Все статьи » ЗФТШ Информатика

Статьи , страница 5

  • §1. Алфавит языка Pascal

    Изучение любого нового языка всегда начинается с алфавита. В алфавит языка Pascal входят следующие элементы:     

    1) Заглавные и строчные латинские буквы, символ подчёркивания (по грамматике языка символ подчёркивания считается буквой): _, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z.

    2) Цифры: `1, 2, 3, 4, 5, 6, 7, 8, 9, 0`.

    3) Знаки операций: + (плюс), (минус), * (умножить), / (разделить), < (меньше), > (больше), <= (меньше или равно), > = (больше или равно), = (равно), <> (не равно). Последний знак состоит из знаков «меньше» и «больше», записанных без пробелов.

    4) Знаки пунктуации, специальные символы:


     { } или (* *) Скобки комментариев
    [] Выделение индексов массивов, элементов множеств
    '   ' Выделение символа или строковой константы
    (   ) Выделение выражений, списков параметров

    := 

    Знак оператора присваивания

    ; Разделение операторов и объявлений
    : Отделение переменной или константы от типа.
    Отделение метки от оператора

    =

    Отделение имени типа от описания типа.
    Отделение константы от её значения
    , Запятая для разделения элементов в списке
    .. Разделение границ диапазона
    . Конец программы, отделение целой части
    от дробной
    # Обозначение символа по его коду

    В таблице приведены не все знаки пунктуации, а лишь те, которые будут использоваться при дальнейшем изложении.

    5) Служебные зарезервированные слова.

    Некоторые слова имеют предопределённое значение и используются в качестве элементов при построении сложных конструкций языка. Приведём список зарезервированных служебных слов, которые нам понадобятся в дальнейшем:

    and, array, begin, case, const, div, do, downto, end, for, if, mod, not, of, or, program, repeat, string, then, to, type, until, var, while, xor.

  • § 13. Пример задачи на сочетание оператора цикла и условного оператора
    задача 4

    Требуется составить программу определения наибольшего общего делителя (НОД) двух натуральных чисел.

    Решение

    Одним из простейших алгоритмов нахождения наибольшего общего делителя является Алгоритм Евклида. Идея этого алгоритма основана на том свойстве, что если `M>N`, то  `"НОД"(M, N)="НОД"(M-N, N)`.

    Иначе говоря, НОД двух натуральных чисел равен НОД их положительной разности (модуля их разности) и меньшего числа.

    var M, N: integer;
    begin
         writeln('Введите М и N');
         readln(M, N);
         while M<>N do
              begin
                   if M>N
                   then M:=M-N
                   else N:=N-M
         end;
         write('Н0Д=',М)
    end.


  • 1.3 Примеры решения задач по теме «Математическая теория информации»

    Задача 1

    В велокроссе участвуют `130` спортсменов. Специальное устройство регистрирует прохождение каждым из участников промежуточного финиша, записывая его номер с использованием минимально возможного количества бит, одинакового для каждого спортсмена. Каков информационный объём сообщения, записанного устройством, после того как промежуточный финиш прошли `75` велосипедистов?

    Решение

    Первым делом нужно определить, сколько бит необходимо для кодирования `130` номеров спортсменов. Поскольку номера записываются в некотором устройстве, количество бит для кодирования каждого номера обязательно должно быть целым: `H=log_2  130`.  После округления результата в большую сторону получим число `8`. Следовательно, для кодирования `1` номера необходим `1` байт. Таким образом, информационный объём сообщения, записанного устройством, составляет `75` байт.


    Задача 2

    В некоторой стране автомобильный номер состоит из `7` символов. В качестве символов используют `18` различных букв и десятичные цифры в любом порядке.

    Каждый такой номер в компьютерной программе записывается минимально возможным и одинаковым целым количеством байтов, при этом используют посимвольное кодирование и все символы кодируются одинаковым и минимально возможным количеством битов.

    Определите объём памяти, отводимый этой программой для записи `60` номеров.

    Решение

    Первое действие аналогично предыдущей задаче – нужно установить, каким количеством бит кодируется `1` символ. Всего используется `18` букв и `10` десятичных цифр, то есть `28` символов. По формуле  Хартли `H=log_2  28`.  После  округления  получается `5` бит на `1` символ. Вторым действием нужно узнать, какой объём памяти занимает `1` номер. Поскольку номер состоит из `7` символов, а каждый символ кодируется `5` битами, нам потребуется `35` бит памяти для хранения `1` номера. Однако по условию каждый номер должен записываться целым количеством байтов, а в каждом байте `8` бит. Ближайшее сверху к `35` число, делящееся на `8` – это число `40`, следовательно, на каждый номер отводится `5` байт. Таким образом, для записи `60` номеров программе потребуется `60*5 = 300` байт памяти.

    Задача 3

    Сигналы с судна на берег передают, используя различное положение рук. Каждая рука может быть поднята вверх, отведена в сторону или опущена вниз. Сколько различных сигналов можно подать двумя руками, если важно то, какая рука была в каком положении, но обе руки могут находиться и в одинаковом положении?

    Решение

    Главная ловушка этой задачи заключается в следующем неверном ходе мыслей: «Раз одной рукой передаётся `3` сигнала, значит, двумя в `2` раза больше, то есть `6`». На самом деле число исходов с добавлением новой руки увеличивается в `3` раза, поскольку можно продублировать все положения первой руки для каждого из `3` возможных положений второй. Таким образом, в ответе получается `9` сигналов.

    Задача 4

    В течение `5` секунд было передано сообщение, объём ко-торого составил `375` байт. Каков размер алфавита, с помощью кото-рого записано сообщение, если скорость его передачи составила `200` символов в секунду?

    Решение

    Первым делом найдём скорость передачи этого сообщения: `375//5 = 75` байт в секунду. Далее, нам известно, что в секунду передавалось `200` символов, которые занимают `75` байт памяти. Поэтому следующим действием найдём объём памяти, отводимый под `1` символ, переведя ответ в биты (ибо уже из входных чисел очевидно, что под каждый символ отводится менее `1` байта): `75^(**)8//200 = 600//200 = 3`. Таким образом, под каждый символ отводится `3` бита.

    Применяя формулу Хартли, находим, что алфавит состоит из `8` символов.

  • 1.1. Понятие информации. Количество информации. Единицы измерения информации

    Информация  является  одним из фундаментальных  понятий  современной науки наряду с такими понятиями, как «вещество» и «энергия».

    Общее определение этому термину дать  невозможно. Однако в раз-личных предметных областях даётся специализированное определение информации, подходящее для данной предметной области. В рамках этого задания мы будем говорить о математической теории информации и рассмотрим два подхода - содержательный (Клод Шеннон) и алфавитный (А.Н.Колмогоров). Начнём с определения понятия «инфор-мация» в каждом из этих подходов.

    Определение 1

    В содержательном подходе, информация - это снятая неопределённость. Неопределённость некоторого события - это количество возможных результатов (исходов) данного события.

    Например, если мы подбрасываем вверх монету, то она может упасть двумя различными способами (орлом вверх или решкой вверх). Соответственно, у данного события два возможных исхода. Если же подбрасывать игральный кубик, то исходов будет шесть. 

    Определение 2

    В алфавитном подходе информация - это сообщение (последовательность символов некоторого алфавита). Причём существенными являются только размер алфавита и количество символов в сообщении. Конкретное содержание сообщения интереса не представляет. Чаще всего алфавит является двоичным (состоит из `2` символов – «`0`» и «`1`»).

    После таких определений понятия «информация» можно говорить об её измерении. Введём несколько основных единиц измерения информации.

    Чаще всего в качестве основной единицы измерения информации используется бит. При алфавитном подходе один бит - это количество информации, которое можно передать в сообщении, состоящем из одного двоичного знака (`«0»` или `«1»`). С точки же зрения содержательного подхода один бит - это количество информации, уменьшающее неопределённость знания в два раза.

    Наряду с битами можно использовать и другие единицы измерения информации, например, триты или диты. При алфавитном подходе один трит - это количество информации, которое можно передать в сообщении, состоящем из одного троичного знака `(«0»`, `«1»` или `«2»)`. С точки же зрения содержательного подхода один трит - это количество информации, уменьшающее неопределённость знания в три раза. Соответственно, один дит - это количество информации, уменьшаю-щее неопределённость знания в десять раз, и количество информации, которое можно передать в сообщении, состоящем из одного десятичного знака (арабской цифры). В некоторых задачах (например, в задаче взлома кодового замка) удобнее в качестве основной единицы измерения информации использовать не биты, а диты, поскольку угадывание каждой цифры из кода уменьшает количество комбинаций в `10` раз.

    Для каждой основной единицы измерения информации существуют производные более крупные единицы измерения. Поскольку чаще всего мы будем использовать в качестве основной единицы бит, рассмотрим производные единицы измерения для бита. На практике чаще всего используется не бит, а байт.

    `1` байт (`1`B) `= 8` бит;

    Далее существует две линейки производных единиц для байта – линейка десятичных приставок и линейка двоичных приставок. В случае десятичных приставок каждая следующая единица измерения равна `1000` предыдущих единиц. Обозначаются десятичные приставки латинскими буквами (буква префикса из системы СИ и заглавная «B», обозначающая «байт») Итак:

    `1` килобайт (`1` kB) `= 1000` B (1000 байт);

    `1` мегабайт (`1` MB) `= 1000` kB ;

    `1` гигабайт (`1` GB) `= 1000`  MB;

    `1` терабайт (`1` TB) `= 1000`  GB;

    `1` петабайт (`1` PB) `= 1000`  TB;

    `1` эксабайт (`1` EB) `= 1000`  PB;

    `1` зеттабайт (`1` ZB) `= 1000` EB;

    `1` йоттабайт(`1` YB) `= 1000` ZB.

    Более крупных единиц на настоящий момент не введено.

    При использовании двоичных приставок, каждая следующая едини-ца измерения равна 1024 предыдущих единиц. В России принято обозначать двоичные приставки, записывая префикс заглавной русской буквой и после него слово «байт» целиком и тоже русскими буквами. За рубежом для обозначения двоичных приставок между префиксом и «B» добавляется маленькая буква «i» (от слова «binary»). Кроме того, все префиксы записываются заглавными буквами. Итак:

    `1` кибибайт (`1` Кбайт, `1` KiB) `=2^10` байт `= 1024` байт;

    `1` мебибайт (`1` Мбайт, `1` MiB) `=2^20` байт `= 1024` Кбайт;

    1 гибибайт (`1` Гбайт, `1` GiB) `=2^30` байт `= 1024` Мбайт;

    1 тебибайт (`1` Тбайт, `1` TiB) `=2^40` байт `= 1024` Гбайт;

    1 пебибайт (`1` Пбайт, `1` PiB) `=2^50` байт `= 1024` Тбайт;

    1 эксбибайт (`1` Эбайт, `1`EiB) `=2^60` байт `= 1024`  Пбайт;

    1 зебибайт (`1` Збайт, `1` ZiB) `=2^70` байт `= 1024` Эбайт;

    1 йобибайт (`1` Йбайт, `1` YiB) `=2^80` байт `= 1024` Збайт.



  • 1.2. Формула Хартли измерения количества информации. Закон аддитивности информации

    Как уже упоминалось выше, в качестве основной единицы измерения информации мы будем использовать бит. Соответственно, с точки зрения алфавитного подхода мы будем кодировать информацию при помощи нулей и единиц (двоичных знаков).  

    Определение

    Для того чтобы измерить количество информации в сообщении, надо закодировать сообщение в виде последовательности нулей и единиц наиболее рациональным способом, позволяющим получить самую короткую последовательность. Длина полученной последовательности нулей и единиц и является мерой количества информации в битах.

    Поставим себе одну из наиболее часто встречающихся задач в теории информации. Пусть у нас есть `N` возможных равновероятных вариантов исходов некоторого события. Какое количество информации нам нужно получить, чтобы оставить только один вариант?

    Например, пусть мы знаем, что некоторая интересная для нас книга находится на одной из полок нашего книжного шкафа, в котором `8` полок. Какое количество информации нам нужно получить, чтобы однозначно узнать полку, на которой находится книга?

    Решим эту задачу с точки зрения содержательного и алфавитного подходов. Поскольку изначально в шкафу было `8` полок, а в итоге мы выберем одну, следовательно, неопределённость знания о местоположении книги уменьшится в `8` раз. Мы говорили, что один бит – это количество информации, уменьшающее неопределённость знания в `2` раза. Следовательно, мы должны получить `3` бита информации.

    Теперь попробуем использовать алфавитный подход. Закодируем номера всех полок при помощи `0` и `1`. Получим следующие номера: `000, 001, 010, 011, 100, 101, 110, 111`. Для того чтобы узнать, на какой полке находится книга, мы должны узнать номер этой полки. Каждый номер состоит из `3` двоичных знаков. А по определению, `1` бит (в алфавитном подходе) – это количество информации в сообщении, состоящем из `1` двоичного знака. То есть мы тоже получим `3` бита информации.

    Прежде чем продолжить рассмотрение поставленной общей задачи введём важное математическое определение.

    Определение

    Назовём логарифмом числа `N` по основанию `a` такое число `X`, что  Обозначение:

    `X=log_aN`.

    На параметры логарифма налагаются некоторые ограничения. Число `N` обязательно должно быть строго больше `0`. Число `a` (основание логарифма) должно быть также строго больше нуля и при этом не равняться единице (ибо при возведении единицы в любую степень получается единица).

    Теперь вернёмся к нашей задаче. Итак, какое же количество информации нам нужно получить, чтобы выбрать один исход из `N` равновероятных?  Ответ на этот вопрос даёт формула Хартли: `H=log_aN`, где `N` – это количество исходов, а `H` – количество информации, которое нужно получить для однозначного выбора `1` исхода. Основание логарифма обозначает единицу измерения количества информации. То есть если мы будем измерять количество информации в битах, то логарифм нужно брать по основанию `2`, а если основной единицей измерения станет трит, то, соответственно, логарифм берётся по основанию `3`. 

    Рассмотрим несколько примеров применения формулы Хартли.

    Задача 1

    В библиотеке `16` стеллажей, в каждом стеллаже `8` полок. Какое количество информации несёт сообщение о том, что нужная книга находится на четвёртой полке?

    Решение

    Решим эту задачу с точки зрения содержательного подхода. В переданном нам сообщении указан только номер полки, но не указан номер стеллажа. Таким образом, устранилась неопределённость, связанная с полкой, а стеллаж, на котором находится книга, мы всё ещё не знаем. Так как известно, что в каждом стеллаже по `8` полок, следовательно, неопределённость уменьшилась в `8` раз. Следовательно, количество информации можно вычислить по формуле Хартли `H=log_2  8=3` бита информации.

    Задача 2

    Имеется `27` монет, одна из которых фальшивая и легче всех остальных. Сколько потребуется взвешиваний на двухчашечных весах, чтобы однозначно найти фальшивую монету?

    Решение

    В этой задаче неудобно использовать бит в качестве основной единицы измерения информации. Двухчашечные  весы могут принимать три положения: левая чаша перевесила, значит, фальшивая монета находится в правой; правая чаша перевесила, значит, монета находится в левой; или же весы оказались в равновесии, что означает отсутствие фальшивой монеты на весах. Таким образом, одно взвешивание может уменьшить неопределённость в три раза, следовательно, будем использовать в качестве основной единицы измерения количес-тва информации трит.

    По формуле Хартли `H = log _3  27 = 3` трита. Таким образом, мы видим, что для того чтобы найти фальшивую монету среди остальных, нам потребуется три взвешивания.

    Логарифмы обладают очень важным свойством: `log_a(X*Y)=log_aX+log_aY`.

    Если переформулировать это свойство в терминах количества информации, то мы получим закон аддитивности информации: Коли-чество информации`H(x_1, x_2)`, необходимое для установления пары `(x_1, x_2)`, равно сумме количеств информации `H(x_1)` и `H(x_2)`, необходимых для независимого установления элементов `x_1` и `x_2`:

    `H(x_1,x_2)=H(x_1)+H(x_2)`.

    Проиллюстрируем этот закон на примере. Пусть у нас есть игральная кость в форме октаэдра (с `8` гранями) и монета. И мы одновременно подбрасываем их вверх. Нужно узнать, какое количество информации несёт сообщение о верхней стороне монеты после падения (орёл или решка) и числе, выпавшему на игральной кости.

     Игральная кость может упасть `8` различными способами, следовательно, по формуле Хартли можно вычислить, что, определив число, выпавшее на игральной кости, мы получаем `3` бита информации. Соответственно, монета может упасть только `2` способами и несёт в себе `1` бит информации. По закону аддитивности информации мы можем сложить полученные результаты и узнать, что интересующее нас сообщение несёт `4` бита информации.

    Рассмотрим другой способ решения этой задачи. Если мы сразу рассмотрим все возможные исходы падения `2` предметов, то их будет `16` (кость выпадает `8` способами, а монета - орлом вверх, и кость выпадает `8` способами, а монета - решкой вверх). По формуле Хартли находим, что интересующее нас сообщение несёт `4` бита информации.

    Замечание

    Если в результате вычислений по формуле Хартли получилось нецелое число, а в задаче требуется указать целое число бит, то результат следует округлить в большую сторону.

  • § 2. Представление текстовой информации в компьютере

    Всякий текст состоит из символов - букв, цифр, знаков препинания и т. д., - которые человек различает по начертанию. Однако для компьютерного представления текстовой информации такой метод неудобен, а для компьютерной обработки текстов - и вовсе неприемлем. Используется другой способ: все символы кодируются числами, и текст представляется в виде набора чисел - кодов символов, его составляющих. При выводе текста на экран монитора или принтер необходимо восстановить изображения всех символов, составляющих данный текст. Для этого используются кодовые таблицы символов, в которых для каждого символа устанавливается соответствие между его кодом и изображением. Все кодовые таблицы, используемые в любых компьютерах и любых операционных системах, подчиняются международным стандартам кодирования символов.

    Основой для компьютерных стандартов кодирования символов послужил ASCII (American Standard Code for Information Interchange) - американский стандартный код для обмена информацией, разработанный в 1960-х годах и применяемый в США для любых видов передачи информации. В нём используется `7`-битное кодирование: общее количество символов составляет `2^7=128`, из них первые `32` символа - «управляющие», а остальные - «изображаемые», т. е. имеющие графическое изображение. Управляющие символы должны восприниматься устройством вывода текста как команды, например:

    Cимвол

    Действие

    Английское название

    №7

    Подача стандартного звукового сигнала

    Beep

    №8

    Затереть предыдущий символ

    Back Space (BS)

    №13

    Перевод строки

    Line Feed (LF)

    №26

    Конец текстового файла

    End Of File (EOF)

    №27

    Отмена предыдущего ввода

    Escape (ESC)


    К изображаемым символам в ASCII относятся буквы английского (латинского) алфавита (заглавные и прописные), цифры, знаки препинания и арифметических операций, скобки и некоторые специальные символы. Фрагмент кодировки ASCII приведён в таблице.


    Символ

    Десятичный код

    Двоичный код

    Символ

    Десятичный код

    Двоичный код

    Пробел

    `32`

    `00100000`

    `0`

    `48`

    `00110000`

    `!`

    `33`

    `00100001`

    `1`

    `49`

    `00110001`

    #

    `35`

    `00100011`

    `2`

    `50`

    `00110010`

    $

    `36`

    `00100100`

    `3`

    `51`

    `00110011`

    `**`

    `42`

    `00101010`

    `4`

    `52`

    `00110100`

    `+`

    `43`

    00101011

    5

    53

    `00110101`

    ,

    `44`

    `00101100`

    `6`

    `54`

    `00110110`

    `–`

    `45`

    `00101101`

    `7`

    `55`

    `00110111`

    .

    `46`

    `00101110`

    `8`

    `56`

    `00111000`

    /

    `47`

    `00101111`

    `9`

    `57`

    `00111001`

    `A`

    `65`

    `01000001`

    `N`

    `78`

    `01001110`

    `B`

    `66`

    `01000010`

    `O`

    `79`

    `01001111`

    `C`

    `67`

    `01000011`

    `P`

    `80`

    `01010000`

    `D`

    `68`

    `01000100`

    `Q`

    `81`

    `01010001`

    `E`

    `69`

    `01000101`

    `R`

    `82`

    `01010010`

    `F`

    `70`

    `01000110`

    `S`

    `83`

    `01010011`

    `G`

    `71`

    `01000111`

    `T`

    `84`

    `01010100`

    `H`

    `72`

    `01001000`

    `U`

    `85`

    `01010101`

    `I`

    `73`

    `01001001`

    `V`

    `86`

    `01010110`

    `J`

    `74`

    `01001010`

    `W`

    `87`

    `01010111`

    `K`

    `75`

    `01001011`

    `X`

    `88`

    `01011000`

    `L`

    `76`

    `01001100`

    `Y`

    `89`

    `01011001`

    `M`

    `77`

    `01001101`

    `Z`

    `90`

    `01011010`


    Хотя в ASCII символы кодируются `7`-ю битами, в памяти компьютера под каждый символ отводится ровно `1` байт (`8` бит). И получается, что один бит из каждого байта не используется.

    Главный недостаток стандарта ASCII заключается в том, что он рассчитан на передачу только текста, состоящего из английских букв. Со временем возникла необходимость кодирования и неанглийских букв. Во многих странах для этого стали разрабатывать расширения ASCII-кодировки, в которых применялись однобайтные коды символов; при этом первые `128` символов кодовой таблицы совпадали с кодировкой ASCII, а остальные (со `128`-го по `255`-й) использовались для кодирования букв национального алфавита, символов национальной валюты и т. п. Из-за несогласованности этих разработок для многих языков было создано по нескольку вариантов кодовых таблиц (например, для русского языка их около десятка).

    Впоследствии использование кодовых таблиц было несколько упорядочено: каждой кодовой таблице было присвоено особое название и номер. Указав кодовую таблицу, автоматически выбирают и язык, которым можно пользоваться в дополнение к английскому; точнее, выбирается то, как будут интерпретироваться символы с кодами более `127`.

    Для русского языка наиболее распространёнными являются однобайтовые кодовые  таблицы СР-`866`, Windows-`1251`, ISO `8859-5` и КОИ-`8`. В них первые `128` символов совпадают с ASCII-кодировкой, а русские буквы помещены во второй части таблицы (с номерами `128-255`), однако коды русских букв в этих кодировках различны! Сравните, например, кодировки КОИ-`8` (Код Обмена Информацией `8`-битный, международное название «koi-`8`r») и Windows-`1251`, фрагменты которых приведены в таблицах на странице `13`.

    Несовпадение кодовых таблиц приводит к ряду неприятных эффектов: один и тот же текст (неанглийский) имеет различное компьютерное представление в разных кодировках, соответственно, текст, набранный в одной кодировке, будет нечитабельным в другой!

    Однобайтовые кодировки обладают одним серьёзным ограничением: количество различных кодов символов в отдельно взятой кодировке недостаточно велико, чтобы можно было пользоваться одновременно несколькими языками. Для устранения этого ограничения в 1993-м году был разработан новый стандарт кодирования символов, получивший название Unicode, который, по замыслу его разработчиков, позволил бы использовать в текстах любые символы всех языков мира.


    В Unicode на кодирование символов отводится `32` бита. Первые `128` символов (коды `0-127`) совпадают с таблицей ASCII, все основные алфавиты современных языков полностью умещаются в первые `65536` кодов  (`65536=2^16`), а в целом стандарт Unicode описывает все алфавиты современных и мёртвых языков; для языков, имеющих несколько алфавитов или вариантов написания (например, японский и индийский), закодированы все варианты; внесены все математические и иные научные символьные обозначения, и даже - некоторые придуманные языки (например, письменности эльфов и Мордора из эпических произведений Дж.Р.Р. Толкиена). Потенциальная информационная ёмкость Unicode столь велика, что сейчас используется менее одной тысячной части возможных кодов символов!

    В современных компьютерах и операционных системах используется укороченная, `16`-битная версия Unicode, в которую входят все современные алфавиты; эта часть Unicode называется базовой многоязыковой страницей (Base Multilingual Plane, BMP).

  • §3. Кодирование графической информации
    Что нужно знать


    • для хранения растрового изображения нужно выделить в памяти `I = N` · `i` битов, где `N` – количество пикселей и `i` – глубина цвета (разрядность кодирования)
    • количество пикселей изображения `N` вычисляется как произведение ширины рисунка на высоту (в пикселях)
    • глубина кодирования – это количество бит, которые выделяются на хранение цвета одного пикселя
    • при глубине кодирования `i` битов на пиксель код каждого пикселя выбирается из `2^i`  возможных вариантов, поэтому можно использовать не более `2^i` различных цветов.
  • §4. Кодирование звуковой информации
    Что нужно знать
    • при оцифровке звука в памяти запоминаются только отдельные значения сигнала, который нужно выдать на динамик или наушники
    • частота дискретизации определяет количество отсчетов, запоминаемых за `1` секунду; `1` Гц (один герц) – это один отсчет в секунду, а `8` кГц – это `8000` отсчетов в секунду
    • глубина кодирования – это количество бит, которые выделяются на один отсчет
    • для хранения информации о звуке длительностью `t` секунд, закодированном с частотой дискретизации `f` Гц и глубиной кодирования `B` бит требуется `B*f*t` бит памяти; например, при `f=8` кГц, глубине кодирования `16` бит на отсчёт и длительности звука  `128` секунд требуется

      `I=8000*16*128=1384000` бит

      `I=8000*16*128//8=2048000` байт

      `I=8000*16*128//8//1024=2000` Кбайт

      `I=8000*16*128//8//1024//1024~~1,95` Мбайт


    • при двухканальной записи (стерео) объем памяти, необходимый для хранения данных одного канала, умножается на `2`, при четырехканальной(квадро) – умножается на `4`
    • для упрощения ручных расчетов можно использовать приближённые равенства

    `1` мин  `= 60` сек `~~64` сек `= 2^6` сек

    `1000~~1024=2^(10)`

    Итак, объём музыкального файла вычисляется по формуле

    `I=f*r*k*t`,

    где `f` – частота дискретизации,  `r`  – разрешение (глубина кодирования), `k`  – количество каналов, `t` – время звучания.

  • §5. Символьный тип данных в языке Паскаль

    Теперь применим полученные знания о представлении текстовой информации на практике. В языке программирования Паскаль для работы с текстовой информацией есть специальный символьный тип переменных, который называется char (от английского character). Переменные этого типа занимают в оперативной памяти по `1` байту и, соответственно, могут принимать `256` различных значений. Значениями переменных этого типа являются элементы какой-либо однобайтовой кодовой таблицы (например, KOI-`8` или Windows-`1251`). Какие именно символы являются значениями данного типа, зависит от того, какая кодовая таблица используется в момент выполнения (а не написания) программы. То есть одна и та же программа, например, печатающая изображение всех символов кодовой таблицы, на компьютерах с различными текущими кодировками будет иметь различные результаты работы.


    Переменным символьного типа можно присваивать значения при помощи оператора присваивания. При этом есть два способа записи символьных констант. Первый способ – записать явное изображение символа, заключив его в апострофы. Пусть, например, переменная C имеет тип char. Присвоим ей значение: C:= 'a'; Описанный способ записи символьных значений удобно применять практически всегда. Единственный недостаток этого способа заключается в том, что так невозможно представить служебные символы, которые не имеют явных изображений (в кодовой таблице это первые `32` символа). Поэтому существует ещё один способ записи символьных констант – сначала указать спецсимвол решётку (#), а потом код интересующего нас символа. Например, C:=#13; Недостаток этого способа заключается в том, что нужно помнить коды всех символов, поэтому обычно его применяют только для записи символов без явного изображения.


    Переменные типа char можно выводить на экран при помощи оператора вывода и вводить с клавиатуры. Апострофы при вводе набирать не нужно (каждый апостроф также будет считаться отдельным символом). Служебные символы вводятся следующим образом: нужно зажать alt и на правой цифровой клавиатуре набрать код символа (например, 13).


    К переменным типа char можно применять операции сравнения (> , < , >= , <= , = , <>). При этом сравниваются коды символов и большим признаётся символ, имеющий больший код (то есть символ, находящийся дальше от нулевого). Результатом операции сравнения является логическое значение – true или false.


    Существует `5` стандартных функций для работы с переменными символьного типа:

    Функция

    Действие

    Тип

    аргумента

    Тип

    результата

    Ord(c)

    Выдаёт код символа

    Char

    Integer

    Chr(x)

    Выдаёт символ по коду

    Integer

    Char

    Succ(c)

    Выдаёт следующий символ кодовой таблицы. Не определена для последнего символа

    Char

    Char

    Pred(c)

    Выдаёт предыдущий символ кодовой таблицы. Не определена для нулевого символа

    Char

    Char

    Upcase(c)

    Если аргумент является строчной латинской буквой, превращает его в соответствующую заглавную. Иначе ничего не делает

    Char

    Char


    Тип char является порядковым, то есть для каждого символа можно назвать его порядковый номер в типе, а также следующий и предшествующий элементы типа. Например, символ '1' имеет код `49`, следующий символ – это '2', а предыдущий – '0'. Благодаря этому свойству переменные типа char могут использоваться в качестве счётчиков в цикле for. Например, распечатать все заглавные латинские буквы можно следующим образом:


    For  c:= 'A' to 'Z' do write (c);


    где переменная c имеет тип char.


    Если в цикле for используется слово to, то на каждом шаге цикла счётчик будет принимать следующее значение в типе, в случае же downto – предыдущее значение в типе.


    Рассмотрим несколько примеров задач на символьные переменные.


    Задача 1

    Вывести на экран все символы кодовой таблицы.

    Решение

    Эту задачу можно решать двумя способами: перебрать все символы или все их коды – разница только в типе счётчика цикла.

    Способ 1:

      var c:char;

      begin

         for c:=#0 to #255 do

            write(ord(c),'-',c,' ');

          readln

    end.

    Способ 2:

    var i:integer;

    begin

       for i:=0 to 255 do

          write(i, '-',chr(i), ' ');           

       readln

    end.



    Задача 2

    Дана последовательность символов, заканчивающаяся точкой. Подсчитайте сумму цифр, входящих в эту последовательность.

    Решение

    Эта задача демонстрирует очень важную вещь – как превратить символ-цифру в целое число. Это осуществляется следующим образом: необходимо вычислить код интересующего нас символа (например, код единицы `49`) и вычесть из него код символа «ноль». В любой кодировочной таблице символы-цифры идут подряд, поэтому, выполнив указанные действия, мы гарантированно получим числовое значение символа-цифры. Приведём полный текст решения.

    var c: char; s: integer;

    begin

       s :=0;

       read (c);

       while c <> '.' do

         begin

         if (c >= '0')and(c <= '9')

           then s:= s+ord(c)–ord('0');

             read (c);

           end;

       writeln ('s=',s);

       readln

      end.


    Задача 3

    Дана непустая последовательность слов, состоящих из заглавных и строчных латинских букв в любом порядке. Между соседними словами запятая, за последним словом – точка. Никакие другие символы в последовательность не входят. Определить количество слов, которые начинаются на букву `Z`.

    Решение

    Это ещё один классический тип задач на обработку последовательностей символов. При её решении у нас возникнет конструкция из вложенных циклов: внутренний цикл анализирует слово, а внешний перебирает слова. Приведём полный текст решения.

    var c:char; s:integer;

    begin

       s:=0;

       repeat

         read(c);

         if c='Z' then s:=s+1;

         repeat

           read(c)

         until (c=',')or(c='.') 

       until c='.'; 

       writeln('s=',s);

       readln

    end.






     

  • §6. Оператор выбора Case

    Данный оператор представляет собой естественное расширение условного оператора. В общем виде он записывается следующим образом:

    case <выражение порядкового типа> of

      константа_1: оператор_1;

      константа_2: оператор_2;

            ...

      Константа_n: оператор_n;

      else оператор

    end

    Слова: case, of, else, end -  являются ключевыми словами языка. Выражение, стоящее между словами case и of, называется селектором и должно иметь порядковый тип. Тип является порядковым, если можно для каждого значения назвать порядковый номер в типе, предыдущее и следующее значение в типе (кроме первого и последнего значения в типе). Из известных нам стандартных типов порядковыми являются типы integer, longint, boolean и char. Тип real порядковым не является.

    Работает оператор выбора следующим образом. Сначала вычисляется значение селектора, затем оно сравнивается с константами. В случае совпадения селектора с какой-нибудь константой выполняется оператор, стоящий после этой константы, далее управление переходит на следующий за case оператор программы. Если селектор не совпал ни с одной из констант, то выполняется оператор после слова else. Очевидно, что селектор и константы должны иметь одинаковые типы. Иначе невозможно будет провести операции сравнения.

    Если нужно для многих различных значений селектора выполнить один и тот же набор команд, то можно не записывать множество строк с одинаковой правой частью, а перечислить константы через запятую, затем поставить двоеточие и один раз написать нужную последовательность команд. Если константы идут подряд, можно также записать их в виде диапазона: константа_1..константа_2. В этом случае команда будет выполняться при совпадении селектора с любой константой из диапазона. Граничные значения считаются включёнными в диапазон. Можно также указать несколько диапазонов через запятую.

    Оператор выбора предполагает однозначный выбор варианта. То есть нельзя одной и той же константой пометить два различных варианта. Все константы должны быть различны. Особенно аккуратно следует обращаться с диапазонами. Широко распространённая ошибка – указывать одну и ту же константу в качестве начальной границы одного диапазона и конечной – другого. Однако поскольку границы входят в диапазон, получается, что это значение будет входить в два разных диапазона.

    Последнее замечание заключается в том, что в отличие от оператора if перед else необходимо ставить точку с запятой. И кстати, аналогично оператору if, если в ветке else должен стоять пустой оператор, её можно не записывать. Приведём примеры нескольких различных операторов варианта.

    Пример 1

    case c of

      '+': x := x + y;

      '-': x := x - y;

      '*': x := x * y;

      else writeln('error')

     end;

    Пример 2

    case c of

      'a'..'z','A'..'Z': writeln('letter');

      '0'..'9':          writeln('digit')

     end;

       

  • Элементы теории математических игр
    Игрой

    называется процесс, в котором участвуют две или более стороны, ведущие борьбу за реализацию своих интересов.

    Согласно этому определению, довольно много жизненных ситуаций можно считать играми - для этого требуется лишь борьба двух или более лиц и какие-либо интересы, за которые эти лица ведут борьбу. Шахматы, домино, прыжки в высоту - всё это игры. Стремление занять свободное место в автобусе, соперничество мировых держав в ядерной сфере, беседа сотрудника ГИБДД с нарушителем, поход семейной пары в торговый центр - и это тоже игры. Так, в случае стремления занять свободное место в пустом автобусе в этом процессе участвуют не менее двух человек, которые ведут борьбу за свободные места (свои интересы), причём довольно часто количество свободных мест намного меньше количества участвующих в этой игре человек, поэтому в этой игре есть выигравшие и проигравшие. В этом случае интересы (занять свободное место) у игроков совпадают. Однако в случае игры «поход семейной пары в торговый центр» интересы часто строго противоположные: жене хочется совершить как можно больше покупок; мужу - потратить как можно меньше денег на эти покупки.

    Изучение такого широкого класса игр математическими методам бессмысленно – в каждой игре есть свои мало-формализуемые особенности, а процесс принятия решений игроками может опираться не только на какие-то математические принципы, в него могут вписываться другие особенности человека, например, уровень интеллекта и характер.

    Пример 1

    Для решения спора Петя и Вася обращаются к компьютеру за случайным натуральным числом. Если выданное число - чётное, спор выигрывает Петя, если нечетное - спор выигрывает Вася. Является ли описанная процедура игрой?

    Решение

    Данная процедура тоже является игрой - два игрока ведут борьбу за свои интересы (выиграть спор), и то, как это они делают - неважно. Фактически, игроки с помощью компьютера реализовали подкидывание монетки.


    Пример 2

    Для решения спора Петя и Вася пишут цифры по очереди на доске слева направо, начинает Петя. Если после десяти ходов полученное `10`-значное число не делится на девять, в споре побеждает Петя, а если делится – Вася. Докажите, что Вася может выиграть спор.

    Решение

    Второй игрок (Вася) может дополнять число, написанное первым игроком, до девяти. Если ход Пети - «`9`», то ход Васи - «`0`» и т. п. После десяти ходов получим `10`-значное число, сумма цифр которого равна `9^(**)5=45`, и полученное число будет делиться на девять. Таким образом, второй игрок (Вася) сможет выиграть при любых ходах первого игрока (Пети).


    Такие игры, в которых как играть - известно одному или обоим игрокам, уже представляют интерес для формализации и изучения. Одним из самых узких классов таких игр является класс математических игр. Этому классу и посвящено данное задание.



  • § 1. Математические игры

    Будем называть игру математической, если для неё выполнены следующие условия:

    Условия Математической игры

    Условие 1. В игре участвуют два игрока.

    Условие 2. Игра заканчиваются выигрышем одного из участников. Это автоматически означает проигрыш соперника. Иногда в математических играх допускают ничью.

    Условие 3. В игре участники ходят по очереди и помнят все предыдущие ходы.

    Условие 4. Игра характеризуется позицией, которая зависит только от ходов игроков.

    Вернёмся к примеру 1. Эта игра не будет являться математической, поскольку не будет удовлетворять только условию 4: мы не сможем определить позицию игры, которая будет зависеть только от хода самих игроков, поскольку игроки обращаются к компьютеру.

    Также в математических играх по той же причине не может быть случайных карточных раскладов,  игральных кубиков, подкидываний монеток. Попробуем же тогда реализовать игру из этого примера, которая является фактическим подкидыванием монетки игроками, без помощи, как монетки, так и компьютера.

    Пример 3

    Для решения спора Петя и Вася пишут на листочках по натуральному числу. Если сумма написанных чисел - чётная, спор выигрывает Петя, если нечетная - спор выигрывает Вася. Является ли описанная процедура математической игрой?

    Решение

    Здесь уже не выполняется условие 3, которое гласило, что игроки должны ходить по очереди и помнить все предыдущие ходы.

    Сделаем небольшую модификацию условий игры, чтобы игра стала математической и посмотрим, какая игра из этого получится. Чтобы условие 3 поочередности выполнялось, сначала должен походить первый игрок, написать своё число на бумажке и показать это число всем, включая второго игрока. Кто из двух игроков будет первым, они между собой должны договориться сами. И тогда уже второй игрок, зная число, которое написал первый, должен написать своё число, затем эти два числа будут сложены и сумма проверена на чётность.

    Однако, если второй игрок обладает хоть каким-либо интеллектом, он может подобрать своё число, чтобы сумма была выигрышной для него чётности. Суть «подкидывания монетки» от этого полностью теряется, т. к. данная игра находится под полным контролем второго игрока.

    Пример 4

    Два человека встречаются и обмениваются закрытыми сумками, понимая, что одна из них содержит деньги, другая - товар. Каждый игрок может уважать сделку и положить в сумку то, о чём договорились, либо обмануть партнёра, дав пустую сумку. Является ли эта игра математической?

    Решение

    Во-первых, эта игра не удовлетворяет условию 2: в условии не определено, какой игрок выигрывает в каком случае, а какой автоматически при этом проигрывает. Во-вторых, игроки ходят одновременно, а не по очереди, что нарушает условие 3. Поэтому данная игра не является математической.

    Заметим, что условие 2 можно выполнить, считая, что в случае если один игрок обманул другого, обманувший игрок выиграл, а обманутый проиграл, в остальных случаях (оба игрока честные или оба обманщики) зафиксировать ничью. Однако условие 3, как и в предыдущем примере, уже нельзя выполнить без существенного изменения самой игры.

    Итак, в математической игре имеются два игрока, которые ходят поочередно. Участник, который начинает игру, обычно называется первым игроком, его соперник – вторым. Имеется конечное или бесконечное множество позиций. В каждой позиции для обоих игроков указаны допустимые ходы – разрешённые переходы в другие позиции. Некоторые позиции объявляются выигрышными для какого-то игрока, что автоматически означает, что эти позиции являются проигрышными для соперника. Очень часто выигрышными объявляются  те  и  только  те  позиции,  из  которых соперник не может сделать ход, т. е. выигрывает тот игрок, которому удаётся своим последним ходом достичь позиции, в которой у соперника нет допустимых ходов.

    Пример 5 «Ним». 

    Есть две кучи по семь камней в каждой. За ход разрешается взять любое количество камней, но только из одной кучи. Проигрывает тот, кто не сможет сделать ход. Как можно определить позиции в данной игре, и какие позиции будут выигрышными?

    Решение

    Позицией в данной игре являются два числа `(x, y):` `x` – количество камней в первой куче, `y` – количество  камней во второй куче. Игрок выигрывает, если противник не может сделать ход, т. е. перед ходом противника камней в обеих кучах не останется. Таким образом, позиция `(0, 0)` является выигрышной для того из игроков, который попал туда своим последним ходом.

    Особенно отметим следующее.

    Во-первых, в играх могут быть ничьи. Это значит, что некоторые позиции для обоих игроков объявляются ничейными. Игроку целесообразно добиваться ничьей только тогда, когда он не может гарантированно достичь выигрышной позиции.

    Во-вторых, оба игрока не обязательно должны преследовать одинаковые цели (например, чтобы противник не смог сделать ход). Так, например, в примере 2 один из игроков стремится к тому, чтобы полученное число не делилось на девять, а второй стремится к обратному.

    Поэтому позиция должна ещё характеризоваться номером игрока (либо того, который пришел в эту позицию, либо того, который делает ход из этой позиции в зависимости от ситуации). Так, если в примере 7 добавить номер игрока, который делает ход, то теперь позиция в этой задаче будет выражаться тремя числами `(x,y,n)`, где `n` – номер игрока, который делает ход, имея в начале $$ x$$ камней в первой куче, а $$ y$$ – во второй.

    Позиция `(0,0,1)` будет проигрышной для первого игрока (он не может сделать ход) и выигрышной для второго, позиция `(0,0,2)` – наоборот.

    Однако в играх, в которых игроки преследуют одинаковые цели и возможные ходы у обоих игроков одинаковы, как например, в примере 5, можно номер игрока из позиции опустить. В этом задании мы будем рассматривать только такие игры.

    Пример 6

    В точке 0 оси координат находится фишка. За ход игрок обязан подвинуть фишку на единицу влево или вправо. Выиграет тот игрок, после хода которого координата фишки превысит десять.  Как определить позиции в данной игре? Какие позиции следует объявить выигрышными? Какие позиции следует объявить ничейными?

    Решение

    Позицией является целое число `(x):` положение фишки на оси. При этом все позиции с `x > 10` будут проигрышными для первого игрока, т. е., выигрышными для второго. Стартуя из позиции `(10)`, первый игрок может одним ходом передвинуть фишку в позицию `(11)` и выиграть. Если же игра начинается из позиции `(x)`, `[x < 10]`, то ни первый, ни второй игрок не могут гарантированно рассчитывать на победу, так как любой игрок в данной игре может не позволить своему противнику достичь выигрышной позиции, просто двигая каждый раз своим ходом фишку влево. Поэтому, стартуя из позиции `(x)`, `[x < 10]`, игра может закончиться выигрышем одного из игроков, если и только если соперник ошибётся. Но что следует считать исходом игры при старте, например, из начала координат (как в условии примера)? Можно было бы, например, считать, что исход игры при старте из начала координат просто не определён. Но мы потребуем выполнения более жёсткого условия.

    Дополнительное условие математических игр.

    Условие 5. При старте из любой допустимой позиции, как бы ни играли соперники, через конечное (возможно, очень большое) число ходов обязательно достигается либо выигрышная, либо ничейная позиция.

    Иначе говоря, независимо от того, как играют оба игрока, через конечное число ходов игра должна закончиться выигрышем одного из соперников или ничьей.

    Так, в примере 5 условие 5 выполняется, поскольку количество камней с каждым ходом уменьшается, а значит, когда-нибудь камней не останется, и один из игроков выиграет.

    Для того, чтобы игра из примера 6 удовлетворяла условию 5, нужно кроме уже  заданных  выигрышных  позиций  `(x)`, `[x > 9]`  объявить   все  позиции  `(x)`, `[x < 10]` ничейными[1].

    Чтобы избежать игр с бесконечным количеством ходов, мы можем, например, запретить игрокам ходы, приводящие к полному повторению ранее встречавшихся позиций. Или, наоборот, в таком случае объявлять ничью. Так, в шахматах троекратное повторение одной и той же позиции на доске является поводом для объявления ничьей (в случае, если это будет замечено одним из игроков).


    [1] Таким образом, в примере 6 при старте из любой точки кроме точки `(10)` игроки не сделают ни одного хода, и немедленно будет объявлен результат.

  • § 2. Стратегия. Правильная игра

    Вернёмся к примеру 5 и зададимся вопросом: кто выиграет?

    В общем случае может выиграть любой из игроков – для этого его сопернику достаточно «подыграть». Однако второй игрок может выиграть при любых ходах первого игрока. Для этого ему нужно брать то же количество камней, которое брал первый игрок предыдущим ходом, но из другой кучи. После хода второго игрока количество камней в обеих кучах будет равным. Далее. Первый игрок возьмёт несколько камней в одной из кучек, тогда после его хода количество камней в кучках станет неодинаковым, а значит, второй игрок сможет уравнять количество камней в кучах и передать ход сопернику. Второй игрок всегда сможет сделать свой ход, а поскольку камней становится все меньше и меньше, наступит момент, когда один из игроков не сможет сделать ход, и это будет первый игрок. Таким образом, второй игрок сможет выиграть в данный игре, как бы ни играл первый.

    Выигрышной стратегией назовём набор правил, следуя которым, один из игроков обязательно выиграет при произвольных ответах соперника.

    Аналогично, ничейной стратегией назовём набор правил, следуя которым, один из игроков обязательно выиграет или сведёт игру к ничьей при произвольных ответах соперника.

    Подчеркнём в определении стратегии условие «при произвольных ответах соперника». Важно понимать, что на месте игрока может оказаться что или кто угодно, например, компьютер. Нужно уметь отвечать на произвольные ходы соперника и в любом случае выигрывать.

    Как было сказано выше, мы пытались выделить игры, в которых один из игроков обязательно выиграет при произвольных ответах соперника. Следующая теорема позволяет утверждать, что математические игры и есть искомый класс игр.

    Теорема

    В любой математической игре существует либо выигрышная стратегия одного из игроков, либо ничейная стратегия для обоих игроков.

    Идея доказательства этого утверждения в частном случае будет рассмотрена при решении задач методом  анализа с конца (см. § 3).

    С одной стороны, заметим, что данная теорема обобщается на случай игр, которые теоретически могут продолжаться бесконечно долго. Для этого в условии теоремы вместо существования ничейной стратегии для обоих игроков нужно потребовать, чтобы каждый игрок имел стратегию, позволяющую данному игроку не проиграть.

    С другой стороны, рассмотрим игры, которые завершаются за конечное количество ходов выигрышем одного из игроков (и ничьих нет). Согласно теореме, у кого-то из игроков обязательно существует выигрышная стратегия, и он должен выиграть у своего соперника, как бы ни играл последний. Введём понятие правильной игры.

    Правильной

    называется игра, в которой каждый из игроков применяет выигрышную или ничейную стратегию, если она у него есть.

    Так, если игроки из примера 2 играют в правильную игру, второй игрок должен воспользоваться своей выигрышной стратегией (например, дополнять число до девяти; у него может быть также и иная выигрышная стратегия) и довести игру до победы.

    Таким  образом,  ответить  на  вопрос,  заданный  в  самом  начале  (см. пример 1), кто выиграет при правильной игре, можно так: необходимо найти определённую стратегию одного из игроков и доказать, что она является выигрышной.

    В заключение параграфа отметим, что согласно теореме выигрышная или ничейная стратегия существуют даже в таких математических играх, как шахматы и шашки. Однако ни человеческий ум, ни современные вычислительные мощности пока не позволили найти эту стратегию…

  • 3.1. Удачный ход

    Одним из способов нахождения выигрышных стратегий является удачный ответ на ход противника, например, учитывающий симметрию.

    Пример 7

    Два игрока по очереди ставят на шахматную доску слонов так, чтобы фигуры не били друг друга. Цвет фигур значения не имеет. Проигрывает тот, кто не сможет сделать ход. Кто выиграет при правильной игре?

    Решение

    Выиграет второй игрок. Для этого мысленно разрежем шахматную доску пополам линией, параллельной одной из сторон доски. Второй игрок должен ставить слона на место, симметричное полю, на которое текущим ходом поставил свою ладью первый игрок относительно проведённой оси. Докажем от противного, что второй игрок всегда сможет сделать ход.

    Пусть это неверно и второй игрок не сможет сделать хода. Разберём два случая.

    Случай 1. На поле предполагаемого хода уже стоит слон. Но этот слон не мог быть поставлен ранее вторым игроком, так как он ставит слонов только симметрично ходам первого игрока. Если первый игрок ранее поставил  слона на это поле, то второй игрок был обязан своим ходом поставить слона на поле, симметричное полю противника. Однако по условию на это поле слона поставил первый игрок текущим ходом. Получаем противоречие.

    Случай 2. Данное поле находится под боем какого-то слона. Заметим, что этот слон не был поставлен первым игроком на предыдущем ходу, так как два симметричных относительно оси слона не бьют друг друга. Тогда, в соответствии со стратегией второго игрока, слон, расположенный симметрично данному, также должен уже стоять на доске. Однако этот слон будет бить слона, поставленного первым игроком предыдущим ходом. Противоречие.

    Таким образом, было доказано, что у второго игрока всегда есть допустимый ход, а так как игра должна когда-нибудь закончиться (на шахматной доске всего 64 клетки), то первый игрок когда-то не сможет сделать своего хода и проиграет.

    Пример 8

    В кучке лежат: а) `30` камней; б) `32` камня. За ход можно взять от одного до пяти камней из кучи. Проигрывает тот, кто не сможет сделать ход. Кто выигрывает при правильной игре?

    Решение

    В данном случае работает стратегия дополнения до шести. Пусть своим ходом первый игрок берёт `x in{1,2,3,4,5}` камней. Тогда в пункте а) второй игрок отвечает ходом `(6-x)`, и поскольку после каждого его хода количество камней будет делиться на шесть,  то в итоге второй игрок выиграет.

    В пункте б) выигрывает первый игрок. Первым ходом он должен взять два камня и свести задачу к пункту а), в котором он уже будет выступать как второй игрок.

    Пример 9

    Два игрока перемещают ладью из левого нижнего угла `("a"1)` шахматной доски в правый верхний `("h"8)`. За ход можно сместить ладью на любое количество клеток вверх или вправо. Кто выиграет при правильной игре?

    Решение

    Выиграет второй игрок. Для этого ему нужно во время ходов возвращать ладью на диагональ, проведенную из левого нижнего угла в верхний правый угол. Подумайте, почему первый игрок проиграет при любых своих ходах.



  • 3.2. Анализ с конца

    Вторым важным способом решения задач является решение задачи с конца. Предположим (хотя это и не всегда верно), что для обоих игроков одни и те же позиции являются выигрышными.

    Вернёмся к примеру 9.

    Для нахождения выигрышной стратегии рассмотрим общую задачу. Считаем, что начальная позиция является параметром, и будем искать выигрышную стратегию при старте с этой позиции. Будем обозначать знаком «`-`» позиции, в которых при правильной игре участник, начинающий играть из данной позиции, выиграет, и знаком «`+`» отметим позиции, ведущие к поражению[1].

    Если игра начинается в поле `"h"8`, первый игрок уже проиграл – это позиция «`+`» (рис. 1).

    Далее, если игра стартует с полей `"h"1-"h"7` или `"a"8-"g"8`, то начинающий игрок может за один ход достичь поля `"h"8` и выиграть. Это позиция «`-`» (рис. 2).

    Рассмотрим ладью, стоящую в поле `"g"7`. У первого игрока есть только два хода – `"g"8` и `"h"7`. Но в обеих этих позициях стоит «`-`». Следовательно, второй игрок, стартующий из этих позиций, выиграет. Как бы ни ходил первый игрок, он проиграет. Это снова позиция «`+`».

    Далее, рассмотрим группы полей `"g"1-"g"6` и `"a"7-"f"7` (рис. 3). Стартуя из этих полей, первый игрок может за один ход попасть в поле `"g"7`, которое помечено знаком «`+`». Любой ход второго игрока из `"g"7` ведёт к его проигрышу.

    Продолжая таким образом заполнять шахматную доску, мы видим, что знаки «`+`» размещаются на диагонали `"a"1-"h"8` (рис. 4). В поле a1 стоит знак «`+`», поэтому первый игрок потерпит поражение.

    Зафиксируем общие правила расстановки знаков «`+`» и «`-`»:

    правила расстановки знаков «`+`» и «`-`»:

    1) знаком «`-`»  обозначаются позиции, в которых при правильной игре участник, стартующий из данной позиции, выиграет, и знаком «`+`» отмечаются позиции, ведущие к поражению;

    2) знак «`-`»  ставится в позиции, из которой можно за один ход прийти в позицию со знаком «`+`»;

    3) знак «`+`» ставится в выигрышных позициях, а также в тех позициях, из которых все возможные ходы ведут только в позиции, уже отмеченные знаком «`-`»[2].

    Таким образом, сначала нужно расставить знаки «`+`» в выигрышных позициях. На втором этапе нужно отметить знаком «`-`» те позиции, которые отделяет от выигрышных один ход. На третьем этапе следует просмотреть все позиции и найти «тупиковые», ведущие к положениям, обозначенным знаком «`-`». На игровом поле обязательно будет хотя бы одна такая позиция[3]. Второй и третий этапы необходимо поочередно повторять до тех пор, пока начальная позиция не будет помечена знаком «`+`» или «`-`», что и даст ответ на вопрос, кто выиграет при правильной игре.

    Как же должен действовать побеждающий участник игры? Он должен стремиться ходить в позиции, отмеченные знаком «`+`». При этом после очередного хода соперника он опять окажется в позиции со знаком «`-`», так как по определению знака «`+`» все возможные ходы из этой позиции ведут только в позиции со знаком «`-`». Таким образом, стратегия выигрывающего игрока формулируется просто: делать ход в позиции, обозначенные знаком «`+`». По определению знака «`-`» из  этой позиции существует хотя бы один ход в позицию, отмеченную знаком «`+`», поэтому такой ход у выигрывающего игрока всегда будет в наличии.

    Отметим следующий факт. Если известно, что игра длится не более чем `n` ходов при любых действиях первого и второго игроков, то начальная позиция обязательно будет помечена не более чем за `n` повторений шагов `2` и `3`. Это является идеей доказательства основной теоремы из § 2 в частном случае игр, в которых ничейных позиций нет, и каждая позиция является выигрышной для одного из игроков.

    Пример 10

    Два игрока играют в следующую игру. Перед ними лежат две кучи камней, в первой – три камня, а во второй – два камня. У каждого игрока имеется неограниченно много камней. Игроки ходят по очереди. Ход состоит в том, что игрок или увеличивает в три раза число камней в какой-либо куче, или добавляет один камень в любую кучу. Выигрывает тот игрок, после хода которого, в двух кучах станет не менее `16` камней. Кто выиграет при правильной игре: игрок, сделавший первый ход, или игрок, сделавший второй ход? Каким должен быть первый ход выигрывающего игрока? Ответ обоснуйте.

    Решение

    Попробуем изобразить позиции графически. Рассмотрим таблицу, в которой количество камней в первой куче будет соответствовать номеру столбца, а количество камней во второй куче – номеру строки. Чёрным цветом выделена позиция `(2, 3)`, с которой должна начинаться игра в условии:

    1. Выигрышные позиции – точки с координатами `x`, `y`, где `x + y ≥ 16`. Данные точки обозначим знаком «`+`» в таблице ниже[4].

    2. Далее, ставим знак «`-`» в позиции, которые отделяет от выигрышных один ход.

    По условию, можно либо увеличить одну из кучек в три раза, либо добавить  камень в одну из  куч, т. е.  мы  должны  поставить знак «`-`» в позицию `(x, y)`, если верно одно из условий: `x+y+1≥16`; `x+3y≥16`; `y+3x≥16`.

    3. После чего, ставим знак «`+`» в те позиции, из которых все ходы ведут только в позиции, обозначенные знаком «`-`». Таковыми будут позиции `(0, 5)`, `(5, 0)` и `(4, 3)`, `(3, 4)`.

    4. Знак «`-`» ставим в те позиции, стартуя из которых можно за один ход дойти до одной из позиций, отмеченных знаков «`+`» (поставленных на этапе 3).

    Стартуя из позиций `(4, 0)`, `(0, 4)`, `(3, 3)`, `(2, 4)`, `(4, 2)`, можно попасть в позиции, обозначенные знаком «`+`», увеличив количество камней в одной из кучек на единицу. Из позиций `(1, 4)` и `(4, 1)` можно прийти в позиции со знаком «`+`», увеличив в три раза количество камней в меньшей куче.

    5. Знак «`+`» ставим в те позиции, из которых все ходы ведут только в позиции, обозначенные знаком «`-`». На этот раз таковыми будут позиции `(2, 3)` и `(3, 2)`.

    В позиции `(2, 3)` был поставлен знак «`+`», а это значит, что победит второй игрок.

    При оформлении задачи необходимо указать выигрывающего игрока, записать его стратегию и показать, что этот игрок победит при любых ответах соперника. Если имеется таблица позиций, то стратегия выигрывающего игрока формулируется простым правилом: делать ходы в позиции, отмеченные знаком «`+`». Но эту стратегию рекомендуется записать в явном виде. Таблицу позиций же, наоборот, при оформлении работы можно не рисовать (она уже сделала свое дело: помогла определить победителя и найти его стратегию).

    Образец оформления примера 10.

    Покажем, что второй игрок может выиграть при произвольных ответах первого игрока.

    Рассмотрим все возможные начальные ходы первого игрока и укажем правильные ответы соперника:

    а) если первый игрок в три раза увеличивает число камней в одной из куч, то второй игрок должен увеличить количество камней в этой же куче также в три раза. Тогда в обеих кучах будет как минимум 2*3*3+3=21 камень. Второй игрок побеждает. Рассмотрение этого случая закончено;

    б) если  первый  игрок из позиции (2, 3) делает ход (2, 4) или (3, 3), то второй игрок должен пойти в позицию (3, 4) (именно она в нашем случае обозначена знаком «+»). Теперь первый игрок делает второй ход (заметим, этот ход не может быть выигрышным). Возможны три варианта:

    - первый игрок увеличивает в три раза количество камней в одной из куч. Тогда второй игрок повторяет это действие с оставшейся кучкой камней, получает в сумме 21 камень и выигрывает,


    - первый игрок добавляет один камень в первую кучу – позиция (4, 4). Тогда второй игрок увеличивает количество камней в одной из куч в три раза, получает в сумме 16 камней и выигрывает,

    - первый игрок добавляет один камень во вторую кучу – позиция (3, 5). Тогда второй игрок увеличивает количество камней во второй куче в три раза, получает в сумме 18 камней и выигрывает.


    Таким образом, второй игрок побеждает при любых ходах своего соперника.


    Обратите внимание, что стратегию второго игрока можно придумать, не основываясь на таблице позиций. Важно помнить: если вы пропустите или не разберёте хотя бы один ход соперника (проигрывающего игрока), это может быть чревато тем, что данная стратегия может оказаться в корне неверной. Также нужно внимательно отнестись к расстановке знаков «`+`» и «`-`» в таблице позиций: один неверно поставленный знак может изменить ответ. Лучше не торопиться и расставить только те знаки, в которых вы уверены на данный момент. И не существенно, если вы не поставите никакого знака в данной позиции на определенном этапе (например, по правилам его необходимо поставить, но вы этого не заметили). Главное – не поставить неверного знака.




    [1] «`+`»-позиции иногда называют `"P"`-позициями, а «`-`»-позиции – `"N"`-позициями по первым буквам английских слов «Previous» (предыдущий) и «Nеxt» (следующий), указывающими, какой из игроков выиграет при старте из этой позиции – игрок, который пришёл в эту позицию последним ходом, или игрок, совершающий следующий ход из этой позиции.


    [2] Недопустимо, чтобы из этой позиции один ход вёл  в позицию, обозначенную знаком  «`+`»,  а  другой  –  вёл  в  позицию,  ещё  не  обозначенную ни одним из знаков.


    [3] Хотя убедиться в этом непросто, мы предлагаем читателю самостоятельно подумать, почему это верно.


    [4] Хотя таблица должна быть бесконечной (количество камней может быть сколь угодно большим), достаточно нарисовать таблицу `17` x `17` – случаи, когда в одной из куч более `16` камней, нас не интересуют, так как все эти позиции являются выигрышными.

  • 3.3. Дерево игры

    Данный способ является разновидностью анализа с конца и заключается в том, что мы будем анализировать в знаках «`+`» и «`-`» не все позиции, а только те, в которые можно прийти из начальной позиции. Для этого мы нарисуем дерево ходов из начальной позиции. Разберём этот метод на примере 10.

    Первоначальная позиция - `(2,3)`. За один ход из этой позиции можно прийти в позиции: `(3,3)`; `(2,4)`; `(6,3)`; `(2,9)`, добавляя один камень в одну из куч или умножая количество камней в куче на три.

    Наша цель, в конечном счёте, во все эти позиции поставить знаки «`+`» и «`-`». Чтобы поставить знак «`+`», нужно быть уверенным, что все ходы из этой позиции ведут в «`-`»; для того, чтобы поставить знак «`-`», нужно, чтобы хотя бы один ход из этой позиции вел к «`+`».

    Выше приведённое означает, что если из позиции за один ход можно прийти в позицию с количеством камней, не меньшим `16` (что по условию задачи равносильно выигрышу), это - позиция, выигрышная для первого игрока, т. е. позиция «`-`». В связи с этим знаки «`-`» можно поставить в позициях `(6,3)` и `(2,9)`, умножая количество камней в большей куче на `3`, мы получим `6^(**)3+3=21` и `2+9^(**)3=29` камней соответственно, и выиграем.

     Мы не сможем такого утверждать для позиций `(3,3)` и `(2,4)`, поэтому отразим в дереве все позиции, в которые мы можем прийти из них ещё за один ход. Две из полученных после двух ходов позиций повторяются (это позиция `(3,4)`). Можно не делать дубликат позиции `(3,4)`, а провести к ней пути как из позиции `(2,4)`, так и из позиции `(3,3)`. А можно - оставить как есть, что в данном случае мы и сделаем.

    Обозначим знаком «`-`» позиции, из которых можно дойти за один ход до выигрышных. Из оставшихся позиций продолжаем дерево дальше позициями, в которые можно попасть за три хода

    Из всех полученных позиций можно за один ход дойти до выигрышных. Поэтому, в них можно поставить «`-`» и далее дерево ходов не продолжать. Теперь, посмотрим на позиции `(3,4)` и `(4,3)`. Все ходы в этих позициях ведут в позиции со знаком «`-`», т. е. в позиции, проигрышные для пришедшего в них игрока (и выигрышные для начинающего с них игрока). Поэтому, начинающий из такой позиции при правильной игре проиграет - это позиции «`+`».

    После этого, отметим знаком «`-`» позиции `(3,3)` и `(2,4)` уровнем выше как позиции, из которых существует хотя бы один ход в позицию, отмеченную знаком «`+`». И, наконец, позицию `(2,3)` отметим знаком «`+`» как позицию, все ходы из которой ведут в позиции со знаком «`-`».

    Таким образом, в позиции `(2,3)` стоит знак «`+`»[1], а это означает, что в данной игре выиграет второй игрок. Его стратегия формулируется тем же правилом, что и ранее: делать ходы в позиции, отмеченные знаком «`+`». Стратегия выигрывающего игрока в явном виде («образец оформления примера») уже была описана ранее. Аналогично анализу с конца обратим внимание, что важно построить дерево позиций до конца - пропуск любой, даже самой маленькой, ветви может существенно поменять всю расстановку знаков в вершинах дерева существенно поменять всю расстановку знаков в вершинах дерева и даже привести к тому, что победит другой игрок. Причём последнее не является редкостью.

    Отдельно отметим, что хотя «анализ с конца» и «дерево игры» являются различными вариациями одной и той же идеи, в некоторых случаях быстрее действовать одним методом, а в некоторых - другим. Так, если в игре легко отобразить схематично всё множество позиций (например, на клетчатом листе), с другой стороны, количество ходов до выигрыша может быть довольно большим (см. пример 9), гораздо легче действовать методом «анализ с конца». В примере 10 решения обоими методами примерно идентичны по трудозатратам.

    Однако, если известно, что игра всегда заканчивается за малое количество ходов - логичнее нарисовать дерево игры. Более того, если множество позиций сложно или невозможно каким-либо образом изобразить схематически (например, если не две кучи камней, а три кучи) - «анализ с конца» вообще малоприменим – нужно рисовать дерево игры или вообще решать задачу методом «удачный ход».


    [1] Поскольку данное дерево игры заполнялось знаками по тем же правилам, что и таблица позиций, знаки «`+`» и «`-`» в позициях, отмеченных на дереве  и в таблице позиций ранее, должны совпадать.

  • 3.4. Детальный анализ игры

    Данный параграф появился в связи с тем, что с 2015 года в ЕГЭ в задаче по теме теории игр требуется не только указать стратегию выигравшего, но и провести более подробный анализ, нарисовав дерево игры (о чём прямо сказано в условии) и ответив на дополнительные вопросы вида «из каких позиций выиграет первый игрок, причем ровно за два хода» или «какое максимальное количество ходов потребуется для выигрыша». Условие такой задачи в реальном ЕГЭ будет, скорее всего, очень длинным и занимать до страницы; однако этого не нужно бояться.

    Пример 11

    Два игрока играют в следующую игру. Перед игроками лежит куча из `S` камней, игроки по очереди могут за ход провести над кучей следующую операцию: добавить `1` или `4` камня в кучу или, если количество камней в куче чётно, увеличить количество камней в куче в `1,5` раза. Выигрывает игрок, после чьего хода в куче будет не менее `31` камня.

    Укажите все значения `S`, при которых в правильной игре

    А) Первый игрок может выиграть первым ходом.

    Б) Второй игрок может выиграть первым ходом.

    В) Первый игрок может выиграть вторым ходом, при этом он не может выиграть своим первым ходом.

    Г) Найдите хотя бы одно значение `S`, при котором в правильной игре выигрывает второй игрок, при этом он не может выиграть своим первых ходом.


    Решение

    Нарисуем клеточную прямую и отметим знаком «`+`» выигрышные позиции в конце игры - позиции с количеством камней не менее `31`. Далее отметим знаками «`-`» позиции, из которых до указанных можно дойти за `1` ход: это позиция (`30`), из которой можно выиграть ходом «добавить `1` камень», позиции `(30)`, `(29)`, `(28)`, `(27)` из которых выиграть ходом «прибавление `4` камня» и позиции `(22)`, `(24)`, `(26)`, `(28)`, `(30)`, из которых можно выиграть за ход «увеличить кучу с чётным количеством камней в `1,5` раза»[1]. Из некоторых позиций, как видно выше, существует сразу несколько выигрышных ходов, однако это неважно: должен существовать хотя бы один. Чтобы отличать эти отмеченные позиции от всех других, добавим ещё цифру «`1`» к позиции для удобства, получив «`-1`».

    Найдя позиции, которые подпадают под условие пункта А), перейдём к пункту Б). Нас интересует не просто дальнейшая расстановка плюсов и минусов в позициях, а ещё и количество ходов до выигрыша. Фраза «второй игрок выиграет первым ходом» означает, что из данных позиций не должно быть ходов ни в какие другие позиции, кроме как в позиции, отмеченные знаком «`-1`», т. е. позиции, из которых второй игрок сможет выиграть за один ход. Такие позиции лучше перебрать следующим образом:

    Сначала отметим все пустые позиции знаком «?», из которых существует хотя бы один ход до позиций, уже отмеченных знаком «`-1`». Ходом «добавить один камень» можно за ход попасть в указанное множество из позиций `(25)`, `(23)`, `(21)`; ходом «добавить `4` камня» за ход можно попасть из позиций `(25)`, `(23)`, `(20)`, `(18)`, и ходом «увеличить в `1,5` раза» - из позиций `(16)`, `(18)`, `(20)`.

    Теперь для каждой из отмеченных «?» позиций проверим условие, что все допустимые ходы идут в нарисованное множество минусовых позиций.

    `(16)`, `(18)`, `(20)` - ход «`+1`» противоречит условию выше;

    `(21)` - ход «`+4`» противоречит условию выше;

    `(23)`, `(25)` - подходят. Таким образом `(23)`, `(25)` - являются позициями, в которых второй игрок выиграет за один ход. В этих позициях будет стоять знак «`+`» как в позициях, откуда все ходы идут в позиции со знаком «`-1`».

    Теперь, перейдём к пункту В). Перед этим сотрём все знаки «?», поскольку в позициях, отличных от `(23)` и `(25)` нам неизвестно, существует ли хотя бы один ход, ведущий в минусовую позицию.

    Первый игрок выиграет вторым ходом тогда и только тогда, когда не может выиграть за ход, но может прийти в позицию, из которой он, как второй игрок, выиграет первым ходом. Эти позиции уже найдены - это позиции `(23)` и `(25)`. Таким образом, нас интересуют все позиции, из которых можно за ход дойти до `(23)` и `(25)`. Это позиции `(19)`, `(21)`, `(22)`, `(24)`. Однако из позиций `(22)` и `(24)` в данный момент уже отмечены знаком «`-`», то есть из них можно выиграть за ход, а нас интересуют в данном пункте позиции, где за ход выиграть нельзя. Таким образом, в пункте В). Ответ - позиции `(19)` и `(21)`.

    Наконец, в пункте Г) нас интересуют позиции, в которых выиграет второй игрок, т. е. позиции «`+`». Отметим отличие пункта Г) от пункта Б). В пункте Г) нас интересуют позиции, в которых второй игрок выиграет и он не сможет выиграть первым ходом, как бы не ходил его соперник. В пункте Б) же нас интересуют позиции, в которых второй игрок сможет, наоборот, выиграть первым ходом как бы не ходил его соперник. Позиции «`+`», где в зависимости от хода первого игрока второй сможет выиграть как первым своим ходом, так и не первым, нас не интересуют ни в пункте Б), ни в пункте Г).

    Для решения пункта Г) просто продолжим заполнять согласно правилам таблицу позиций.

    Нас интересует позиция, в которой выиграет второй игрок, то есть позиция «`+`». С другой стороны, нас интересует позиция, из которой второй игрок не сможет выиграть своим первым ходом. Это означает, что первый игрок всеми своими ходами должен ходить в минусовые позиции, но ни одним своим ходом не сможет походить в позиции «`-1`», из которых существует выигрышный ход. Этим свойством будет обладать, например, позиция `(15)` - возможные ходы из неё будут вести в позиции `(16) ` и `(19)`, отмеченные знаком «`-`», а не «`-1`». Это будет наибольшей позицией, обладающей таким свойством - из позиций `(18)` и `(20)`, выигрышных для второго игрока, существует ход первого игрока «`1,5x`», приводящий к позициям `(27)` и `(30)`. Из этих позиций можно выиграть за ход.


    Ответ

    А) `(22), (24), (26), (27), (28), (29), (30)`;

    Б) `(23), (25)`;

    В) `(19), (21)`

    Г) Например, `(15)`.

    Пример 12

    Два игрока играют в следующую игру. Перед игроками лежит две кучи: в первой куче `5` камней, во второй куче - `S` камней. Игроки по очереди могут за ход провести над одной из куч следующую операцию: добавить `2` камня в кучу или, если количество камней в куче чётно, увеличить количество камней в куче в `2,5` раза. Выиграет игрок, после чьего хода суммарное количество камней в обеих кучах будет не менее `39`.

    Укажите все значения `S`, при которых в правильной игре

    А) Первый игрок может выиграть первым ходом

    Б) Второй игрок может выиграть первым ходом.

    В) Первый игрок может выиграть вторым ходом, но не может выиграть первым ходом.


    Решение

    Данный пример очень похож по условию на пример 11, однако здесь возникает проблема в том, что количество куч - две, хоть и задано, что изначально в первой куче `5` камней. Если рассматривать двумерную таблицу позиций, это приведёт к побочному анализу многих позиций, в которых количество камней в первой куче отлично от пяти (в примере 11 таких «лишних» позиций не было). Построение дерева игры также не приведёт к быстрому результату, т. к. начальная позиция неизвестна, и такие деревья нужно будет рисовать при каждом `S`.

    В связи с этим проведём предварительный анализ игры, не пользуясь ни таблицей позиций, ни деревом игры.

    А) Первый игрок выиграет за ход. Первый игрок не может увеличить количество камней в кучке из `5` камней в `1,5` раза. Следовательно, его возможные ходы – это либо добавление камней к одной из куч, либо увеличение количества камней в второй куче в `2,5` раза. В первом случае суммарное количество камней до увеличения должно равняться `37` или `38` (т. е. во второй куче `32` или `33` камня). Во втором случае: пусть `x` – количество камней во второй куче. Тогда `x` - чётно и `2,5x+5>=40`, откуда `x>=14`.  Следовательно, возможное количество камней во второй куче, при котором первый игрок победит за ход - `14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 33` (больше `33` нельзя, т. к. изначальное суммарное количество камней должно быть меньше `39`, чтобы игра имела смысл).

    Б) Второй игрок выиграет за ход. Это должны быть позиции, при которых первый игрок не сможет выиграть за ход, а второй игрок – сможет выиграть за ход после любого хода первого игрока. Рассмотрим все возможные ходы первого игрока:

    – первый игрок увеличивает количество камней в куче с `S` камнями на `2` (этот ход второй игрок может применить в любой ситуации). Тогда второй выиграет, если после этого `S` станет равно `14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 33` (см. предыдущий пункт, количество камней в первой куче не менялось), т. е. изначально `S` могло быть равно `12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 31`.

    Из этих вариантов числа камней `S` только варианты `12,31` соответствуют тому, что первый игрок не может выиграть своим первым ходом. Будем далее рассматривать только `S=12`, `S=31` и проверим оставшиеся возможные ходы первого игрока.

    Проверим `S=12:`

    – первый игрок увеличивает количество камней в куче с `S` камнями в `2,5` раза, получив `30` камней во второй куче. В таком случае второй игрок сможет выиграть за ход, также увеличив количество камней в этой куче в `2,5` раза.

    – первый игрок увеличивает количество камней в куче с `5` камнями в `2,5` раза: невозможный ход.

    – первый игрок увеличивает количество камней в первой куче на `2`. Таким образом, в первой куче - `7` камней, во второй - `12`. Однако в данном случае второй игрок не сможет выиграть - ни один из его ходов не приводит к ситуации, когда суммарное количество камней после его хода не менее `39`.

    `S=12` не подходит. Проверим `S=31:`

    – первый игрок увеличивает количество камней в куче с `S` камнями в `2,5` раза: невозможный ход.

    – первый игрок увеличивает количество камней в куче с `5` камнями в `2,5` раза: невозможный ход.

    – первый игрок увеличивает количество камней в куче с `5` камнями на `2`. Тогда второй игрок также увеличит количество камней в одной из куч на `2`, получит суммарное количество камней - `39`, и победит!

    `S=31` подходит.

    В) Первый игрок выиграет вторым ходом. После своего хода он должен прийти в позицию, из которой он (будучи «вторым» игроком), сможет выиграть за ход (т. е. в позицию, соответствующую п. Б).

    Если после хода первого игрока количество камней в первой куче останется равным `5`, то мы придём в ситуацию предыдущего пункта (после хода первого игрока, если они поменяются ролями, первому игроку, находящемуся в роли второго игрока, нужно выиграть за оставшийся ход). Ответ пункта Б) гласит, что после хода первого игрока количество камней во второй куче должно стать `31`. Единственная возможная ситуация - `29` камней.

    Заметим, что при начальном количестве в `5` камней для первой кучи и `29` камней во второй куче единственно возможные ходы - добавления по `2` камня к одной из куч. При этом никогда чётного количества камней в какой-либо из куч не получится, и применить ход «увеличить в `2,5` раза» также будет невозможно. Поэтому при любых ходах как первого, так и второго игрока, через три хода суммарное количество камней станет `29+5+2+2+2=40`, поэтому игра закончится за три хода победой первого игрока (своим вторым ходом).

    Второй случай - если первый игрок в правильной игре своим ходом поменяет количество камней в куче единственно возможным ходом «`+2` камня», при этом после хода первого игрока получится `7` камней в первой куче и `S` - во второй. После этого мы должны для начала полностью повторить анализ, по образцу предыдущего пункта. Рассмотрим следующий ход второго игрока:

    – второй игрок увеличивает количество камней в куче с `S` камнями на `2`. Тогда первый выиграет, если после этого `S` станет равно `14, 16, 18, 20, 22, 24, 26, 28, 30, 31 ` `(2,5x+7>=39)`, т. е. изначально `S` могло быть равно `12, 14, 16, 18, 20, 22, 24, 26, 28, 29`.

    Из этих вариантов числа камней `S` только варианты `12, 29` соответствуют тому, что второй игрок не может выиграть своим первым ходом. Вариант `S=29` уже был рассмотрен ранее - он подходит. Рассмотрим `S=12` и оставшиеся возможные ходы второго игрока.

    – второй игрок увеличивает количество камней в куче с `12` камнями в `2,5` раза. При этом он получит `30` камней во второй куче, и `37` - суммарно в обеих кучах. Любой ход первого игрока приведёт к выигрышу.

    – первый игрок увеличивает количество камней в первой куче в `2,5` раза: невозможный ход, т. к. `7` - нечётное число.

    – первый игрок увеличивает количество камней в первой куче на `2`. Таким образом, в первой куче - `9` камней, во второй - `12`. В данном случае первый игрок сможет выиграть за ход, увеличив количество камней во второй куче, `12`, в `2,5` раза: `9+30 = 39` камней, ровно столько, сколько и требуется для победы. Любой другой ход первого игрока приведёт к тому, что после этого его соперник увеличит в `2,5` раза кучу из `12` или `14` камней и победит, т. о., этот ход не является ходом первого игрока при правильной игре (см. замечание после данной задачи).

    Итак, `S=12` будет подходить под условие «первый игрок всегда выиграет вторым ходом», если первым ходом первый игрок увеличит количество камней в первой куче с `5` до `7`. Заметим, что все остальные ходы первого игрока `(12->14; 12->30)` приведут к тому, что второй игрок увеличит количество камней во второй куче в `2,5` раза и выиграет с суммарным количеством камней `40` и `80`. Следовательно, такие ходы первого игрока не могут быть ходами в правильной игре.


    Ответ

    А) `S=14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 33`;

    Б) `S=31`;

    В) `S=12,29`.





    [1] Если в условии явно просят объяснить, откуда возникают вышеуказанные позиции и почему других таких позиций нет (это встречено автором в демоверсии ЕГЭ 2015), желательно выписать возникающие неравенства и их решить. Иначе в случае сильно строгой проверки можно недосчитаться первичных баллов на пустом месте. Так, в случае хода «умножить кучу с чётных количеством камней на 1,5» нужна система условий, состоящая из 1) неравенства  (невыигрышная априори); 2) неравенства  (можно дойти за 1 ход до выигрышной) и 3)  чётно.

     




     



  • § 3. Законы алгебры логики

    Итак, мы познакомились с понятием логического выражения и увидели, каким образом его строить по высказыванию на русском языке. Следующий шаг – изучение преобразований логических выражений.

    Определение 5

    Логические выражения, зависящие от одних и тех же логических переменных, называются равносильными, если на любом наборе значений переменных они принимают одинаковое значение (`0` или `1`). В дальнейшем для обозначения равносильности логических выражений мы будем использовать знак равенства.<

    Законы алгебры логики

    это некоторые стандартные преобразования логических выражений, при которых сохраняется равносильность. Начнём с самых простых законов:

    1) Законы поглощения констант

      x `vv` 0 = x,  x & 1 = x;

     2) Законы поглощения переменных

      x `vv` 1 = 1,  x & 0 = 0;

     3) Законы идемпотентности

      x & x = х,  x `vv` x = х;

     4) Закон двойного отрицания

     $$ \stackrel{=}{\mathrm{x}}$$ = x;

     5) Закон противоречия

      x & $$ \stackrel{-}{\mathrm{x}}$$ = 0;

     6) Закон исключённого третьего

      x `vv` $$ \stackrel{-}{\mathrm{x}}$$ = 1;

    Приведённые законы ещё называют аксиомами алгебры логики. Истинность этих и всех последующих законов легко можно установить, построив таблицу истинности для левого и правого логического выражения.

    Переходим к группе законов, которые практически аналогичны законам алгебры чисел.

    7) Законы коммутативности 

    x & y = y & x,

    x `vv` y = y `vv` x;

    Здесь стоит сделать замечание, что помимо конъюнкции и дизъюнкции свойством коммутативности также обладают эквивалентность и строгая дизъюнкция. Импликация – единственная из изучаемых операций, которая имеет два операнда и не обладает свойством коммутативности.

    8) Законы ассоциативности

      (x & y) & z = x & (y & z),

     (x`vv`y) `vv` z = x `vv` (y `vv` z);

    9) Законы дистрибутивности

      x & (y `vv` z) = (x & y) `vv` (x & z),
     x `vv` (y & z) = (x `vv` y) & (x `vv` z);

    Первый из законов дистрибутивности аналогичен закону дистрибутивности в алгебре чисел, если конъюнкцию считать умножением, а дизъюнкцию – сложением. Второй же закон дистрибутивности отличается от алгебры чисел, поэтому рекомендуется обратить на него особое внимание и в дальнейшем использовать при решении задач на упрощение выражений.

    Кроме аксиом и алгебраических свойств операций ещё существуют особые законы алгебры логики.

    особые законы алгебры логики.

    10) Законы де Моргана

    $$\style{font-family:'Courier New'}{\overline{\mathrm x\&\mathrm y}=\overline{\mathrm x}\vee\overline{\mathrm y},}$$

    $$\style{font-family:'Courier New'}{\overline{\mathrm x\vee\mathrm y}=\overline{\mathrm x}\;\&\;\overline{\mathrm y};}$$

    11) Загоны поглощения (не путать с аксиомами поглощения переменных нулём или единицей)

      x `vv` (x & y) = x;

      x & (x `vv` y) = x.

    Рассмотрим пример доказательства первого закона де Моргана при помощи построения таблицы истинности.

    `x`

    `Y`

    `x&y`

     `bar(x&y)`

    `barx` `bary`

    `barx vv bary`

    `0`

    `0`

    `0`

    `1`

    `1`

    `1`

    `1`

    `0`

    `1`

    `0`

    `1`

    `1`

    `0`

    `1`

    `1`

    `0`

    `0`

    `1`

    `0`

    `1`

    `1`

    `1`

    `1`

    `1`

    `0`

    `0`

    `0`

    `0`

    Так как результирующие столбцы совпали, то выражения, стоящие в левой и правой частях закона, равносильны.

    В алгебре при решении задач на упрощение выражений большой популярностью пользовалась операция вынесения общего множителя за скобки. В алгебре логики эта операция также является легитимной, благодаря законам дистрибутивности и закону поглощения константы `1`. Продемонстрируем этот приём на простом примере: докажем первый закон поглощения, не используя таблицу истинности.

    Наше начальное выражение: x `vv` (x & y). Выносим `x` за скобки и получаем следующее выражение:

    x &(1 `vv` y). Используем закон поглощения переменной константой `1` и получаем следующее выражение: x & 1. И теперь используем закон поглощения константы и получаем просто x.

    В заключение, следует сказать несколько слов об операции импликации. Как уже отмечалось выше, импликация не обладает свойством коммутативности. Её операнды неравноправны, поэтому каждый из них имеет уникальное название. Левый операнд импликации называется посылкой, а правый – следствием. Из таблицы истинности импликации следует, что она истинна, когда истинно следствие, либо ложна посылка. Единственный случай, когда импликация ложна – это случай истинной посылки и ложного следствия. Таким образом, мы подошли к последнему закону алгебры логики, который бывает полезен при упрощении выражений.

    12) Закон преобразования импликации

    `"x"  ->  "y" = bar("x")  vv  "y"`

    Необходимо ещё отметить, что в сложных логических выражениях у операций есть порядок приоритетов.

    1) Отрицание

    2) Конъюнкция

    3) Дизъюнкция, строгая дизъюнкция, эквивалентность

    4) Импликация

  • § 4. Примеры задач на использование законов алгебры логики и формализацию высказываний
    Задача 1

    С помощью тождественных преобразований максимально упростить следующее логическое выражение:

    `bar C vv` (`A` & `С`) `vv`  (`bar(A vv C vv bar(B)`)

    Решение

    Максимально упростить, это значит довести выражение до такого вида, когда невозможно применить ни один из законов алгебры логики, которые сокращают длину выражения.

    Для того, чтобы не запутаться, можно использовать общую стратегию упрощения логических выражений.

    1) Избавиться от операций импликации.

    2) Продвинуть отрицание вглубь выражения. То есть применять законы де Моргана, и закон двойного отрицания пока знак отрицания не будет стоять только над переменными (но не над операциями).

    После пункта 2 наступает относительная свобода действий. Можно использовать тождества поглощения или раскрывать скобки.

    В нашей задаче операция импликации отсутствует, поэтому первый пункт мы пропускаем. Переходим к пункту 2. Применяем два раза второй закон де Моргана (для дизъюнкции) и закон двойного отрицания к правой скобке и получаем следующее логическое выражение:

      `bar C vv ` (`A`  &  `C`) `vv` (`bar A` & `bar C` & `B`)

    Если теперь внимательно посмотреть на выражение, то очевидно, что к первому и третьему слагаемому  можно применить первый закон поглощения, так как отрицание переменной `C` является первым слагаемым и входит в третье в качестве множителя.

    Поскольку дизъюнкцию ещё называют логическим сложением, её операнды называют слагаемыми, аналогично конъюнкция – это логическое умножение, и её операнды называют множителями.

    После применения первого закона поглощения получается следующее логическое выражение:

    `bar C` `vv` (`A` & `C`)

    Применим второй (нестандартный для алгебры) закон дистрибутивности. Получаем: 

    (`bar C vv A`) & (`bar C vv C`)

    Ко второй скобке применяем закон исключённого третьего, превращаем её в единицу, а затем применяем закон поглощения константы `1` и в итоге получаем выражение: `bar C vv A`, которое упростить уже нельзя.

    Для лучшего понимания, рекомендуется выписать исходное логическое выражение, последовательно применить к нему все описанные действия и сравнить свой результат с приведённым в конце решения задачи.

    Обратите внимание, что исходное логическое выражение зависело от трёх переменных (`A, B, C`) , в то время как упрощённое в итоге зависит от двух логических переменных (`A` и `C`). При этом выражения всё равно остаются равносильными! Это происходит потому, что в процессе упрощения применялись законы поглощения. Аналогичный результат мог бы получиться, если в процессе упрощения выражения используются законы поглощения переменных константами. Исчезновение переменной при упрощении означает, что в исходном выражении она является несущественной.

    Задача 2

    Укажите значения переменных `K`, `L`, `M`, `N`, при которых логическое выражение `(L vv M) ^^ (¬ K -> M) ^^ ¬ N ^^ ¬ M`  истинно.

    Решение

    Будем следовать стратегии, описанной в предыдущем примере. Первым делом избавляемся от операции импликации. Получаем следующее выражение:

          `(L vv M) ^^ ( K vv M) ^^ ¬ N ^^ ¬ M`

    Отрицание вглубь продвигать не надо. Теперь раскроем скобки. Для упрощения условимся операцию конъюнкции никак не обозначать (по аналогии с алгеброй чисел).

         `(LK vv LM vv MK vv M) ( ¬ N) ( ¬ M)`

    В первой скобке можно применить тождество поглощения, и «съесть» второе и третье слагаемое, которые содержат M в качестве множителя. Получается такое выражение: 

         `(LK vv M) ( ¬ N) ( ¬ M)`

    Выполнив оставшиеся операции умножения, получим следующий результат:

        ` LK¬ N¬ M`

    Получили одну конъюнкцию. Следовательно, существует всего один набор значений переменных, при котором получится значение «1»:  `L=1`, `K=1`, `N=0`, `M=0`.


    Задача 3

    Сколько решений имеет уравнение:

         `(((K¬L¬N) (¬L -> M))` \/ `((¬K` \/ `L` \/ `N) (¬L¬M)))  (K`\/`N)=1`

    Решение

    Исходное выражение достаточно сложное, поэтому будем его упрощать. Первым делом избавимся от импликаций, получим:

         `(((K¬L¬N) (L`\/ `M))` \/ `((¬K` \/ `L` \/ `N) (¬L¬M)))  (K`\/`N) = 1`

    Теперь раскроем скобки. Для упрощения условимся не записывать слагаемые, куда одновременно входят некоторая переменная и её отрицание (они всё равно равны нулю):

         `(K¬L¬NM` \/ `¬K¬L¬M` \/ `N¬L¬M)  (K`\/`N) = 1`

    Продолжаем раскрытие скобок. Получаем:

         `K¬L¬NM` \/ `¬K¬L¬MN` \/ `KN¬L¬M` \/ `N¬L¬M  = 1`

    Ко второму, третьему и четвёртому слагаемому можно применить тождество поглощения. В итоге получится:

         `K¬L¬NM` \/ `N¬L¬M  = 1`

    На этом упрощение закончено, теперь будем анализировать. Дизъюнкция равна единице, если хотя бы одно из слагаемых равно единице. Первое слагаемое равно единице на единственном наборе переменных: (`K=1`, `L=0`, `N=0`, `M=1`). Второе слагаемое равно единице на двух наборах: (`N=1`, `L=0`, `M=0`, `K` – любое (или `0` или `1`)). Соответственно, уравнение имеет три различных решения.

    Задача 4

    В нарушении правил обмена валюты подозреваются четыре работника банка - Антипов    (`A`), Борисов (`B`), Цветков (`C`) и Дмитриев (`D`). Известно, что:

    1) Если `А` нарушил, то и `В` нарушил правила обмена валюты.

    2) Если `B` нарушил, то и `C` нарушил или `A` не нарушал.

    3) Если `D` не нарушил, то `A` нарушил, а `C` не нарушал.

    4) Если `D` нарушил, то и `A` нарушил.

    Кто из подозреваемых нарушил правила обмена валюты?

    Решение

    Чтобы решить эту задачу, необходимо провести процесс формализации условия, сформировать единое логическое выражение и провести его упрощение. Выделим из условия четыре простых высказывания: «`A` нарушил правила», «`B` нарушил правила», «`C` нарушил правила»,  и «`D` нарушил правила». Обозначим их соответственно буквами `A`, `B`, `C`, `D`. Тогда высказывания из условия формализуются следующим образом (конъюнкция не обозначается никак):

    1) `A -> B`;

    2) `B -> C` \/ `¬A`;

    3) `¬D -> A¬ C`;

    4) `D -> A`.

    Нам известно, что выполняются все 4 высказывания, следовательно, нужно объединить их знаками конъюнкции и найти наборы, при которых получившееся общее высказывание будет истинным. Эти наборы и покажут нам, какие возможны ситуации (правила обмена нарушил тот, у кого переменная в итоговом наборе имеет значение «1»).

    Итак, строим логическое выражение:

          `(A -> B)( B -> C` \/ `¬A)( ¬D -> A¬C)( D -> A)`.

    Теперь будем его упрощать. По алгоритму первым делом избавляемся от операции импликации. Получаем следующее выражение:

         `(¬A` \/ `B)( ¬B` \/ `C` \/ `¬A)( D` \/  `A¬C)( ¬D` \/  `A)`.

    Раскрываем скобки. Первую перемножаем со второй, а третью с четвёртой.

         `(¬A¬B`  \/ `¬AC` \/ `¬A` \/ `BC` \/ `B¬A) ( DA` \/ `A¬C¬D` \/  `A¬C)`.

    Напомним, что слагаемые, равные нулю по причине того, что в них входит сразу и переменная и её отрицание, мы не записываем. В первой скобке теперь можно применить тождество поглощения, и «съесть» все слагаемые, имеющие в своём составе `A` с отрицанием. Во второй скобке можно также применить тождество поглощения, и «съесть» второе слагаемое. В итоге получаем:

         `( ¬A` \/ `BC ) ( DA` \/ `A¬C)`.

    При раскрытии оставшихся скобок три из четырёх слагаемых окажутся равными нулю, а последнее будет выглядеть следующим образом: `ABCD`. Из этого следует, что все четверо работников банка нарушили правило обмена валюты. (Только в этой ситуации предположения из условия задачи одновременно выполняются).

    Ответ

    Правила обмена валюты нарушили все.

    Задача 5

    Известно, что обе надписи на дверях либо истинны, либо ложны одновременно. Надпись на первой двери – "Клад за другой дверью", на второй двери – "Клада за этой дверью нет, а за другой  – есть". Где находится клад?

    Решение

    По сути нас интересуют два простых высказывания: «Клад есть за первой дверью» и «Клад есть за второй дверью». Обозначим первое из них буквой `A`, а второе буквой `B`. Тогда изначальные предположения формализуются следующим образом: 

    1) `B`;

    2)  `¬BA`.

    В этой задаче в отличие от предыдущей у нас две возможные ситуации относительно комбинирования начальных предположений – они либо оба истинны, либо оба ложны. Предположим, что они оба истинны, тогда при их перемножении получится тождественный ноль, что означает невозможность данной ситуации.

    Предположим, что оба высказывания ложны, тогда необходимо перед перемножением на каждое из них «навесить» отрицание (рассматривать истинность противоположных высказываний) В итоге получится следующее логическое выражение:

         `¬B ¬(¬BA)`.

    Упрощаем его по алгоритму: отрицание продвигаем вглубь, применяя тождество Де Моргана. Получаем:

         `¬B (B` \/ `¬A)`.

    Раскроем скобки. Первое слагаемое сокращается, а второе выглядит следующим образом: `¬B¬A`.

    Полученный результат означает, что условия задачи выполняются, только в случае, когда оба высказывания ложны, а это означает, что клада нет ни за одной дверью. Не повезло нам `J`.

    Ответ

    Клада нет ни за одной дверью.

    В заключение приведём общую схему решения текстовых логических задач, которую мы уже применяли на практике при разборе примеров.

    схема решения текстовых логических задач

    1) Выделить из условия задачи элементарные (простые) высказывания и обозначить их буквами.

    2) Записать условие задачи на языке алгебры логики, соединив простые высказывания в сложные с помощью логических операций.

    3) Составить единое логическое выражение для всех требований задачи (возможно не одно).

    4) Используя законы алгебры логики попытаться упростить полученное выражение и вычислить все его значения либо построить таблицу истинности для рассматриваемого выражения (Таблицу можно строить, если в выражении не более трёх логических переменных).

    5)  Выбрать решение — набор значений простых высказываний, при котором построенное логическое выражение является истинным;

    6) Проверить, удовлетворяет ли полученное решение условию задачи.

    Среди задач алгебры логики часто встречаются задачи на определение количества решений систем логических уравнений. Рассмотрим примеры некоторых их них.

    задача 6

    Найдите количество решений системы уравнений:

    `(x2-=x1)+x2&x3+ not x2& not x3=1`

    `(x3-=x1)+x3&x4+ not x3& not x4=1`

    `…`

    `(x9-=x1)+x9 & x10+ not x9 & not x10=1`

    `(x10 & x1)=0`

    где `x1 … x10` - неизвестные логические величины

    Решение

    Упростим исходные уравнения, заметив, что, `(x2&x3+ not x2& notx3=(x2-=x3)`. Исходную систему запишем в виде:

    `(x2-=x1)+(x2-=x3)=1`

    `(x3-=x1)+(x3-=x4)=1`

    `…`

    `(x9-=x1)+(x9-=x10)=1`

    `(x10&x1)=0`

    В первом уравнении используются три переменных `x1`, `x2` и `x3`. Значения `x1` и `x2` могут быть выбраны произвольно четырьмя способами:

    `bb(x1)`

    `bb(x2)`

    `bb(x3)`

    `0`

    `0`

    `0`

    `0`

    `0`

    `1`

    `0`

    `1`

    `1`

    `1`

    `0`

    `0`

    `1`

    `1`

    `0`

    `1`

    `1`

    `1`

    Если `x2=x1`, то значение `x3` может быть любое (эти строки выделены серым цветом), а при `x2!=x1` получаем только один вариант: `x3=x2`.

    Таким образом, при подключении первого уравнения число решений увеличивается на количество строк в таблице, для которых значения `x1` и `x2` (последней рассмотренной переменной) равны. В данном случае таких строк две, получаем 6 решений. Более того, в новой таблице снова осталось всего две строки (верхняя и нижняя), где `x3=x1`. Как следует из второго уравнения, именно эти (и только эти) строки на следующем шаге “раздваиваются”, дают по два решения. Таким образом, при подключении к системе очередного уравнения число решений увеличивается на `2`. Для двух уравнений получим 8 решений, для трёх - 10, а для восьми - 20 решений.

    Остается учесть последнее (особое) уравнение, `(x10-=x1)=0`. Это означает, что `x10!=1`. Из анализа таблицы видно, что есть всего две строки (верхняя и нижняя), где первая и последняя переменные равны. Поэтому из полученных 20 решений нужно отбросить эти два, не удовлетворяющие последнему уравнению. В итоге исходная система имеет 18 решений.

    ответ
    Система имеет 18 решений.
    задача 7

    Найдите количество решений системы уравнений:

    `not x1+x2=1`

    `not x2+x3=1`

    `…`

    `not x9+x10=1`

    где `x1 … x10` - неизвестные логические величины

    Решение
    Здесь `10` переменных, поэтому при решении системы через таблицу истинности нужно заполнить `2^(10)=1024` строки, поэтому перебор всех возможных вариантов является не эффективным способом решения. Поскольку все правые части равны `1`, можно легко свести систему к одному уравнению:

    `(not x1 + x2)&( not x2 + x3) &…&(not x9 + x10)=1`

    однако это не упрощает решения.

    Можно заметить, что первое уравнение зависит только от `x1` и `x2`, а каждое новое уравнение добавляет по одной новой переменной. Поэтому можно решать систему последовательно с помощью построения таблицы. Первое уравнение, `not x1+x2=1`, обращается в истинное равенство в трех случаях:

    `bb(x1)` `bb(x2)`
    `0` `0`
    `0` `1`
    `1` `1`

    Подключив второе уравнение, `not x2+x3=1`, заметим, что допустимые значения `x3` зависят от ранее выбранного значения `x2`: если `x2=0`, то `x3` может принимать любое значение  (`0` или `1`),  а  если `x2=1`, то `x3=1`. Соответствующая таблица выглядят так:

     

    `bb(x1)`

    `bb(x2)`

    `bb(x3)`

    `0`

    `0`

    `0`

    `1`

    `0`

    `1`

    `1`

    `1`

    `1`

    `1`

     

    Легко заметить, что при добавлении очередного уравнения верхняя строка таблицы дает два решения (они выделены серы м цветом), а остальные строки - по одному. Поэтому количество решений увеличивается на `1`. Таким образом, система из трёх уравнений имеет 5 решений, из четырех - 6, а исходная система из девяти уравнений - 11 решений.

    ответ

    11 решений.

    Заметим, что часто перед решением больших систем логических уравнений сначала удобно упростить исходную систему с помощью законов алгебры логики, а также воспользоваться заменой переменных, если это возможно.

  • § 5. Логический тип данных в языке программирования Паскаль

    Подобно предыдущему заданию, теперь мы вновь перейдём к изучению программирования и применим полученные знания по алгебре логики на практике.

    В прошлом задании мы работали с числовыми типами переменных и учили арифметику, теперь познакомимся с логическим типом переменных, который называется Boolean. Переменные этого типа имеют всего два значения – true и false (соответственно, «истина» и «ложь»). Подобно числовым переменным им можно присваивать значения при помощи оператора присваивания. При этом необходимо строго соблюдать правило совместимости типов. То есть логическим переменным нельзя присваивать числовые значения, а числовым – логические.

    В языке Паскаль помимо арифметических операций ещё существует `6` операций сравнения: больше» `(>)`, «больше или равно» `(> =)`, «меньше» `(<)`, «меньше или равно» `(< =)`, «равно» `(=)`, и «не равно» `(<>)`. Операция «не равно» записывается, как последовательность знаков «меньше» и «больше».  Результатом каждой из этих операций является логическое значение true или false. Например, операция `5 > 2` выдаст значение true, а операция `x<>3` выдаст значение true, если переменная `X` имеет любое значение, кроме `3`. Сравнивать можно не только числа (причём как целые, так и вещественные), но и логические значения. При этом считается, что значение true больше, чем значение false. При сравнении обязательно соблюдать правило совместимости типов, то есть можно сравнивать числа между собой (причём в отличие от оператора присваивания, здесь никаких ограничений нет). Можно сравнивать между собой логические значения. Но нельзя сравнивать логическое значение с числом любого типа.

    Помимо операций сравнения, в паскале существуют четыре логические операции, абсолютно аналогичные операциям алгебры логики.

    1) Операция AND (в алгебре логики – «конъюнкция»)

    2) Операция OR (в алгебре логики – «дизъюнкция»)

    3) Операция XOR (в алгебре логики – «строгая дизъюнкция»)

    4) Операция NOT (в алгебре логики – «отрицание»)

    Все операнды этих операций должны быть логического типа, а никак не числового. Причём, операции AND, OR и XOR имеют по `2` операнда, а операция NOT – один операнд, который записывается справа от названия операции (аналогично обозначению операции NOT при помощи `¬` в алгебре логики)

    Теперь у нас есть достаточно много операций и нужно расставить их по приоритету выполнения. В Паскале есть четыре приоритета операций:

    1) Операция not;

    2) Операции группы умножения: *, /, div, mod, and;

    3) Операции группы сложения: +, – , or, xor;

    4) Операции группы сравнения: >, <, <=, >=, =, <>.

    Операции одного приоритета выполняются слева направо. Операции в круглых скобках имеют более высокий приоритет, чем вне скобок.

    Теперь рассмотрим несколько примеров задач на использование логического типа.

    Общая Задача

    Записать на Паскале логическое выражение истинное при выполнении указанного условия и ложное в противном случае. Результат вычисления данного выражения присвоить переменной F.

    Условие 1

    Числовая  переменная  X  имеет  значение  на  отрезке [–1,1].

    Решение

     F:=abs(X)<=1;

    Условие 2

    Числовая переменная X имеет значение на отрезке [2,7].

    Решение

    F:=(X>=2)and(X<=7).

    Обратите внимание на скобки. Они обязательны, поскольку операции сравнения имеют более низкий приоритет, чем операция and.

    Условие 3

    Числовая переменная X имеет значение на одном из 2 отрезков: [–10, 3] или [10, 20].

    Решение

    F:=(X>=-10)and(X<=3)or(X>=10)and(X<=20).

    Условие 4

    Логические переменные A и B имеют различные значения.

    Решение

    F:=A<>B.

    Условие 5

    По крайней мере 2 из логических переменных A, B и C имеют значение true.

    Решение

    F:=A and B or A and C or B and C.



    :