопротивления проводника по результатам измерений. Заметим, что для приведённой схемы величина внутреннего сопротивления амперметра оказалась несущественной: `R_A` не входит в ответ.


  • Введение

    Структура задания такова, что сначала вам предлагается краткое изложение теоретических положений, которые встретятся в тексте задания. Каждое положение сопровождается примерами, задачами или контрольными вопросами с подробными решениями или ответами. В конце задания вновь приводятся задачи и контрольные вопросы, которые позволят вам проверить, насколько хорошо вы усвоили пройденный материал.

    Если приводимые в тексте материалы покажутся сложными или непонятными, не огорчайтесь! Прочтите примеры и задачи с соответствующим разбором решений. Возможно, после этого всё станет на свои места.

    Контрольные вопросы и задачи, предлагаемые в задании, не выходят за рамки изложенного в задании материала, поэтому у тех, кто всё внимательно изучит, не должно возникать серьёзных затруднений.

    Задание по оптике разделено на две части. В первой части, которая сейчас находится перед вами, изложены закон прямолинейного распространения света, закон отражения, закон преломления. Во второй части рассматривается приближённая теория тонких линз.

    Напомним, что в геометрии и геометрической оптике углом называется фигура, состоящая из двух полупрямых с общей начальной точкой. Эта точка называется вершиной угла, а полупрямые – сторонами угла. Если стороны угла являются дополнительными полупрямыми одной прямой, то угол называется развёрнутым.

    Каждый угол имеет определённую градусную меру, большую нуля. Развёрнутый угол равен  `180^@`.

    Центральным углом в окружности называется угол с вершиной в её центре. Часть окружности, расположенная внутри такого угла, называется дугой окружности, соответствующей этому центральному углу. Градусной мерой дуги окружности называется градусная мера соответствующего центрального угла.

    Радианной мерой угла называется отношение длины соответствующей дуги окружности к её радиусу.

    Единицей радианной меры угла является радиан. Угол в `1` радиан – это угол, у которого длина дуги равна радиусу. Развёрнутый угол, выраженный в радианах, равен приблизительно `3,1415`. Этот угол договорились обозначать греческой буквой `pi`.

    В оптике, когда имеют дело с малыми углами, удобно выражать их не в градусах, а в радианах. Для малого угла `varphi` (радианная мера которого много меньше 1) справедливы соотношения:

    `cosvarphi~~1`,       `"tg"varphi~~sinvarphi~~varphi`.

    Вопрос 1

    С поверхности Земли угол `alpha`, под которым виден диск Солнца, равен приблизительно `0,53^@`. Чему равна радианная мера этого угла?

    Решение

    Составим пропорцию:  `x//0,53^@=pi//180^@`.

    Отсюда                `x=pi*0,53^@//180^@~~0,00925`  рад `~~9,3*10^(-3)` рад.


  • § 1. Прямолинейное распространение света

    Мы с вами начинаем изучать световые явления, точнее, их наиболее простую часть – геометрическую оптику. В качестве первого шага введём несколько новых понятий и постулатов.


    Будем считать, что свет – это поток мельчайших, не имеющих массы частиц – фотонов, мчащихся в пустоте с невероятно большой скоростью `c~~300000000  "м"//"с"=3*10^8  "м"//"с"`   (в физике и математике не принято писать числа с большим числом нулей. Вместо них пишут множитель в виде десятки, возведённой в соответствующую степень.) Скорость света столь велика, что вплоть до середины XIX века её не удавалось измерить в лабораторных условиях. Более того, многие физики считали её бесконечно большой. До поры до времени и мы можем придерживаться этой точки зрения.


    Весь наш жизненный опыт подсказывает, что в однородной среде свет (фотоны) распространяется вдоль прямой линии. Эту прямую мы будем называть световым лучом или лучом света. Этот экспериментальный факт возводится в ранг постулата.

    Постулат 1

    В однородной среде свет распространяется прямолинейно.

    Постулат 2

    Пересекающиеся световые лучи не взаимодействуют друг с другом.

    Все реальные источники света имеют конечные размеры, т. е. являются протяжёнными. Но если по смыслу задачи размерами источника света можно пренебречь, то говорят, что источник – точечный.


    Если между протяжённым источником и экраном поместить непрозрачный диск, плоскость которого параллельна плоскости экрана, то в той части экрана, из которой совсем не видно источник, будет тень. В тех точках экрана, которые диск частично закрывает от источника, наблюдатель увидит полутень (рис. 1.1).

    Пример 1.1 Задача.

    Папа Карло, рост которого `h=1,8` м, отбрасывает тень длиной `l=2,7` м, а Буратино даёт тень длиной `L=42` см. Каков рост `H` Буратино?

    Решение

    Длина тени папы Карло относится к его росту, как длина тени Буратино к его росту. Запишем это утверждение в виде пропорции: `h/l=H/L`, откуда находим

    `H=L h/l=28` см.

    Пример 1.2 Контрольный вопрос.

    В полдень Солнце освещает белый экран, лежащий на земле. В плоскости, параллельной экрану, поместили картонный диск, в результате чего на экране возникла тень. При измерении её диаметра:


    А) ни при каких обстоятельствах Солнце нельзя считать точечным источником;


    Б) Солнце можно считать точечным источником, если расстояние `L` от диска до экрана много больше диаметра  `D` диска;


    В) Солнце можно считать точечным источником, если расстояние `L` от диска до экрана примерно равно или меньше диаметра `D` диска.

    Решение

    Возьмём произвольную точку экрана, находящуюся в области тени. Радианная мера угла, под которым из этой точки виден поперечник диска, приближённо равна `D//L`. Солнце можно считать точечным источником света, если его угловой размер `alpha < <D//L`. Этому условию удовлетворяет вариант ответа В).



  • § 2. Камера-обскура

    Выполните дома следующий эксперимент: в середине листа плотной бумаги (подойдёт обложка от исписанной ученической тетради) проделайте квадратное отверстие со стороной `2` - `3` мм. Назовём это приспособление «маской». Прикрепите к стене экран (лист белой бумаги) и направьте на него свет от настольной лампы. Лампочка должна быть прозрачная, а не матовая! Расстояние от лампочки до экрана установите чуть более метра. Маску поместите между лампой и экраном на расстоянии `20` - `30` см от лампы. Эксперимент желательно проводить в вечернее время, когда в комнате полумрак. На экране появится светлое пятно от отверстия в маске. Попытайтесь до опыта, не читая текст следующего абзаца, предсказать форму этого пятна. Затем проделайте эксперимент. Совпала ли увиденная картинка с вашим предсказанием? Объясните форму светлого пятна, полученного в результате прохождения света сквозь отверстие в маске.

    Скорее всего, вы увидите на экране ломаную линию в виде буквы М. Это изображение нити накала лампочки. Ведь источник света – не точечный. От точечного источника изображение отверстия в маске имело бы квадратную форму. В нашем случае светлая полоска есть совокупность изображений маленьких квадратиков, даваемых каждой точкой спирали. Если же приблизить маску к экрану на расстояние в несколько см, то изогнутая линия превратится в квадрат, подобный отверстию в маске!

    Если у вас есть фотоаппарат со съёмным объективом, вы можете проделать ещё один интересный опыт. Выверните объектив и на его место вставьте удлинительное кольцо, переднюю поверхность которого предварительно следует заклеить плотной чёрной бумагой с маленьким отверстием в центре. Отверстие можно проколоть обычной иглой. Получившийся прибор называется камерой-обскурой. С её помощью можно делать вполне приличные фотографии. Важно только, чтобы фотографируемый объект был хорошо освещён. Фотоплёнка годится самая обыкновенная. В солнечный день можно сфотографировать улицу, дом, дерево и т. д. Правда, выдержка должна составлять несколько секунд и съёмку следует делать, надёжно закрепив фотоаппарат. Между прочим, именно так и делались первые фотографии.

    Задача 2.1 (экспериментальная)

    Определите среднее расстояние между витками нити накала лампочки, не разбивая её.

    Оборудование: настольная лампа (лампочка не должна быть матовой), фольга (например, от большой шоколадки), игла, лист белой бумаги, рулетка или измерительная лента (в крайнем случае подойдёт линейка).

    Решение

    Проделаем иглой отверстие в центре фольги. Прикрепим к стене лист белой бумаги. Это будет экран. Лампу следует установить на расстоянии около двух метров от экрана. Поместим между лампой и экраном фольгу так, чтобы изображение нити накала было видно на экране. Фольгу следует располагать ближе к лампе. Тогда изображение спирали (рис. 2.1) будет увеличенным в `b//a` раз. Чем большее увеличение мы хотим получить, тем больше должно быть отношение `b//a`. Пусть шаг спирали равен `H`, тогда `H//h=a//b`   и, следовательно,

                                                                                 `H=ha/b`.                                                         (2.1)

    Для более точного определения шага `h` изображения спирали следует измерить расстояние `l` между несколькими `k` витками. В этом случае `h=l/(k-1)`.

     

  • § 3. Законы отражения света. Плоские зеркала


    Возьмём какое-нибудь вещество с плоской гладкой поверхностью и направим на этуповерхность световой луч (рис. 3.1) (`vecS_1` - вектор, направленный вдоль падающего луча). В точке `O`, где луч упирается в плоскость, построим к плоскости внешнюю нормаль `vecN` (т. е. перпендикуляр) и, наконец, через луч `vecS_1` и нормаль `vecN` проведём плоскость `P`. Эта плоскость называется плоскостью падения. Из какого бы вещества ни состояла выбранная нами поверхность, некоторая часть падающего излучения отразится. В каком направлении пойдёт отражённый луч `vecS_2`?



    Было бы странно, если бы он отклонился от плоскости падения, например, вправо или влево: ведь свойства пространства с обеих сторон от этой плоскости одинаковы. К счастью, такого и не происходит.



    Острый угол, лежащий между лучом `vecS_1` и внешней нормалью `vecN`, называется углом падения. Обозначим этот угол символом `varphi_1`. Острый угол, образованный отражённым лучом `vecS_2` и нормалью (обозначим его `varphi_2`), называется углом отражения. Многочисленные наблюдения и измерения позволяют нам сформулировать следующий постулат геометрической оптики:




    Постулат 3

    Падающий луч `vecS_1`, нормаль `vecN` и отражённый луч `vecS_2` всегда лежат в одной плоскости, называемой плоскостью падения. Угол отражения равен углу падения, т. е.

     `varphi_2=varphi_1`.                                                             (3.1)



    Введём ещё одно определение. Угол `delta`, образованный продолжением луча, падающего на плоское зеркало, и лучом, отразившимся от зеркала, будем называть углом отклонения. Угол отклонения всегда меньше или равен `180^@`. Понятие угла отклонения можно трактовать и гораздо шире. В дальнейшем мы так будем называть угол, образованный продолжением луча, входящего в произвольную оптическую систему, и лучом, вышедшим из этой системы.


    Вопрос 2

    Определите угол отклонения луча, падающего на плоское зеркало. Угол падения `varphi_1=30^@`.

    Ответ

    Угол `alpha`, образованный падающим и отражённым лучами, равен сумме углов падения и отражения, т. е. `alpha=60^@`. Углы `alpha` и `delta` - смежные.  Следовательно,

    `delta=180^@-60^@=120^@`.



    Гладкая поверхность, которая отражает почти всё падающее на неё излучение, называется зеркальной. Напрашивается вопрос: почему «почти всё», а не «всё»? Ответ прост: идеальных зеркал в природе не бывает. Например, зеркала, с которыми вы встречаетесь в быту, отражают до `90%` падающего света, а оставшиеся `10%` частично пропускают, а частично поглощают.



    В современных лазерах применяются зеркала, отражающие до `99%` излучения и даже больше (правда, в довольно узкой области спектра, но об этом мы поговорим тогда, когда вы будете учиться в 11 классе). Для изготовления таких зеркал была разработана целая научная теория и организовано специальное производство.



    Чистая прозрачная вода тоже отражает часть падающего на её поверхность излучения. При падении света вдоль нормали к поверхности отражается чуть меньше `2%` энергии падающего излучения. С увеличением угла падения доля отражённого излучения возрастает. При угле падения, близком к `90^@` (скользящее падение), отражается почти все `100%` падающей энергии.



    Коснёмся кратко ещё одного вопроса. Не бывает и идеально гладких поверхностей. При достаточно большом увеличении поверхности зеркала на ней можно увидеть микротрещины, сколы, неровности, плоскость которых наклонена относительно плоскости зеркала. Чем больше неровностей, тем более тусклым кажется отражение предметов в зеркале. Поверхность белой писчей бумаги так сильно испещрена микроскопическими неровностями, что практически не даёт никакого зеркального отражения. Говорят, что такая поверхность отражает диффузно, т. е. разные крошечные участки поверхности бумаги отражают свет в разные стороны. Но зато такая поверхность хорошо видна из разных мест. Вообще, большинство объектов отражают свет диффузно. Диффузно отражающие поверхности используют в качестве экранов.



    Тем не менее, от бумаги можно получить зеркальное отражение ярких предметов. Для этого нужно смотреть на поверхность бумаги почти вдоль её поверхности. Лучше всего наблюдать отражение светящейся лампочки или Солнца. Проделайте такой эксперимент!


    При построении изображения некоторой точки `S` в плоском зеркале необходимо использовать, по крайней мере, два произвольных луча. Методика построения понятна из рис. 3.2. С практической точки зрения один из лучей (на рисунке это луч 1) целесообразно пустить вдоль нормали к плоскости зеркала.



    Принято называть изображение предмета, полученное в результате пересечения отражённых лучей, действительным, а изображение, полученное при мысленном пересечении продолжений этих лучей в обратном направлении, - мнимым. Таким образом,  `S_1` - мнимое изображение источника  `S` в плоском зеркале (рис. 3.2).


    Пример 3.1

    Лампочка настольной лампы находится на расстоянии `l_1=0,6` м от поверхности стола и `L_2=1,8` м от потолка. Нить накала лампочки можно считать точечным источником света. На столе лежит осколок плоского зеркала в форме треугольника со сторонами `5` см, `6` см и `7` см (рис. 3.3).

    1) На каком расстоянииот потолка находится изображение нити накала лампочки, даваемое зеркалом?

    2) Найти форму и размеры «зайчика», полученного от осколка зеркала на потолке (МФТИ, 1996).

    Решение

    Выполним рисунок, поясняющий смысл задачи (рис. 3.3). Обратите внимание на два обстоятельства:

    а) зеркало находится на столе на некотором произвольном расстоянии от лампы;

    б) изображение можно построить с помощью любых лучей, «отражённых» от плоскости, совпадающей с плоскостью зеркала (например, лучей `3^'` и `4^'`). Легко показать, что `SC=CS_1`, т. е. `L_3=L_1`. Следовательно, расстояние

    `x=2L_1+L_2=>x=2*0,6+1,8=3` м.

    Для определения формы и размера «зайчика» удобно рассмотреть лучи, «исходящие» от изображения `S_1`. Т. к. плоскость зеркала и потолка параллельны, форма «зайчика» будет подобна зеркалу. Найдём коэффициент подобия. Если длина стороны зеркала `h`, а соответствующая ей длина стороны «зайчика» равна `H`, то можно записать пропорцию:

    `h/H=L_3/x=(0,6 "м")/(3 "м")=1/5=>H=5h`.

    Таким образом, длины сторон «зайчика» равны `25` см, `30` см и `35` см соответственно.


    Пример 3.2 

    В первой комнате на столе стоит цветок `(F)`, а на стене у двери `(D)` висит зеркало `(M)`. В соседней комнате находится Мальвина `(G)` (рис. 3.4). Выберите правильное утверждение.

    А. Со своего места Мальвина не может видеть в зеркале мнимое изображение цветка `(F)`.

    Б. Со своего места Мальвина может видеть в зеркале своё изображение.

    В. Со своего места Мальвина не может видеть в зеркале действительное изображение цветка `(F)`.

                        


    Решение

    Выполним поясняющий рисунок (рис. 3.5). Для этого построим изображение `F^'` цветка. Оно будет мнимым.

    Прямая `F^'G` не перекрывается препятствиями, следовательно, Мальвина может видеть мнимое изображение цветка `(F^')`. Таким образом, ответ А не подходит. Свое изображение она видеть не может. Значит, и ответ Б не годится. Так как изображение цветка мнимое, Мальвина не может видеть действительное изображение цветка.

    Правильный ответ – В.









  • § 4. Система двух зеркал

    Совершенно иная картина получается при отражении точечного источника `S` в системе двух зеркал `M_1` и `M_2` (`M` - от английского mirror - зеркало).


    Рассмотрим характерный пример. Пусть два плоских зеркала образуют двугранный угол величиной `60^@`, между зеркалами находится точечный источник света `S`. В этом случае кроме двух мнимых изображений `S_1` и `S_2` источника `S` в зеркалах `M_1` и `M_2` можно будет увидеть изображения этих изображений (рис. 4.1).

    В самом деле: изображение `S_1` можно принять за новый точечный источник, который, отразившись в зеркале `M_2`, даст новое мнимое изображение `S_(12)`. Аналогичным образом изображение  получается в результате отражения второго мнимого точечного источника `S_2` в зеркале `M-1`. Наконец, источник `S_(12)`, отразившись в зеркале `M_1`, даст изображение `S_(121)`. С ним совпадает изображение `S_(212)`, получившееся в результате отражения источника `S_(21)` в зеркале `M_2`.

    Обратите внимание на то, что все изображения лежат на окружности радиуса `R`, равного длине отрезка `SO`. Таким образом, наблюдатель может увидеть в нашей системе зеркал `6` источников: настоящий источник `S` и пять его мнимых изображений: `S_1`, `S_2`, `S_(12)`, `S_(21)`, `S_(212)`, совпадающий с `S_(121)`.

    Внимание!

    Изображение `S_(212)` `(S_(121))` не может отразиться ни в зеркале `M_1`, ни в зеркале `M_2`, т. к. находится с их тыльной (не отражающей) стороны. На рисунке эта сторона зеркал показана штриховкой.

    Если два прямоугольных плоских зеркала, образующих прямой угол, поставить на третье зеркало, мы получим оптическую систему, состоящую из трёх взаимно перпендикулярных зеркал, известную, как «уголковый отражатель» или «катафот». Катафот обладает двумя очень интересными свойствами:

    1) одно из видимых в нём изображений находится в вершине угла, образованного всеми тремя зеркалами. Никакой поворот системы зеркал вокруг этой вершины не влияет на положение этого изображения;

    2) луч света, попавший в уголковый отражатель, обращается строго назад, откуда он пришёл, каким бы ни было это направление. Это замечательное свойство используется при изготовлении отражателей для дорожных указателей, велосипедов и автомашин.

    Такой отражатель в своё время с помощью космической ракеты доставили на Луну и затем по отражению лазерного луча, посланного к Луне с Земли, измерили с высокой точностью расстояние до нашего естественного космического спутника.

    Пример 4.1

    Два плоских зеркала `M_1` и `M_2` образуют угол `alpha`. Перед ними помещён точечный источник света `S` (рис. 4.2).

    Выберите правильное утверждение: в системе зеркал можно видеть только

    А) одно изображение источника света `S`;

    Б) два изображения источника света `S`;

    В) три изображения источника света `S`;

        

    Решение

    Выполним поясняющий рисунок (рис. 4.3). Одно изображение `S_1` даст зеркало `M_1`, другое изображение `S_2` даст зеркало `M_2`. Других изображений не будет, т. к. изображения `S_1` и `S_2` лежат с неотражающей стороны зеркал.

    Значит, правильный ответ Б).


  • § 5. Преломление света

    Направим в аквариум, наполненный водой, узкий пучок света `S_1`. Если угол падения





    не слишком велик, то большая часть света проникнет в воду. Рассуждая, как и в случае с отражением, мы можем утверждать, что прошедший в воду луч останется лежать в плоскости падения (рис. 5.1). Назовём острый угол `varphi_2`, лежащий между прошедшим лучом и нормалью `vecN`, проведённой к поверхности воды, углом преломления. Тщательные измерения показали, что между углом падения и углом преломления нет линейной зависимости (как в случае с отражением).

    Долгие годы учёные безуспешно пытались найти соответствующий закон. Только в 1621 году удача улыбнулась голландскому учёному Ван Снеллу (латинская транскрипция – Снеллиус). Впрочем, Снеллиус не опубликовал своё открытие, и закон преломления был повторно открыт в 1637 году знаменитым французским естествоиспытателем Рене Декартом. Математическая формулировка закона такова:

                                                                 `n_1sinvarphi_1=n_2sinvarphi_2`.                          (5.1)

    Здесь `n_1` и `n_2` - постоянные коэффициенты, характеризующие оптические свойства первой и второй среды (подстрочные  индексы указывают, какую среду характеризует соответствующий коэффициент). Называют эти коэффициенты показателями преломления среды. Из двух сред ту, у которой показатель преломления больше, называют оптически более плотной. Для разных сортов стекла `n` изменяется в пределах от `1,4` до `1,8`, но наиболее типичное значение составляет приблизительно `1,5`.

    Поменяем в формуле (5.1) местами левую и правую части:

    `n_2sinvarphi_2-n_1sinvarphi_1`.

    Новая запись означает, что теперь мы рассматриваем свет, распространяющийся из второй среды в первую. Если преломлённый луч отразится строго в обратном направлении, то он пойдёт вдоль того же пути, что и луч падающий. Поэтому говорят, что ход лучей обратим!

    Пример 5.1

    Луч света проходит границу раздела двух прозрачных сред (рис. 5.2). Выберите правильные утверждения.

    А) Угол падения больше `50^@`.

    Б) Угол преломления больше `45^@`.

    В) Показатель преломления света в среде (1) меньше, чем в среде (2).

             

    Решение

    Проведём внешнюю нормаль в точку падения светового луча на границу раздела сред (рис. 5.3). По определению углом падения называется острый угол между падающим лучом и нормалью.

    Из рисунка видно, что этот угол равен `45^@` т. е. ответ (А) не подходит. Аналогично, угол преломления `psi` меньше `45^@`, т. е. ответ (Б) тоже не подходит. Наконец, согласно закону Снелла

    `n_1/n_2=(sinvarphi_2)/(sinvarphi_1)<1`,

    т. е. ответ (В) верный.

    Пример 5.2

    На чертеже (рис. 5.4) экспериментатор Глюк изобразил отражение и преломление света на границе раздела воздуха и стекла. Не допустил ли Глюк ошибок? Если да, укажите их.

    Решение

    Проведём нормаль в точку падения светового луча на границу раздела сред (рис. 5.5). Видно, что угол отражения меньше угла падения, что неверно. Угол преломления равен `0^@`, что тоже неверно.







  • §6. Явление полного отражения

    Пустим узкий пучок света из среды оптически более плотной в среду оптически менее плотную `(n_1>n_2)`. Пусть сначала он идёт вдоль нормали к поверхности раздела этих сред. Будем постепенно увеличивать угол падения. При этом угол преломления будет возрастать ещё быстрее. Здесь уместно обратить ваше внимание на одну важную деталь: по мере того, как преломленные лучи все сильнее отклоняются к границе раздела двух сред, их интенсивность становится все меньше и меньше. Зато растёт интенсивность отражённого от границы раздела излучения.

    Существует угол падения `varphi_"п"`, называемый предельным углом полного отражения, при достижении которого в оптически менее плотную среду излучение вообще не проникнет. Все лучи отразятся обратно (поверхность раздела станет подобной идеальному зеркалу). Не проникнут лучи через границу раздела и при любом другом угле, большем угла `varphi_"п"`. Найти предельный угол полного отражения просто: в формуле (5.1), нужно положить угол `varphi_2=90^@`. При этом `sinvarphi_2=1`. Согласно закону Снелла:

                                                        `sinvarphi_"п"=n_2/n_1`.                                           (6.1)

    Пример 6.1

    Показатель преломления алмаза равен `2,42`. Найдите для него предельный угол полного отражения.

    Решение

    Из формулы (6.1) следует: `sinvarphi_"п"=1/(2,42)=0,413`.

    Отсюда легко найти значение самого угла `varphi_"п"~~24,5^@`.

    Пример 6.2

    Показатель преломления воды `n=4//3`. Луч света падает из воды на границу раздела вода - воздух под углом `varphi_1=60^@`. Выберите правильные утверждения.

    А) Свет будет распространяться во второй среде под углом `varphi_2>varphi_1`.

    Б) Свет будет распространяться во второй среде под углом `varphi_2<varphi_1`.

    В) Луч света испытает полное отражение.

    Решение

    Подстановка числовых данных в формулу (5.1) показывает, что правая часть больше `1`, следовательно, луч света не проникнет из воды в воздух. Правильный ответ В).

  • § 7. Кажущаяся глубина водоёма

    Наверно, вы не раз разглядывали в аквариуме или мелкой заводи рыбок или яркие камешки на дне. При этом, скорее всего, вы обращали внимание на то, что толщина водного слоя кажется меньше, чем есть на самом деле. Почему это происходит? Вспомним закон Снелла:

                                                               `sinvarphi_1=nsinvarphi`.                                      (7.1)                                                            

    Если угол падения `varphi` мал (параксиальное приближение), то (7.1) можно записать в приближённом виде:

                                                                         `varphi_1=nvarphi`.                                             (7.2)

    Теперь взглянем на рис. 7.1:

    lh=tgφ1φ1lH=tgφφn=φ1φ=Hhh=Hn.\left.\begin{array}{l}\dfrac lh=\mathrm{tg}\varphi_1\approx\varphi_1\\\dfrac lH=tg\varphi\approx\varphi\end{array}\right\}\Rightarrow n=\dfrac{\varphi_1}\varphi=\dfrac Hh\Rightarrow h=\dfrac Hn.                     (7.3)

    Из (7.3) видно, что глубина водоёма кажется меньше истиной приблизительно в `n` раз.

    Внимание!

    Формула (7.3) получена в параксиальном приближении. Если предметы, лежащие на дне водоёма, рассматривать под большим углом `varphi_1`, то глубина водоёма кажется ещё меньше.

    Пример 7.1

    Луч света падает из воздуха на невозмущённую водную поверхность под углом `varphi_1=10^@`. Найти угол преломления по точной формуле (7.1) и приближённой (7.2). На сколько процентов приближённый результат отличается от точного? Для воды `n=4//3`.


    Решение

    Согласно (7.1) `sinvarphi_2=sinvarphi_1//n`, откуда следует, что по точной формуле `varphi_2~~0,1306` рад, в то время как по приближённой формуле `varphi_2~~0,1309` рад. Относительная погрешность приближённых вычислений равна `0,5%`, т. е. менее одного процента!

    Пример 7.2

    Аквариум высотой `21` см заполнен глицерином, показатель преломления которого равен `1,4`. На этот аквариум сверху аккуратно поставили ещё один такой же аквариум, заполненный водой (её показатель преломления `4//3`). Какой казалась бы толщина слоя глицерина рыбке, плавающей в аквариуме с водой?

    Решение

    Толщина слоя глицерина `H=21` см. Если в левую часть формулы (7.1) подставить показатель преломления воды `n_1`, то для кажущейся глубины глицерина получится формула, аналогичная (7.3): `h=H n_1/n_2`.

     Подстановка в неё числовых данных даст `h=20` см.

    Указание

    При выполнении Задания не переписывайте условия контрольных вопросов и задач! Сразу записывайте их решение.

  • Введение

    Часть механики, изучающая условия, при которых тело находится в покое под действием нескольких сил, называется статикой

    В гидростатике рассматриваются силы, возникающие в системе, состоящей из покоящейся жидкости и помещённых в эту жидкость неподвижных тел.

    Силы, появляющиеся в системе из неподвижного газа и помещённых в него покоящихся тел, изучает наука аэростатика.

    В гидростатике и аэростатике используются многие понятия и законы механики и её составной части – статики. Поэтому перед чтением этого задания полезно повторить материал, касающийся понятий массы, плотности, силы, силы тяжести, веса тела, равнодействующей нескольких сил. Напомним кое-что из этого.

    Масса тела `m`, его объём `V` и плотность `rho` тела связаны формулой `m=Vrho`. Сила тяжести, действующая на тело массой `m`, приложена к телу и находится по формуле `F=mg`, где `g~~9,8  "Н"//"кг"=9,8  "м"//"с"^2`  – ускорение свободного падения. Вес тела массой `m` во многих случаях выражается тоже аналогичной формулой `Q=mg`, но вес `Q` приложен к подставке, на которой находится тело.

    Сила, которая оказывает на тело такое же действие, как и несколько одновременно действующих сил, называется равнодействующей этих сил. Если тело находится в покое, то равнодействующая сила равна нулю. В частности, если на тело действуют две силы и тело находится при этом в покое, то эти силы равны по модулю и противоположны по направлению.

    Несколько слов о контрольных вопросах и задачах, предлагаемых в конце задания. Часть вопросов и задач простые, часть сложные. Не смущайтесь, если некоторые из них Вам не удастся решить. У Вас будет возможность вернуться к этому заданию, когда Вы получите назад свою проверенную работу и официальное решение этого задания.

    Желаем удачи!

  • § 11. Закон Паскаля. Сообщающиеся сосуды

    Пусть жидкость (или газ) заключена в замкнутый сосуд (рис. 17).

    закон Паскаля

    Давление, оказываемое на жидкость в каком-либо одном месте на её границе, например поршнем, передаётся без изменений во все точки жидкости – закон Паскаля.

    Закон Паскаля справедлив и для газов. Этот закон можно вывести, рассматривая условия равновесия произвольных, мысленно выделенных в жидкости цилиндрических объёмов (рис. 17) с учётом того, что жидкость давит на любую поверхность только перпендикулярно ей.   

    Используя этот же приём, можно показать, что из-за наличия однородного поля тяжести разность давлений на двух уровнях жидкости, отстоящих по высоте друг от друга на расстоянии `H`, даётся соотношением `Deltap=rhogH`, где `rho` - плотность жидкости. Отсюда следует

    закон сообщающихся сосудов:

    в сообщающихся сосудах, заполненных однородной жидкостью, давление во всех точках жидкости, расположенных в одной горизонтальной плоскости, одинаково независимо от формы сосудов.

    При этом поверхности жидкости в сообщающихся сосудах  устанавливаются на одном уровне (рис. 18).

    Давление, которое появляется в жидкости из-за поля тяжести, называется гидростатическим. В жидкости на глубине `H`, считая от поверхности жидкости, гидростатическое давление равно `p=rhogH`. Полное давление в жидкости складывается из давления на поверхности жидкости (обычно это атмосферное давление) и гидростатического.

                 

  • § 12. Закон Архимеда

    На поверхность твёрдого тела, опущенного в жидкость (газ), действуют силы давления. Эти силы увеличиваются с глубиной погружения, и на нижнюю часть тела будет действовать со стороны жидкости большая сила, чем на верхнюю. Появляется так называемая выталкивающая сила, называемая ещё силой Архимеда.

    Выталкивающая сила – это сумма всех сил, действующих на поверхность  погружённого в   жидкость   тела,   со   стороны   жидкости (рис. 19). Истинная  причина  появления выталкивающей силы – наличие различного гидростатического давления в разных точках жидкости.

    Для нахождения силы Архимеда мысленно заменим тело жидкостью в объёме тела (рис. 20). Ясно, что выделенный объём жидкости будет неподвижен относительно остальной жидкости. На него со стороны окружающей жидкости будет действовать такая же сила, как и на погружённое тело. Напомним, что эту силу мы назвали выталкивающей. По  третьему закону Ньютона, выделенная в объёме  тела  жидкость (вытесненная  телом)  будет действовать  на  окружающую  жидкость с той же по модулю, но противоположно направленной силой. Эта сила называется по определению весом вытесненного объёма жидкости. Вспомним, что весом тела неподвижного в некоторой системе отсчёта (не обязательно инерциальной) называется сила, с которой тело действует на подставку или тянет за подвес.

    В нашем случае роль подставки (подвеса) для выделенного объёма жидкости играет окружающая жидкость. Итак,  

    закон Архимеда

    выталкивающая  сила, действующая на тело, погружённое в жидкость, равна по модулю весу  вытесненной жидкости и противоположно ему направлена. Это и есть закон Архимеда.

    Заметим, что в формулировке закона говорится о весе вытесненной  жидкости, а не о силе тяжести. И это весьма существенно, т. к. вес тела не всегда совпадает с силой тяжести, действующей на него. Например, ящик массы `m` в кабине поднимающегося вверх с ускорением `a` лифта давит на пол с силой `m(g+a)`. Это значит, что вес ящика будет`Q=m(g+a)`, в  то  время как  сила тяжести, действующая  на ящик, будет `mg`.

    Теперь ясно, что выталкивающая сила появляется тогда, когда нет состояния невесомости, т. е. когда любое тело (в том числе и жидкость) имеет вес. Причиной возникновения веса в некоторой системе отсчёта могут быть поле тяжести или наличие ускорения у этой системы отсчёта (по отношению к инерциальной системе отсчёта). Если сосуд с жидкостью свободно падает, то жидкость находится в состоянии невесомости и на погружённое в неё тело сила Архимеда не действует. Не действует эта сила и в космическом корабле, двигатели которого не работают.

    При доказательстве закона Архимеда мы считали, что тело полностью погружено в жидкость и вся поверхность тела соприкасается с жидкостью. Если часть поверхности тела плотно прилегает к стенке или дну сосуда так, что между ними нет прослойки жидкости, то закон Архимеда не применим.

    Яркой иллюстрацией к сказанному служит опыт, когда ровную нижнюю поверхность деревянного кубика натирают парафином и плотно приставляют ко дну сосуда. Затем осторожно наливают воду. Брусок не всплывает, т. к. со стороны воды на него действует сила, прижимающая его ко дну, а не выталкивающая вверх  (рис. 21). Известно, что это явление представляет опасность для подводной лодки, лёгшей на грунт.

    Приведённая формулировка закона Архимеда остаётся  справедливой и  в  случае, когда тело плавает в жидкости или частично опущено в неё через свободную, т. е. не соприкасающуюся со стенками сосуда, поверхность жидкости. Доказательство аналогично случаю полностью погружённого в жидкость тела.

    Нам осталось научиться находить вес вытесненной жидкости и линию действия выталкивающей силы. В общем случае это не так легко сделать, что видно на примере погружения тела в жидкость, вращающуюся вместе с сосудом.

    Рассмотрим наиболее простой и часто встречающийся на практике случай. Пусть сосуд с жидкостью неподвижен в некоторой инерциальной системе отсчёта и находится в однородном поле тяжести. Например, кастрюля с водой на столе, озеро в лесу и т. д. Тогда, как известно, вес любого неподвижного тела равен силе тяжести, действующей на тело. Поэтому, вес вытесненной жидкости равен силе тяжести, действующей на неё, а выталкивающая сила равна по модулю этой силе тяжести и противоположно ей направлена. Линия действия выталкивающей силы будет проходить через центр тяжести вытесненного объёма жидкости.

    Действительно, на этот объём жидкости действуют две силы – сила тяжести `mvecg`, приложенная в центре тяжести (ц. т.), и выталкивающая сила `vecF` (рис. 22). Так как выделенный объём жидкости находится в равновесии, то сумма моментов этих двух сил относительно любой оси, проходящей через ц. т., должна быть равна нулю. Момент силы тяжести равен нулю, а значит, и момент выталкивающей силы тоже нуль,   т. е. линия действия выталкивающей силы проходит через ц. т. вытесненного объёма жидкости. Так как точку приложения силы можно переносить вдоль линии её действия, то обычно точку приложения выталкивающей силы помещают в ц. т. вытесненной жидкости (т. `C` на рис. 22) и называют эту точку центром давлений, поскольку выталкивающая сила есть сумма всех сил давления со стороны жидкости на поверхность погружённого в неё тела.

    Обратите внимание на то, что ц. т. вытесненного телом объёма жидкости может и не совпадать с ц. т. самого тела. Погрузите полностью в воду, например, кусок льда с вмёрзшим в него стальным болтом.


    Задача 10

    Тонкий однородный стержень, укреплённый вверху шарнирно (рис. 23), опущен в воду так, что две трети стержня оказались в воде. Определите плотность материала стержня, считая плотность воды известной.

    Решение

    На стержень действуют сила тяжести стержня `mvecg`, приложенная в центре стержня, сила Архимеда `vecF`, приложенная в центре давлений, т. е. в центре погружённой в воду части стержня, и сила реакции шарнира, проходящая через т. `A`  (на рис. не показана).

    Стержень находится в равновесии. Поэтому сумма моментов относительно оси `A` всех действующих на стержень сил равна нулю. Обозначим угол стержня с вертикалью через `alpha`, а длину стержня через `l`. Имеем:    

    `mgl/2 sinalpha-F*2/3 lsinalpha=0`.

    Пусть `S` - площадь поперечного сечения стержня, `rho` - плотность материала  стержня, `rho_0=1 "г"//"см"^3` - плотность  воды. Тогда масса стержня `m=rholS`, а сила Архимеда `F=rho_0  2/3 lSg`. Из записанных уравнений находим `rho=8/9 rho_0~~0,9 "г"//"см"^3`.

  • Введение

    Традиционно курс физики начинается с изучения механического движения, которое определяют как изменение положения тел или их частей в пространстве относительно друг друга с течением времени. Уже описание движения простейшего объекта - материальной точки (тела, размерами которого в данной задаче можно пренебречь) - требует введения векторных величин: радиус-вектора `vec r (t)` (характеризующего положение точки в пространстве в каждый момент времени `t`), вектора перемещения `Delta vec r` (рис. 1), скорости и др.

    Рис. 1


    Что же такое векторная величина? Напомним, что некоторые физические величины полностью характе­ризуются единственным числом, которое выражает отношение этой величины к единице измерения. Такие величины называются скалярными. Простейшие примеры их - масса, плотность, температура. Так, температура в Москве `25^@ "C"` полностью задана одним числом (`25^@ "C"`); нельзя, например, сказать, что она направлена под каким-то углом к горизонту, температура никуда не направлена. То же самое относится к массе тела (но не к силе тяжести!), плотности вещества.


    С другой стороны, для характеристи­ки таких физических величин, как перемещение, скорость, сила, необходимо также знать и их направление. Такие величины называются векторными. Они являются предметом изучения специального раздела математики, называемого векторной алгеброй.

  • §1. Определение вектора. Операции над векторами

    1. Основные определения

    Удивительно, но с векторными величинами разной природы (перемещением, скоростью, силой, импульсом и др.) можно работать в значительной мере единообразно - как с геометрическими объектами - геометрическими векторами, или просто векторами, хотя есть и нюансы (см. ниже).

    Определение

    Вектор пред­ставляет собой направленный отрезок прямой, для которого определены правила (законы) сложения с другими векторами, правило вычитания векторов, правило умножения вектора на число, скалярное произведение двух векторов и некоторые другие операции.

    Стрелка компаса - не вектор, т. к. для неё нет таких операций.

    Мы будем рассматривать векторы на плоскости и в соответствии со сложившейся традицией обозначать их латинскими буквами со стрелками наверху, например: `vec v`, `vec F`, `vec a`, `vec b` и т. п. Часто в целях экономии используют упрощённое обозначение - букву с чертой, например, `bar v` или `bar F`.

    Одну из граничных точек вектора называют его началом, а другую - концом. Направление вектора задаётся от начала к концу, причём на чертеже конец вектора отмечают стрелкой. Начало вектора называют также точкой его приложения. Если точка `A` является нача­лом вектора `vec a`, то мы будем говорить, что вектор `vec a` приложен в точке `A` (рис. 2).

    Число, выражающее длину направленного отрезка, называют модулем вектора и обозначают той же буквой, что и сам вектор, но без стрелки наверху, например: модулем вектора `vec v` является число `v`. Часто для обозначения модуля вектора прибегают к помощи знака абсолютной величины и пишут, например, `|vec v|` или `|vec F|`.

    Вектор называется нулевым, если его начало и конец совпадают. Нулевой вектор не имеет определённого направления и его длина (модуль) равна нулю.

    Векторы называются коллинеарными, если они лежат либо на одной прямой, либо на параллельных прямых. Так, например, на рис. 3 векторы `vec a`, `vec b` и `vec c` коллинеарны. 

    Два вектора называются равными, если они коллинеарны, имеют одинаковую длину и одинаковое направление.

    На рис. 4 слева изображены неравные векторы `vec a` и `vec f`, `vec g` и `vec h`, а справа - равные векторы `vec p` и `vec q`. Точка приложения геометрического вектора `vec a` может быть выбрана произвольно. Мы не различаем двух равных векторов, имеющих разные точки приложения и получающихся один из другого параллельным переносом. В соответствии с этим векторы, изучаемые в геометрии, называют свободными (они определены с точностью до точки приложения).

    В физике точка приложения вектора иногда имеет  принципиальное значение. Достаточно вспомнить рычаг: две равные по модулю силы, направленные в одну и ту же сторону, производят на рычаг разное действие, если плечи сил не равны друг другу. И всё же сами силы равны друг другу! Бывают и случаи, когда вектору трудно приписать конкретную точку приложения. Например, если одна система отсчёта движется  относительно другой со скоростью `vec v`, то какой точке  приписать эту скорость?  Всем точкам движущейся системы!

    2. Сложение двух векторов.

    Пусть даны два произвольных вектора `vec a` и `vec b` (рис. 5а). 

    Для нахождения их суммы нужно перенести вектор `vec b` параллельно самому себе так, чтобы его начало совпало с концом вектора `vec a`. Тогда вектор, проведённый из начала вектора `vec a` в конец перенесённого вектора `vec b`, и будет являться суммой `vec a` и `vec b`. На рис. 5б - это вектор `vec c`.

    Описанное правило есть просто определение суммы векторов. Как и в случае с числами, сумма векторов не зависит от порядка слагаемых, и поэтому можно записать

    `vec c = vec a + vec b = vec b + vec a`.                                                 (1)

    Приведённое выше правило геометрического сложения векторов называется правилом треугольника.

    Сумма векторов может быть найдена и по правилу параллелограмма. В этом случае параллельным переносом нужно совместить начала векторов `vec a` и `vec b` и построить на них, как на сторонах,  параллелограмм. Тогда сумма `vec a` и `vec b` будет представлять собой диагональ этого параллелограмма, конкретно - суммой `vec a` и `vec b` будет вектор, начало которого совпадает с общим началом векторов `vec a` и `vec b` конец расположен в противоположной вершине параллелограмма, а длина равна длине указанной диагонали (рис. 5в).

    Оба способа сложения дают идентичный результат и одинаково часто применяются на практике. Когда речь идёт о нахождении суммы трёх и более векторов, часто последовательно используют  правило  треугольника. Поясним сказанное.

    3. Сложение трёх и более векторов. 

    Пусть нужно сложить три вектора `vec a`, `vec b` и `vec d` (рис. 6). 

    Для этого  по правилу треугольника сначала находится сумма любых двух векторов, например `vec a` и `vec b`, потом полученный вектор `vec c = vec a + vec b` по тому же правилу складывается с третьим  вектором  `vec d`. Тогда  полученный  вектор `vec f = vec c + vec d` и  будет представлять собой сумму  трёх  векторов `vec a`, `vec b` и `vec d`: `vec f = vec a + vec b + vec d`. Как и в случае с двумя векторами, порядок слагаемых не влияет на конечный результат.

    Чтобы упростить процесс сложения трёх и более векторов, обычно не находят промежуточные суммы типа `vec c = vec a + vec b`, а применяют правило многоугольника: параллельными переносами из конца первого вектора откладывают второй, из конца второго - откладывают третий, из конца третьего  - четвёртый  и  т.  д. 

    Так,  на рис. 7 вектор  `vec g`  представляет собой сумму векторов `vec a`, `vec b`, `vec d`, `vec e`,  найденную по правилу многоугольника: `vec g = vec a + vec b + vec d + vec e`.

    Замечание

    Не всякая векторная сумма может иметь физический смысл. Не всякие величины вообще имеет смысл складывать. Так,  например, бессмысленно говорить, что, если у меня температура `36,6^@` и у вас тоже `36,6^@`, то вместе у нас температура `73,2^@`, хотя складывать температуры (числа) никто не запрещает. Всё же чаще всего сумма температур представляет собой никому не нужную величину; она редко входит в какие-либо уравнения (входит почти случайно).

    Иное дело – с массой. Если система состоит из тел с массами `m_1`, `m_2`, `m_3` и т. д., то масса всей системы равна `m = m_1 + m_2 + m_3 + ` и т. д. (Если на лифте написано, что максимальный груз, перевозимый лифтом, равен `500` кг, то перед входом в лифт нужно убедиться, что сумма масс вносимых в лифт грузов не превышает `500` кг.) Говорят, что масса – есть аддитивная величина (от английского слова add – добавлять, прибавлять, складывать). А вот температура – не аддитивная величина.

    Сила есть аддитивная векторная величина. Если к телу в точке (или к системе тел в разных точках!) приложены силы `vec(F_1)`, `vec(F_2)`, `vec(F_3)` и т. д., то сумма векторов сил `vec(F_1) + vec(F_2) + vec(F_3) + ...` есть осмысленная и даже очень нужная величина. Например, в условиях равновесия тела сумма всех приложенных к нему сил `vec(F_1) + vec(F_2) + vec(F_3) + ... = 0`, даже если силы приложены в разных точках тела. Причём это относится не только к твёрдым телам. Если нитка подвешена за два конца к двум гвоздям, а в промежутке перекинута еще через какие-нибудь гвозди, то сначала нужно найти силы со стороны каждого из гвоздей и  силу со стороны Земли (силу тяжести) `vec F_1`, `vec(F_2)`, `vec(F_3)`, `…`; при этом говорят, что к нитке приложена сумма сил `vec(F_1) + vec(F_2) + vec(F_3) + ...`; в условиях равновесия эта сумма будет равна нулю.

    Не так со скоростями. Если система состоит из двух частиц, имеющих в некоторый момент времени скорости `vec(v_1)` и `vec(v_2)`, то это не означает, что в этот момент вся система обладает скоростью равной векторной сумме `vec(v_1) + vec(v_2)`. Никто не запрещает складывать векторы скорости разных частиц; но с точки зрения физики вектор `vec(v_1) + vec(v_2)` ничему приписать нельзя. В этом смысле скорость - не аддитивная величина. Суммой скоростей (векторной суммой) интересуются, когда одно движение накладывается на другое (например, Земля вращается вокруг Солнца, но вместе с Солнцем движется вокруг центра Галактики). А вот сумма скоростей отдельных частиц системы (например, сумма скоростей звезд в Галактике) физического интереса не представляет.

    Родственная скорости величина, с которой вы еще не раз встретитесь в курсе физики, импульс материальной точки, равный произведению массы на скорость, `vec p = m vec v` снова - величина аддитивная.

    В последнем равенстве мы встречаемся с умножением вектора на скаляр. Поясним эту процедуру.

    4. Умножение вектора на скаляр. 

    Произведением вектора `vec a` на число `k` называют новый вектор `vec b = k vec a`, коллинеарный вектору `vec a`, направленный в ту же сторону, что и вектор `vec a`, если `k > 0`, и в противоположную сторону, если `k < 0`, а модуль `b` равен

     `b = |k| a`                                                                                (2)

    где `|k|` - абсолютная величина числа `k`. 

    Если два вектора коллинеарны, то они отличаются только скалярным множителем. Наоборот, если два вектора отличаются только ска­лярным множителем, не равным  нулю, то они коллинеарны.      

    В случае, когда `k = 0` или `vec a = 0`, произведение `k vec a` представляет собой нулевой  вектор,  направление которого не определено.

    Если `k = 1`, то согласно (2) `vec b = vec a` и векторы `vec a` и `vec b` равны (рис. 8а).

    При `k = - 1` получим `vec b = - vec a`. Вектор `- vec a` имеет модуль, равный модулю вектора `vec a`, но направлен в противоположную сторону (рис. 8б).

    Два  вектора,  противоположно  направленные и имеющие  равные длины, называются противоположными.

    Импульс тела `vec p = m vec v` коллинеарен вектору скорости и направлен с ней в одну сторону, т. к. массы всех тел положительны. Чуть ранее говорилось об аддитивности импульса. Если система состоит из материальных точек с массами `m_1`, `m_2`, `m_3`, `...`, которые в некоторый момент времени имели скорости `vec(v_1)`, `vec(v_2)`, `vec(v_3)`, `…`, т. е. имели импульсы `vec(p_1) = m_1 vec(v_1)`, `vec(p_2) = m_2 vec(v_2)`, `vec(p_3) = m_3 vec(v_3)`, `…`, то вся система в этот момент обладает импульсом  

    `vec p = vec(p_1) + vec(p_2) + vec(p_3) + ... = m_1 vec(v_1) + m_2 vec(v_2) + m_3 vec(v_3) + ...`.

    При этом каждое из слагаемых здесь должно быть найдено по правилу умножения вектора (скорости данной частицы) на скаляр (её массу), а затем все эти векторы должны быть сложены, например, по правилу многоугольника.

    Вычесть из вектора `vec a` вектор `vec b` означает прибавить к вектору `vec a` вектор   `- vec b`:

    `vec a - vec b = vec a + (- vec b)`


  • §2. Проекция вектора на заданное направление

    1. Проекция вектора на заданное направление. 

    Пусть заданы два вектора `vec a` и `vec b`. Приведём эти векторы к одному началу `O` (рис. 10). Угол, образованный лучами, исходящими из точки `O` и  направленными вдоль векторов `vec a` и `vec b`, называют углом между векторами `vec a` и `vec b`. Обозначим этот угол через `alpha`.

    Число `a_b = a cos alpha` называется проекцией вектора `vec a` на направление вектора `vecb`. Проекция вектора `vec a` получается, если из его конца опустить перпендикуляр на направление вектора `vec b` (рис. 10), тогда расстояние от общего  начала векторов - точки `O` - до точки пересечения указанного перпендикуляра с прямой, на которой лежит вектор `vecb`,  будет равно модулю проекции вектора `vec a` на направление вектора `vec b`.

    Угол `alpha` может принимать различные значения, поэтому в зави­симости от знака `cos alpha` проекция может принимать положительные, отрицательные значения или нуль. Например, если угол `alpha` тупой, т. е. больше, чем `90^@`, но меньше `180^@`,  то косинус такого угла отрицателен (см. рис. 11).

    Проекция равна нулю, если направления векторов `vec a` и `vec b` взаимно перпендикулярны (см. рис. 12).

    Проекции равных векторов на любые направления равны друг другу. Проекции противоположных векторов отличаются знаком.

    Легко показать, что проекция суммы векторов равна алгебраической сумме их проекций и что при умножении вектора на число его проекция умножается на то же число.

    2. Разложение вектора.

    До сих пор мы говорили о сложении векторов. Для решения многих задач бывает необходимо произвести обратную процедуру - разложить вектор на составляющие, например, найти несколько сил, которые своим совместным действием могли бы заменить одну данную силу. Такая операция называется разложением сил.

    Пусть на плоскости задан вектор `vec a` и две пересекающиеся в точке `O`  прямые `AO` и `OB` (см. рис. 13).

    Вектор `vec a` можно представить в виде суммы двух векторов, направленных вдоль заданных прямых. Для этого параллельным переносом совместим начало вектора `vec a` с точкой `O` пересечения прямых. Из конца вектора `vec a` проведём два отрезка прямых, параллельных `AO` и `OB`.  В результате получится параллелограмм. По построению

    `vec a = vec(a_1) + vec(a_2)`                                                                            (*)

    Векторы `vec(a_1)` и `vec(a_2)` называются составляющими вектора `vec a` по заданным направлениям, а само представление вектора в виде суммы (*) - разложением вектора по двум направлениям.

    Пример 1

    В чём разница между проекцией вектора на ось и составляющей (компонентой) вектора вдоль этой оси?

    Ответ

    Проекция вектора - скаляр; составляющая вектора вдоль этой оси - вектор, направленный вдоль этой оси.

    Пример 2

    Пусть `a = 1`, угол между прямыми `AO` и `OB` равен `varphi = 45^@`, а угол между векторами `vec a` и `vec(a_1)` равен `varphi = 15^@`.    Определите модули векторов `vec a_1` и `vec a_2` в разложении (*), а также значения проекций вектора `vec a` на направления `vec(a_1)` и `vec(a_2)` (см. рис. 13).

    Решение

    `a_(a1) = a cos varphi_1 ~~ 0,97`, `a_(a2) = a cos varphi_2 = cos 30^@ ~~ 0,87`.

    Далее по теореме синусов , `a_1/(sin varphi_2)  = a/(sin (180^@ - varphi_1 - varphi_2))`,

    откуда  `a_1 = (sin varphi_2)/(sin (varphi_1 + varphi_2)) = (sin 30^@)/(sin 45^@) ~~ 0,71`

    и аналогично `a_2 = (sin 15^@)/(sin 45^@) ~~ 0,37`.

    3. Проектирование вектора на оси координат. 

    Особенно важен частный случай разложения вектора по двум взаимно перпендикулярным направлениям. Пусть на плоскости задана прямоугольная система координат `xOy` и некоторый вектор `vec a`. Отложим из начала координат вдоль положительного направления осей `Ox` и `Oy` векторы `vec i` и `vec j` соответственно такие, что `|vec i| = 1` и `|vec j| = 1`. Векторы `vec i` и `vec j`  назовём единичными векторами.

    Перенесём  вектор `vec a` так,  чтобы его начало совпало с началом координат. Пусть  в  этом положении он изображается направленным отрезком `AO` (рис. 14).

    Опустим из точки `A` перпендикуляры на оси `Ox` и `Oy`. Тогда  векторы `vec(a_x)` и `vec(a_y)` будут  составляющими  вектора `vec a` по координатным осям, причём вектор `vec(a_x)` будет коллинеарен вектору `vec i`, а вектор `vec(a_y)` - коллинеарен вектору `vecj`. Следовательно, существуют такие  числа `a_x` и `a_y`, что `vec(a_x) = a_x vec i` и `vec(a_y) = a_y vec j`. Таким образом, вектор `vec a` может быть представлен в виде разложения по осям:

    `vec a = vec(a_x) + vec(a_y) = a_x vec i + a_y vec j`.                                                         (3)

    Числа `a_x` и `a_y` суть проекции вектора `vec a` на направления векторов `vec i` и `vec j` соответственно, то есть на оси `Ox` и `Oy`. Используется и иная, чем (3), форма записи векторов, а именно `vec a = (a_x ; a_y)`.

    Иногда говорят о составляющей вектора вдоль одной единственной оси - без указания второй. Просто молчаливо предполагается, что вторая ось перпендикулярна первой (но почему-то не нарисована).

    Пусть угол между положительным направлением оси `Ox` и вектором `vec a` равен `alpha` (рис.14). Тогда `a_x = a cos alpha`, `a_y = a sin alpha`.

    В зависимости от значения угла `alpha` проекции вектора `vec a` на оси прямоугольной системы координат могут быть положительными, отрицательными или равными нулю.

    Зная проекции вектора `vec a` на оси координат, можно найти его вели­чину и направление по формулам:

    `a = sqrt( a_x^2 + a_y^2)`                                                                                 (4)

    и 

    `"tg"  alpha = (a_y)/(a_x)`                                                                                 (5)

    причём знаки `a_x` и `a_y` будут указывать на то, какому квадранту при­надлежит значение `alpha`.

    4. Пусть теперь нам задано векторное равенство `vec a + vec b = vec c` (рис. 15).

    Проектируя все векторы на оси координат, получим очевидные равенства 

    `c_x = a_x + b_x`,  `c_y = a_y + b_y`,

    или

    `c_x = a cos alpha + b cos beta`,

    `c_y = a sin alpha + b sin beta`,

    т. е. по проекциям  векторов `vec a` и `vec b` легко находятся проекции суммарного вектора `vec c`.