Статьи , страница 9

  • 1.6. Кислоты

    Согласно  протонной  теории  кислот  и  оснований, предложенной И. Бренстедом, кислотой называют вещество, отщепляющее протоны при данной температуре, а основанием – вещество, способное принимать протоны. Любая реакция отщепления протона выражается уравнением:

    $$ \mathrm{кислота} \rightleftarrows  \mathrm{основание} + {\mathrm{H}}^{+}$$

    На базе таких представлений становятся понятными основные свойства аммиака, который за счёт неподелённой пары электронов атома азота эффективно принимает протон при взаимодействии с кислотами, образуя по донорно-акцепторному  механизму ион аммония:

    $$ \underset{\mathrm{Кисл}.}{{\mathrm{HNO}}_{3}} + \underset{\mathrm{Осн}.}{{\mathrm{NH}}_{3}} \to   \underset{\mathrm{Кисл}.}{{\mathrm{NH}}_{4}^{+}} + \underset{\mathrm{Осн}.}{{\mathrm{NO}}_{3}^{-}}$$

    Возможно  и  ещё  более  общее  определение  кислот и оснований.

    Г. Льюис предположил, что кислотно-основные взаимодействия совсем необязательно происходят с переносом протонов. В определении кислот и оснований по Льюису основная роль  отводится участию электронных пар в химическом взаимодействии.

    Катионы, анионы, нейтральные молекулы, способные принять одну или несколько пар электронов, называют кислотами Льюиса.

    Катионы, анионы, нейтральные молекулы, способные отдавать электронные пары, называют основаниями Льюиса.

    В таблице сопоставлены различные определения кислот и оснований, используемые в настоящее время при решении физико-химических задач.

    Сопоставление определений кислот и оснований

    Класс веществ

    Определение кислот и оснований

    По Аррениусу

    По Бренстеду-Лоури

    По Льюису

    кислоты

    отдают `"H"^+`

    отдают `"H"^+`

    принимают электронные пары

    основания

    отдают `"OH"^-`

    принимают `"H"^+`

    отдают электронные пары

     Номенклатура кислот

    Случай

    Правила составления названия

    Пример

    Бескислородная кислота

    К названию неметалла с окончанием -о добавляется слово

    водородная

    `"H"_2"S"` - сероводородная кислота

    `"HCl"` - хлороводородная кислота

    Кислородсодержащая: степень окисления соответствует номеру группу

    Суффикс -ная,

    или -вая

    `"HNO"_3` - азотная кислота

    `"H"_2"SiO"_3` - кремниевая кислота

    `"HClO"_4` - хлорная кислота

    Кислородсодержащая:

    степень окисления ниже максимальной

    Суффиксы -оватая, -истая, -оватистая

    `"HClO"_3` - хлорноватая кислота

    `"HClO"_2` -  хлористая кислота

    `"HClO"` - хлорноватистая кислота

    Элемент в одной и той же степени окисления образует несколько кислородсодержащих кислот

    К названию кислоты с меньшим содержанием кислородсодержащих атомов добавляется префикс  мета-:

    с большим - префикс  орто-

    `"H"_2"SiO"_3` - метакремниевая кислота

    `"H"_4"SiO"_4` - ортокремниевая кислота

    Классификация кислот

    Признак классификации

    Тип кислот

    Примеры

    Число атомов водорода в молекуле

    Одноосновные

    `"HCl"`, `"HClO"_3`, `"HNO"_3`

    Двухосновные

    `"H"_2"S"`, `"H"_2"SO"_4`, `"H"_2"SiO"_3`

    Трёхосновные

    `"H"_3"PO"_4`,  `"H"_3"AsO"_4`

    Четырёхосновные

    `"H"_4"P"_2"O"_7`

    Содержание атомов кислорода в молекуле


    Бескислородные

    `"HI"`, `"HBr"`

    Кислородсодержащие

    `"H"_2"SO"_4`,  `"HClO"_4`

    Агрегатное состояние

     

    Растворы газов в воде

    `"HF"`, `"HCl"`, `"H"_2"S"`, `"H"_2"CO"_3`

    Жидкие

    `"HNO"_3`, `"H"_2"SO"_4`

    Твёрдые

    `"H"_3"BO"_3`,  `"H"_2"SiO"_3`

     

    Получение кислот

    1. Бескислородные кислоты могут быть получены при непосредственном соединении неметаллов с водородом: 

    `"H"_2+"Cl"_2->2"HCl"`.

    2. Кислородсодержащие кислоты могут быть получены при взаимодействии кислотных оксидов с водой

    `"SO"_3+"H"_2"O"->"H"_2"SO"_4`.

    3. Как бескислородные, так и кислородсодержащие  кислоты можно получить по реакциям обмена между солями и другими кислотами:

    `"BaBr"_2+"H"_2"SO"_4->"BaSO"_4darr+2"HBr"`;

    `"CuSO"_4+"H"_2"S"->"CuS"darr+"H"_2"SO"_4`.

    Химические свойства кислот

    Химические свойства кислот можно разделить на две группы: общие для всех кислот реакции, связанные с наличием в их растворах иона `"Н"^+` (иона гидроксония `"H"_3"O"^+`), и  специфические, т. е. характерные только для конкретных кислот.

    Ион водорода может, с одной стороны, вступать в окислительно-восстановительные реакции, восстанавливаясь до водорода, а с другой стороны – вступать в реакции соединения с отрицательно заряженными или нейтральными частицами, имеющими неподелённые пары электронов (кислотно-основное взаимодействие).

    1. К первому типу превращений кислот относится реакция кислот с активными металлами, стоящими в ряду напряжений до водорода c выделением водорода (кроме азотной кислоты, в этом случае выделяются продукты восстановления азота), например:

     `"Zn" + 2"HCl"->"ZnCl"_2 +"H"_2`;

    `"Zn" + "2H"^+  -> "Zn"^(2+) + "H"_2uarr`.

    `"Fe"+"H"_2"SO"_(4 ("разб".)) -> "FeSO"_4 + "H"_2uarr`.

    `"HCl"+"Cu"` \overline{)\to }

    `4"HNO"_(3("конц".)) + "Cu" ->"Cu"("NO"_3 )_2 +2 "NO"_2uarr +2 "H"_2"O"`.

    2. Кислота `+` основный оксид `->` соль `+` вода;

    `2"HNO"_3 + "CuO"->"Cu(NO"_3)_2 + "H"_2"O"`.

    3. Кислота `+` амфотерный оксид `->` соль `+` вода;

    `3"H"_2"SO"_4 + "Cr"_2"O"_3 ->  "Cr"_2("SO"_4)_3 + 3"H"_2"O"`;

    `2"HBr" + "ZnO" ->  "ZnBr"_2 + "H"_2"O"`.      

    4. Кислота`+` щелочь `->` соль `+` вода (реакция нейтрализации);

    `"H"_2"SO"_4 + 2"KOH" ->  "K"_2"SO"_4 + 2"H"_2"O"`. 

    5. Кислота `+` основание `->` соль `+` вода;

    `2"HBr" + "Ni(OH")_2  -> "NiBr"_2 + 2"H"_2"O"`.

    6. Кислота`+` амфотерный гидроксид `->` соль `+` вода;

    `3"HCl" + "Cr(OH")_3  ->"CrCl"_3 + 3"H"_2"O"`;

    `2"HNO"_3 + "Zn(OH")_2  -> "Zn(NO"_3)_2 + 2"H"_2"O"`.

    7. Взаимодействие кислот со средними солями протекает при условии, что результатом данного взаимодействия будет либо выпадение осадка, либо выделение газа:

    `2"HBr" + "CaCO"_3  ->  "CaBr"_2 + "H"_2"O" + "CO"_2uarr`;

    `"BaCl"_2+ "H"_2"SO"_4  -> "BaSO"_4darr + 2"HCl"`.

    8. Некоторые кислоты способны разлагаться при нагревании:

    $$ {\mathrm{H}}_{2}{\mathrm{SiO}}_{3} \stackrel{\mathrm{t}°\mathrm{C}}{\to } {\mathrm{SiO}}_{2}\downarrow + {\mathrm{H}}_{2}\mathrm{O}$$;

    $$ {\mathrm{H}}_{2}{\mathrm{CO}}_{3} \stackrel{\mathrm{t}°\mathrm{C}}{\to } {\mathrm{CO}}_{2}\uparrow + {\mathrm{H}}_{2}\mathrm{O}$$;

    $$ {\mathrm{H}}_{2}{\mathrm{SO}}_{3} \stackrel{\mathrm{t}°\mathrm{C}}{\to } {\mathrm{SO}}_{2}\uparrow + {\mathrm{H}}_{2}\mathrm{O}$$.

    9. Специфические свойства кислот связаны, в первую очередь, с окислительно-восстановительными реакциями.

    Бескислородные кислоты в водном растворе могут только окисляться:

                               `2"KMnO"_4 + 16"HCl"->5"Cl"_2uarr   +2"KCl" + 2"MnCl"_2 + 8"H"_2"O"`;

                              `"H"_2"S" +"Br"_2 -> "S"darr + 2"HBr"`.

    Кислородсодержащие кислоты могут окисляться, только когда центральный атом в них находится в промежуточной степени окисления, как, например, в сернистой кислоте:

    `"H"_2"SO"_3 + "Cl"_2+ "H"_2"O" -> "H"_2"SO"_4 + 2"HCl"`.

    Многие кислородсодержащие кислоты, в которых центральный атом имеет максимальную степень окисления, проявляют свойства сильных окислителей  (`"H"_2"SO"_4`  является сильным окислителем только при высокой концентрации):

    `"Cu" + 2"H"_2"SO"_(4  "конц") -> "CuSO"_4  + "SO"_2uarr + 2"H"_2"O"`;

    `"C"+2"H"_2"SO"_(4  "конц") -> "CO"_2uarr + 2"SO"_2uarr + 2"H"_2"O"`;

    `"P" + 5"HNO"_(3  "конц") -> "H"_3"PO"_4 + 5"NO"_2uarr + "H"_2"O"`;

    `"S"+6"HNO"_(3  "конц") -> "H"_2"SO"_4+6"NO"_2 uarr+2"H"_2"O"`;

    `"S"+2"H"_2"SO"_(4  "конц") -> 3"SO"_2 uarr +2"H"_2"O"`.

  • 1.7. Соли


    Соли

    сложные вещества, состоящие из атомов металлов (катионов) и анионов кислотного остатка. Соли по составу похожи на кислоты, только вместо ионов водорода содержат ионы металлов. Поэтому соли можно назвать продуктами замещения атомов водорода в кислоте на атом металла.

    Соли принято делить  на три группы: средние, кислые и основные.

    Средние соли

    продукты полного замещения атомов водорода в кислоте замещены металлом

    (`"Na"_2"SO"_4`, `"KNO"_3`, `"BaSO"_4` и др.)

    $$ 3\mathrm{NaOH} + {\mathrm{H}}_{3}{\mathrm{PO}}_{4} \to  {\mathrm{Na}}_{3}{\mathrm{PO}}_{4} + 3{\mathrm{H}}_{2}\mathrm{O}$$;

    $$ \mathrm{Al}(\mathrm{OH}{)}_{3} + 3\mathrm{HCl} \to  {\mathrm{AlCl}}_{3} + 3{\mathrm{H}}_{2}\mathrm{O}$$.

    Кислые и основные соли

    Кислые соли представляют собой продукт неполного замещения кислот и оснований. По международной номенклатуре атом водорода, входящий в состав кислой соли, обозначается приставкой гидро-, а группа `"OH"^-` – приставкой гидрокси, например: `"NaHS"` – гидросульфид натрия, `"NaHSO"_4` – гидросульфат натрия, `"Mg(OH)Cl"` – гидроксихлорид магния, `"Al(OH)"_2"Cl"` – дигидроксихлорид алюминия.

    Кислые соли

    представляют собой продукты неполного замещения атомов водорода в кислоте на атом металла, например:

    `2"NaOH" + "H"_3"PO"_4 -> "Na"_2"HPO"_4 + 2"H"_2"O"`;

    гидрофосфат натрия

    `"NaOH" + "H"_3"PO"_4 -> "NaH"_2"PO"_4 + "H"_2"O"`.

    дигидрофосфат натрия

    Основные соли

    представляют собой продукты неполного замещения гидроксильных групп оснований кислотными остатками:

    `"Al(OH)"_3 + "HCl" -> "Al(OH)"_2"Cl" + "H"_2"O"`;

    дигидроксихлорид алюминия

    `"Al(OH)"_3 + 2"HCl" -> "Al(OH)Cl"_2 + 2"H"_2"O"`;

    гидроксихлорид алюминия


    Существуют также некоторые другие типы солей, например, двойные соли, в которых содержатся два разных катиона и один анион:

    `"CaCO"_3*"MgCO"_3` (доломит), `"KCl"*"NaCl"` (сильвинит), `"KAl(SO"_4)_2` - алюмокалиевые квасцы, или смешанные соли, в которых содержится один катион и два разных аниона: `"CaOCl"_2` или `"Ca(OCl)Cl"`.

    Соли представляют собой ионные соединения,  и их названия строятся по названиям катионов и анионов. Для солей бескислородных кислот к названию неметалла добавляется суффикс -ид, например, хлорид натрия `"NaCl"`.

    При наименовании солей кислородсодержащих кислот к латинскому корню названия элемента добавляется окончание -ат для высшей степеней окисления, -ит для более низких (для некоторых кислот используется приставка гипо- для низких степеней окисления неметалла; для солей хлорной и марганцовой кислот используется приставка пер-):

    `"CaCO"_3` - карбонат натрия

    `"КClO"` - гипохлорит калия

     

    `"FeSO"_3`  - сульфит железа (II)

    `"KClO"_2` - хлорит калия

     

    `"KMnO"_4` - перманганат калия

     

    `"KClO"_3` -  хлорат калия

     

    `"KNO"_2` - нитрит калия

    `"KClO"_4` - перхлорат калия

     

    Способы получения средних солей

    Соли тесно связаны со всеми остальными классами неорганических соединений и могут быть получены практически из любого класса. Большинство способов получения солей было разобрано выше.

    Способы получения кислых и основных солей

    Кислые соли могут быть получены либо неполной нейтрализацией кислот, либо действием избытка кислот на средние соли, щелочи, оксиды:

    `"NaOH" + "H"_2"SO"_4 -> "NaHSO"_4 + "H"_2"O"`;

    `"Na"_2"SO"_4 + "H"_2"SO"_4  -> 2"NaHSO"_4`;

    `"NaCl" + "H"_2"SO"_4 ->  "NaHSO"_4 + "HCl"`;

    `"CaCO"_3 + "CO"_2 + "H"_2"O"  -> "Ca(HCO"_3)_2`.

    Основные соли часто получаются при осторожном добавлении небольших количеств щелочей к растворам средних солей металлов, имеющих малорастворимые основания, или при действии солей слабых кислот на средние соли:

    `"AlCl"_3 + 2"NaOH"  -> "Al(OH)"_2"Cl" + 2"NaCl"`;

    В общем виде  способы  получения  кислых  или  основных солей из средних солей представим в виде следующей схемы:

    Если кислую соль донейтрализуют тем же основанием, которое образует данную соль, получают одну среднюю соль:

    $$ {\mathrm{KHCO}}_{3}+\mathrm{KOH}\to {\mathrm{K}}_{2}{\mathrm{CO}}_{3}+{\mathrm{H}}_{2}\mathrm{O}.$$

    Если другим основанием – две средние соли:

    $$ 2{\mathrm{KHCO}}_{3}+2\mathrm{NaOH}\to {\mathrm{K}}_{2}{\mathrm{CO}}_{3}+{\mathrm{Na}}_{2}{\mathrm{CO}}_{3}+2{\mathrm{H}}_{2}\mathrm{O}.$$

    При избытке щёлочи:

    $$ {\mathrm{KHCO}}_{3}+2\mathrm{NaOH}\to \mathrm{KOH}+{\mathrm{Na}}_{2}{\mathrm{CO}}_{3}+{\mathrm{H}}_{2}\mathrm{O}.$$

    Если основную соль донейтрализуют той же кислотой, которая образует данную соль, получают одну среднюю соль:

    $$ \mathrm{MgOHCl}+\mathrm{HCl}\to {\mathrm{MgCl}}_{2}+{\mathrm{H}}_{2}\mathrm{O}.$$

    Если другой кислотой – две средние соли:

    2MgOHCl+H2SO4MgCl2+MgSO4+2H2O.2\mathrm{MgOHCl}+{\mathrm{H}}_{2}{\mathrm{SO}}_{4}\to {\mathrm{MgCl}}_{2}+{\mathrm{MgSO}}_{4}+2{\mathrm{H}}_{2}\mathrm{O}.

     Химические свойства солей

    Многие соли устойчивы при нагревании. Однако соли аммония, а также некоторые соли малоактивных металлов, слабых кислот и кислот, в которых элементы проявляют высшие или низшие степени окисления, при нагревании разлагаются (также см. получение оксидов).  

    $$ {\mathrm{NH}}_{4}\mathrm{Cl} \stackrel{\mathrm{t}°\mathrm{C}}{\to } {\mathrm{NH}}_{3}\uparrow  + \mathrm{HCl}$$;

    $$ 2{\mathrm{FeSO}}_{4} \stackrel{\mathrm{t}°\mathrm{C}}{\to }  {\mathrm{Fe}}_{2}{\mathrm{O}}_{3} + {\mathrm{SO}}_{2}\uparrow  + {\mathrm{SO}}_{3}\uparrow $$;

    $$ 4{\mathrm{FeSO}}_{4} \stackrel{\mathrm{t}°\mathrm{C}}{\to }  2{\mathrm{Fe}}_{2}{\mathrm{O}}_{3} + 4{\mathrm{SO}}_{2}\uparrow   + {\mathrm{O}}_{2}\uparrow $$;

    $$ ({\mathrm{NH}}_{4}{)}_{2}{\mathrm{Cr}}_{2}{\mathrm{O}}_{7}  \stackrel{\mathrm{t}°\mathrm{C}}{\to } {\mathrm{Cr}}_{2}{\mathrm{O}}_{3} + {\mathrm{N}}_{2}\uparrow + 4{\mathrm{H}}_{2}\mathrm{O}$$;

    $$ 2{\mathrm{KClO}}_{3}  \stackrel{150-300°\mathrm{C}, {\mathrm{MnO}}_{2}}{\to } 2\mathrm{KCl} + 3{\mathrm{O}}_{2}\uparrow $$;

    $$ 4{\mathrm{KClO}}_{3} \stackrel{400°\mathrm{C}}{\to }  3{\mathrm{KClO}}_{4} + \mathrm{KCl}$$.

    Взаимодействие растворов или расплавов солей менее активных металлов с более активными металлами:

    `"Cu" + 2"AgNO"_3 -> 2"Ag"darr + "Cu(NO"_3)_2`.

    Взаимодействие соли с кислотой, в результате которого образуется нерастворимое или летучее вещество:

    `"AgNO"_3 + "HBr" → "AgBr"↓ + "HNO"_3`;

    `"FeS" + 2"HCl" → "H"_2"S"↑ + "FeCl"_2`.

    Взаимодействие раствора соли со щелочью, в результате которого образуется нерастворимое вещество:

    `"CuCl"_2 + "KOH" → "Cu(OH)"_2 ↓+ 2"KCl"`;

    `"Na"_2"CO"_3 + "Ca(OH)"_2 → "CaCO"_3↓ + 2"NaOH"`.

    Взаимодействие растворов солей друг с другом, в результате которого образуется нерастворимое вещество:

    `"Na"_2"CO"_3 + "Ba(NO"_3)_2 → "BaCO"_3 ↓+ 2"NaNO"_3`.

    Участие в ОВР:

    `2"FeCl"_2 + "Cl"_2 → 2"FeCl"_3`;

    `2"NaNO"_2 + "O"_2 → 2"NaNO"_3`;

    `"Na"_2"SO"_3 +  "H"_2"O" + "Cl"_2 → "Na"_2"SO"_4 +  2"HCl"`.

    Гидролиз некоторых солей:

    $$ {\mathrm{MgCl}}_{2} + {\mathrm{H}}_{2}\mathrm{O} \rightleftarrows   \mathrm{MgOHCl} + \mathrm{HCl}$$;

    $$ {\mathrm{Na}}_{2}{\mathrm{CO}}_{3} + {\mathrm{H}}_{2}\mathrm{O} \rightleftarrows   {\mathrm{NaHCO}}_{3} + \mathrm{NaOH}$$.

    При нагревании многие кислые соли разлагаются:

    $$ 2{\mathrm{NaHCO}}_{3} \stackrel{\mathrm{t}°\mathrm{C}}{\to }  {\mathrm{Na}}_{2}{\mathrm{CO}}_{3} + {\mathrm{CO}}_{2}\uparrow  + {\mathrm{H}}_{2}\mathrm{O}$$;

    $$ \mathrm{Ca}({\mathrm{HCO}}_{3}{)}_{2}  \stackrel{\mathrm{t}°\mathrm{C}}{\to }  {\mathrm{CaCO}}_{3}\downarrow + {\mathrm{CO}}_{2}\uparrow  + {\mathrm{H}}_{2}\mathrm{O}$$.

    Генетической

    называется связь между веществами разных классов соединений, основанная на их взаимных превращениях и отражающая единство их происхождения.

    Генетическая связь может быть отражена в генетических рядах.

    Генетический ряд состоит из веществ, которые образованы одним химическим элементом, принадлежат к разным классам  соединений и связаны взаимными превращениями.

    В приведённой ниже таблице обобщены рассмотренные выше химические свойства важнейших классов неорганических соединений.

    Реагент Основной оксид Амфотерный оксид Кислотный оксид Щелочь Амфотерный гидроксид Кислота Соль `"H"_2"O"`
    Основной оксид `-` соль соль `-` соль `+` `"H"_2"O"` соль `+` `"H"_2"O"` `-` щелочь
    Амфотерный оксид соль `-` соль соль `+` `"H"_2"O"` `-` соль `+` `"H"_2"O"` `-` `-`
    Кислотный оксид соль соль `-` соль `+` `"H"_2"O"` соль `+` `"H"_2"O"` `-` `-` кислота
    Щелочь `-` соль `+` `"H"_2"O"` соль `+` `"H"_2"O"` `-` соль `+` `"H"_2"O"` соль `+` `"H"_2"O"` соль `+` основание

    дис-

    социация

    Амфотерный гидроксид соль `+` `"H"_2"O"` `-` соль `+` `"H"_2"O"` соль `+` `"H"_2"O"` `-` соль `+` `"H"_2"O"` `-`
    Кислота соль `+` `"H"_2"O"` соль `+` `"H"_2"O"` `-` соль `+` `"H"_2"O"` соль `+` `"H"_2"O"` `-` соль `+` кислота

    дис-

    социация

    Соль `-` `-` `-` соль `+` основание `-` соль `+` кислота соль `+` соль гидролиз


  • 2.1. Теория электролитической диссоциации

    Известно, что существуют две основные причины прохождения электрического тока через проводники: либо за счёт движения электронов в электрическом поле, либо за счет движения ионов. Электрическая  проводимость присуща, прежде всего, металлам. Ионная проводимость присуща многим химическим соединения, обладающим ионным строением, например, солям в твёрдом или расплавленном состояниях, а также многим водным и неводным растворам. В связи с этим все вещества принято условно делить на две категории:

    а) вещества, растворы которых обладают ионной проводимостью, называются электролитами;

    б) вещества, растворы которых не обладают ионной проводимостью, называются неэлектролитами.

    К электролитам относится  большинство неорганических кислот, оснований и солей.  К неэлектролитам относятся многие органические соединения, например, спирты, углеводы.

    Оказалось, что, кроме хорошей электропроводности, растворы электролитов обладают более низкими значениями давлениями пара растворителя и температуры плавления и более высокими температурами кипения по сравнению с соответствующими значениями для чистого растворителя или для раствора неэлектролита в этом же растворителе. Для объяснения этих свойств, шведский ученый С. Аррениус в 1887 г. предложил теорию электролитической диссоциации.

    Под электролитической диссоциацией понимается распад молекул электролита в растворе с образованием положительно и отрицательно заряженных ионов - катионов и анионов под действием растворителя. Например, молекула уксусной кислоты может диссоциировать в водном растворе следующим образом:

    $$ {\mathrm{CH}}_{3}\mathrm{COOH}\rightleftarrows {\mathrm{H}}^{+}+{\mathrm{CH}}_{3}{\mathrm{COO}}^{–}$$.

    Сущность теории электролитической диссоциации С. Аррениуса

    1. Электролиты при растворении в воде распадаются (диссоциируют) на ионы: положительные (катионы) и отрицательные (анионы).

    2. Под действием электрического тока положительно заряженные ионы движутся к отрицательному полюсу источника тока - катоду, и поэтому называются катионами, а отрицательно заряженные ионы движутся к положительному полюсу источника тока - аноду, и поэтому называются анионами.

    3. Электролитическая диссоциация - процесс обратимый для слабых электролитов, т. е. вместе с распадом молекул на ионы (диссоциация) идет процесс соединения ионов в молекулы (ассоциация).

    Электролиты подразделяются в зависимости от степени диссоциации на сильные и слабые.

    Сильные электролиты

    вещества, которые диссоциируют полностью и необратимо, т. е. в растворе присутствуют только гидратиро-ванные ионы. Относятся все соли, сильные кислоты `"HI"`, `"HCl"`, `"HBr"`, `"HNO"_3`, `"H"_2"SO"_4`, `"HMnO"_4`, `"HClO"_4`, `"HClO"_3`, щелочи `"NaOH"`, `"LiOH"`, `"KOH"`, `"RbOH"`, `"CsOH"`, `"Ca"("OH")_2`, `"Ba"("OH")_2`, `"Sr"("OH")_2`.

    С точки зрения теории электролитической диссоциации, кислотой называется соединение, образующее при диссоциации в водном растворе только ионы `"H"^+`:

    `"HNO"_3 → "H"^+ + "NO"_3^-`

    Если кислота является двухосновной, то диссоциация кислоты происходит ступенчато. Количество стадий определяется основностью кислоты:

    $$ {\mathrm{H}}_{2}{\mathrm{SO}}_{4}\to {\mathrm{H}}^{+}+{\mathrm{HSO}}_{4}^{-}$$

    $$ {\mathrm{HSO}}_{4}^{-}\rightleftarrows  {\mathrm{H}}^{+}+{\mathrm{SO}}_{4}^{2-}$$.

    Сила бескислородных кислот возрастает в ряду однотипных соединений при переходе вниз по подгруппе кислотообразующего элемента: `"HCl"-"HBr"-"HI"`. Бромоводородная кислота `"HBr"` и йодоводородная `"HI"` кислоты сильнее хлороводородной, что объясняется увеличением межъядерных расстояний в их молекулах.

    Фтороводородная (плавиковая) кислота `"HF"` растворяет стекло, но это вовсе не говорит о её силе. В ряду бескислородных галогенсодержащих кислот она относится к кислотам средней силы ввиду низкой концентрации в растворе ионов водорода из-за способности молекул `"HF"` к объединению (ассоциации), благодаря сильным водородным связям, возникающим при взаимодействии ионов `"F"^-` с молекулами `"HF"` (водородные связи) с образованием ионов `"HF"_2^-`, `"H"_2"F"_3^-` и других боле сложных частиц. В результате концентрация ионов водорода в водном растворе фтороводородной кислоты оказывается сильно пониженной.

    Сила однотипных кислородных кислот изменяется в противоположном направлении, например, йодная кислота `"HIO"_4` слабее хлорной кислоты `"HClO"_4`. Если элемент образует несколько кислородных кислот, то наибольшей силой обладает кислота, в которой кислотообразующий элемент имеет самую высокую валентность.

    Так, в ряду кислот `"HClO"-"HClO"_2-"HClO"_3-"HClO"_4` хлорная кислота наиболее сильная.

    Схематически процесс распада (диссоциации) соляной кислоты  на ионы можно представить следующим образом. Чтобы вещество в воде было электролитом, его молекула должна быть полярной.

    Полярная молекула вещества окружена полярными молекулами воды, которые разрывают молекулу на две противоположно заряженные частицы – ионы.

    Основание

    с точки зрения теории электролитической диссоциации, представляет собой вещество, способное отдавать в растворе гидроксильную группу `"OH"^-`:

    $$ \mathrm{NaOH} \to  {\mathrm{Na}}^{+} + {\mathrm{OH}}^{–}$$.

    Диссоциация многокислотного гидроксида происходит ступенчато, например:

    $$ \mathrm{Ba}(\mathrm{OH}{)}_{2} \to  {\mathrm{BaOH}}^{+} + {\mathrm{OH}}^{-}$$,

    $$ {\mathrm{BaOH}}^{+}\rightleftarrows  {\mathrm{Ba}}^{2+}+ {\mathrm{OH}}^{-}$$.

    В свете теории электролитической диссоциации соли представляют собой соединения, образующие в водном растворе положительно заряженные ионы металла и отрицательно заряженные ионы кислотного остатка (для средних солей), а также кроме них ионы водорода (для кислых солей) и гидроксид-ионы (для основных солей):

    Средняя соль:

    $$ {\mathrm{Na}}_{2}{\mathrm{SO}}_{4} \to   2{\mathrm{Na}}^{+} + {\mathrm{SO}}_{4}^{2-}$$.

    Кислая соль:

    $$  {\mathrm{NaHSO}}_{4} \to  {\mathrm{Na}}^{+}+{\mathrm{HSO}}_{4}^{-}$$;

    $$ {\mathrm{HSO}}_{4}^{-}\rightleftarrows  {\mathrm{H}}^{+}+{\mathrm{SO}}_{4}^{2-}$$.

    Основная соль:

    $$ \mathrm{MgOHCl} \to  {\mathrm{MgOH}}^{+}+{\mathrm{Cl}}^{-}$$;

    $$ {\mathrm{MgOH}}^{+} \rightleftarrows  {\mathrm{Mg}}^{2+} +{\mathrm{OH}}^{-}$$.

    Слабые электролиты

    вещества, которые диссоциируют частично и обратимо.  

    $$ {\mathrm{HNO}}_{2} \rightleftarrows  {\mathrm{H}}^{+}+{\mathrm{NO}}_{2}^{-}$$

    $$ {\mathrm{CH}}_{3}\mathrm{COOH} \rightleftarrows  {\mathrm{CH}}_{3}{\mathrm{COO}}^{–}+{\mathrm{H}}^{+}$$.

    В растворе слабого электролита присутствуют гидратированные ионы и некоторая часть недиссоциированных молекул.

    К слабым электролитам относятся:

    1) вода;  

    2) соли `"Zn"`, `"Cd"`, `"Hg"`; 

    3) оставшиеся кислоты, не относящиеся к сильным, например, `"HF"`, `"H"_2"S"`, `"HNO"_2`, `"H"_3"PO"_4` и другие, а также незамещённые органические кислоты. При растворении углекислого газа в воде образуется его гидрат `"CO"_2*"H"_2"O"` и в незначительном количестве угольная кислота `"H"_2"CO"_3`. Тем не менее, для диссоциации воспользуемся формулой угольной кислоты:

    $$ {\mathrm{H}}_{2}{\mathrm{CO}}_{3} \rightleftarrows  {\mathrm{H}}^{+}+{\mathrm{HCO}}_{3}^{-}$$

    $$ {\mathrm{HCO}}_{3}^{-}\rightleftarrows  {\mathrm{H}}^{+}+{\mathrm{CO}}_{3}^{2-}$$.

    Практически диссоциация осуществляется лишь по первой ступени. Образующийся гидрокарбонат-ион `"HCO"_3^-`  ведёт себя как слабый электролит.

    Причиной диссоциации электролита в водных растворах является его гидратация, т. е. взаимодействие электролита с молекулами воды и разрыв химической  связи в нем. В результате такого взаимодействия образуются гидратированные, т. е. связанные с молекулами воды, ионы.

    Диссоциации проходит благодаря тому, что при гидратации ионов выделяется больше энергии, чем требуется на разрыв связи в молекуле. Примерно также происходит растворение ионного кристалла в воде и образование ионов. У кристаллов энергия гидратации ионов выше энергии кристаллической решётки.

    Следует учитывать, что в растворах электролитов хаотически движущиеся гидратированные ионы могут столкнуться и вновь объединиться между собой. Этот обратный процесс называется ассоциацией.  При некоторой постоянной температуре в данной системе устанавливается химическое равновесие, при котором скорость диссоциации станет равной скорости ассоциации.

    Также необходимо учитывать, что свойства гидратированных ионов отличаются от свойств негидратированных ионов. Например, негидратированный ион меди `"Cu"^(2+)` - белый в безводных кристаллах сульфата меди (II) `"СuSO"_4` и имеет голубой цвет, когда гидратирован, т. е. связан с молекулами воды `"Cu"^(2+)*"H"_2"O"`. Гидратированные ионы имеют как постоянное, так и переменное количество молекул воды.

    Основные свойства гидроксидов одного и того же элемента усиливаются с уменьшением его валентности. Так, основные свойства у гидроксида железа (II) выражены сильнее, чем у гидроксида железа (III) и наоборот.

    Слабым электролитом является гидроксид аммония `"NH"_4"OH"`. При растворении аммиака `"NH"_3` в воде образуется раствор, который слабо проводит электрический ток и имеет горько-мыльный вкус. Среда раствора основная. В растворе образуются гидрат аммиака `"NH"_3*"H"_2"O"` и в незначительном количестве гидроксид аммония `"NH"_4"OH"`, который диссоциирует как слабый электролит с образованием ионов аммония `"NH"_4^+` и гидроксид-иона `"OH"^-`.

    $$ {\mathrm{NH}}_{4}\mathrm{OH} \rightleftarrows  {\mathrm{NH}}_{4}^{+}+{\mathrm{OH}}^{-}$$.

    К слабым электролитам относят некоторые соли, например хлорид цинка `"ZnCl"_2`, тиоцианат железа `"Fe"("NCS")_3`, цианид ртути `"Hg"("CN")_2`, которые также диссоциируют по ступеням.

    Разделение электролитов на сильные, средние и слабые зависит от доли продиссоциированных молекул или степени диссоциации `alpha`, которая показывает отношение числа молекул, распавшихся на ионы `(N_"д")`, к общему числу введённых в раствор молекул `(N_"р")`:

    `alpha=(N_"д")/(N_"р")*100%`

    Электролиты со степенью диссоциации `30%` и более называют сильными, со степенью диссоциации `3`-`30%` называют средними (средней силы), со степенью диссоциации менее `3%` - слабыми.

    Степень диссоциации не является строгим показателем силы электролита, т. к. она зависит от концентрации раствора, природы растворителя, присутствия в растворе другие электролитов.

    При понижении концентрации степень диссоциации может повышаться, и в очень разбавленных растворах слабый электролит может находиться в состоянии почти полной диссоциации, в то же время в концентрированном растворе сильный электролит может вести себя как слабый и даже как неэлектролит.

    Степень диссоциации как сильных, так и слабых электролитов зависит от концентрации раствора (степень диссоциации тем выше, чем более разбавлен раствор). Более точной характеристикой диссоциации электролита является константа диссоциации, которая от концентрации раствора не зависит.

    Выражение для константы диссоциации можно получить, если записать уравнение реакции диссоциации электролита АК в общем виде:

    $$ AK \rightleftarrows  {A}^{-}+{K}^{+}$$.

    Поскольку диссоциация слабого электролита является обратимым равновесным процессом, то к данной реакции применим закон действующих масс, и можно определить константу равновесия как

    `K_"дис"=([A^-][K^+])/([AK])`,

    где `K_"дис"` - константа диссоциации, которая зависит от температуры и природы электролита и растворителя, но не зависит от концентрации электролита;

    `[AK]` – концентрация недиссоцированных молекул;

    `[A^-]`, `[K^+]` - молярные концентрации анионов и катионов.

    Задача 1

    Рассчитайте количество ионов водорода в `1` л раствора серной кислоты с концентрацией `0,1` моль/л.

    Решение

                                                      `"H"_2"SO"_4 → "H"^+ + "HSO"_4^-`

                                                         `0,1` моль                  `0,1` моль

    Количество  ионов водорода равно `0,1` моль.

    Запишем уравнение диссоциации по второй ступени и по справочным данным определим степень диссоциации (`0,3`):

    $$ {\mathrm{HSO}}_{4}^{-}\rightleftarrows $$ `"H"^+ +"SO"_4^(2-)`.
    `0,1` моль `0,03` моль

    Используем формулу для нахождения степени диссоциации (при решении задачи степень диссоциации удобно выразить в долях от единицы):

    `alpha("H"_2"SO"_4)=(n("диссоцH"_2"SO"_4))/(n("общH"_2"SO"_4))`

    `n("диссоцH"_2"SO"_4)=0,1` моль/л `*0,3=0,03`  моль.

    `n("H"^+)=n("диссоцH"_2"SO"_4)=0,03`  моль.

    Таким образом, в растворе появилось ионов `"H"^+`:

    `0,1` моль `+ 0,03` моль `= 0,13` моль.

    Следовательно, концентрация ионов водорода в растворе серной кислоты равна `0,13` моль/л.


    Задача 2

    Степень диссоциации гидроксида бария по первой ступени `- 92%`, по второй ступени `- 56%`. Рассчитайте число катионов бария и число гидроксид-ионов в `0,5` л  `1,5 M` растворе.

    Дано:

    `alpha_1("Ba(OH")_2)=92%`

    `alpha_2("Ba(OH")_2)=56%`

    `V_"р-ра"("Ba(OH")_2)=0,5` л

    `c("Ba(OH")_2)=1,5M=1,5  "моль"//"л"`

                                                                              

    `N("Ba"^(2+))` - ?

    `N("OH"^-)` - ?

                    

    Решение

    1) Запишем уравнение электролитической диссоциации гидроксида бария:

    1 ступень: `"Ba(OH")_2-> "BaOH"^+ + "OH"^-`,

    2 ступень: $$ {\mathrm{BaOH}}^{+}\rightleftarrows {\mathrm{Ba}}^{2+}+{\mathrm{OH}}^{-}$$.

    2) Найдём количество вещества гидроксида бария, содержащегося в данном образце раствора:

    `nu("Ba(OH")_2)=c("Ba(OH")_2)*V_"р-ра"("Ba(OH")_2)=`

    `=1,5"моль"//"л" * 0,5"л"=0,75"моль"`

    3) Зная степень диссоциации вычислим число молекул `"Ba(OH")_2` распавшихся на ионы по первой ступени диссоциации:

    `nu_"дис"("Ba"("OH")_2)=(alpha_1("Ba"("OH")_2)*nu("Ba"("OH")_2))/(100%)=`

    `=(0,75  "моль"*92%)/(100%)=0,69  "моль"`.

    Согласно диссоциации по `"I"` ступени, это количество вещества равно количеству вещества гидроксид-ионов, образовавшихся по первой ступени диссоциации, и количество ионов `"Ba(OH")^+`:

    `nu("Ba(OH")^+ )=nu_1("OH"^-)=nu_"дис"("Ba(OH")_2)=0,69` моль.

    4) Исходя из количества вещества гидроксокатионов бария, образовавшихся на первой стадии диссоциации, и степени диссоциации по второй ступени, вычислим количество ионов `"Ba"("OH")^+`, диссоциирующих по второй ступени:

    `nu("Ba"("OH")^+)=(alpha_2("Ba"("OH")_2)*nu("Ba"("OH")^+))/(100%)=`

    `=(56%*0,69  "моль")/(100%)=0,386  "моль"`.

    В соответствии с диссоциацией по `"II"` ступени, это количество вещества равно количеству вещества катионов `"Ba"^(2+)` и количеству ионов `"OH"^-`, образовавшихся по `"II"` ступени диссоциации:

    `nu("Ba"^(2+))=nu_2("OH"^-)=nu_"дис"("Ba(OH")^+)=0,386` моль.

    5) Найдём число катионов  `"Ba"^(2+)`, образующихся при диссоциации:

    `N("Ba"^(2+))=nu("Ba"^(2+))*N_A=0,386 "моль"*6,02*10^(23) "моль"^(-1)=`

    `=2,324*10^(23)`.

    6) Вычислим количество вещества гидроксид-ионов, образовавшихся на обеих стадиях диссоциации, и их число:

    `nu("OH"^-)=nu_1("OH"^-)+nu_2("OH"^-)=0,69 "моль"+0,386 "моль"=`

    `=1,076"моль"`.

     `N("OH"^-)=nu("OH"^-)*N_A=1,076 "моль"*6,02*10^(23) "моль"^(-1)=`

    `=6,478*10^(23)`.


    Ответ

    `N("Ba"^(2+))=2,324*10^(23)"моль"^(-1)`.

     `N("OH"^-)=6,478*10^(23)`.




  • 2.2. Ионные уравнения реакций

    Поскольку электролиты в водных растворах образуют ионы, то для отражения сущности реакций часто используют так называемые ионные уравнения реакций. Написанием ионных уравнений подчеркивают тот факт, что, согласно теории диссоциации, в растворах происходят реакции не между молекулами, а между ионами.

    Реакции между ионами называются ионными реакциями, а уравнения таких реакций - ионными уравнениями.

    С точки зрения теории диссоциации в реакциях между ионами в растворах электролитов возможны два исхода.

    1. Образующиеся вещества - сильные электролиты, хорошо растворимые в воде и полностью диссоциирующие на ионы.

    2. Одно (или несколько) из образующихся веществ - газ, осадок или слабый электролит (хорошо растворимый в воде).

    При составлении ионных уравнений реакций следует руководствоваться тем, что формулы малодиссоциирующих, нерастворимых и газообразных веществ записываются в молекулярном виде.

    Если вещество выпадает в осадок, то рядом с его формулой ставят стрелку, направленную вниз, а если в ходе реакции выделяется газообразное вещество, то рядом с его формулой ставят стрелку, направленную вверх.

    Итак, реакции в растворах электролитов идут в направлении связывания ионов. Рассмотрим основные формы связывания ионов.

    1. Образование осадка

    Молекулярное уравнение:

    $$ {\mathrm{AgNO}}_{3} + \mathrm{NaCl} \to  \mathrm{AgCl}\downarrow  + {\mathrm{NaNO}}_{3}$$.

    Полное ионное уравнение:

    $$ {\mathrm{Ag}}^{+} + {\mathrm{NO}}_{3}^{-}+ {\mathrm{Na}}^{+} + {\mathrm{Cl}}^{-} \to  \mathrm{AgCl}\downarrow  + {\mathrm{Na}}^{+} + {\mathrm{NO}}_{3}^{-}$$.

    Сокращённое ионное уравнение:

    $$ {\mathrm{Ag}}^{+} + {\mathrm{Cl}}^{-} \to  \mathrm{AgCl}\downarrow $$.

    2. Выделение газов (CO2, SO2, H2S, NH3) и образование слабых электролитов (H2O)

    Пример  1:

    $$ {\mathrm{Na}}_{2}{\mathrm{CO}}_{3} + 2\mathrm{HCl} \to  2\mathrm{NaCl} + {\mathrm{CO}}_{2}\uparrow  + {\mathrm{H}}_{2}\mathrm{O}$$;

    $$ 2{\mathrm{Na}}^{+}+{\mathrm{CO}}_{3}^{2-}+2{\mathrm{H}}^{+}+2{\mathrm{Cl}}^{-}\to 2{\mathrm{Na}}^{+}+2{\mathrm{Cl}}^{-}+{\mathrm{CO}}_{2}\uparrow +{\mathrm{H}}_{2}\mathrm{O}$$;

    $$ {\mathrm{CO}}_{3}^{2-}+2{\mathrm{H}}^{+}\to {\mathrm{CO}}_{2}\uparrow +{\mathrm{H}}_{2}\mathrm{O}$$.

    Пример 2:

    $$ 2\mathrm{Al}+2\mathrm{NaOH}+6{\mathrm{H}}_{2}\mathrm{O}\to 2\mathrm{Na}\left[\mathrm{Al}\right(\mathrm{OH}{)}_{4}]+3{\mathrm{H}}_{2}\uparrow $$;

    $$ 2\mathrm{Al}+2{\mathrm{Na}}^{+}+2{\mathrm{OH}}^{-}+6{\mathrm{H}}_{2}\mathrm{O}\to 2{\mathrm{Na}}^{+}+2\left[\mathrm{Al}\right(\mathrm{OH}{)}_{4}{]}^{-}+3{\mathrm{H}}_{2}\uparrow $$;

    $$  2\mathrm{Al}+2{\mathrm{OH}}^{-}+6{\mathrm{H}}_{2}\mathrm{O}=2\left[\mathrm{Al}\right(\mathrm{OH}{)}_{4}{]}^{ -}+3{\mathrm{H}}_{2}\uparrow $$.

    С учётом вышеизложенного можно сформулировать правило, которым удобно пользоваться при изучении процессов, протекающих в растворах электролитов:

    ПрАВИЛО

    реакции между ионами в растворах электролитов идут практически до конца в сторону образования осадков,  газов или слабых электролитов.



  • Введение
    Углеводороды

    это соединения, в состав которых входят только два элемента – углерод и водород. Общая формула углеводородов – `"C"_x"H"_y`. В соответствии со строением углеродного скелета углеводороды делят на ациклические (с открытой углеродной цепью) и циклические (с замкнутой углеродной цепью).

     

  • 1. Алканы

    Углеводороды, в молекулах которых атомы углерода связаны только `σ`-связями `"C"  -  "C"` и `"C"  -  "H"`, относятся к предельным углеводородам (алканам). Другое историческое название алканов – парафины. Общая формула гомологического ряда алканов `"C"_n"H"_(2n+2)`.

    Простейшие представители этого ряда:

    Строение

    Каждый атом углерода в алканах находится в состоянии `"sp"^3`-гибридизации и образует четыре `σ`-связи. Длина связи `"C" – "C"` в алканах равна `0,154` нм. Энергия связей `"C"- "H"` в алканах неодинакова: прочнее всего  атомы водорода связаны с первичными атомами углерода в группах `"CH"_3`, затем – со вторичными в группах `"CH"_2`, и наименее – с третичными атомами углерода в группах `"CH"`. Углеродный скелет молекул может быть линейным или разветвлённым. Алканы первого типа называются линейными или нормальными, а вторые – разветвлёнными или изоструктурными.

    Независимо от числа углеродных атомов в цепи всегда сохраняется тетраэдрическая ориентация связей. Поэтому реальная цепь углеродных атомов никогда не может быть линейной. Она всегда имеет зигзагообразный характер:

    В реальных молекулах атомы и  группы атомов свободно вращаются вокруг `σ`-связи. В результате углеродная цепь  может принимать различные пространственные формы:

    При вращении вокруг `σ`-связей в молекуле пентана образовались две формы молекулы: одна более изогнутая, чем исходный зигзаг, а вторая имеет почти кольцеобразную структуру. При вращении фрагментов молекулы вокруг `σ`-связи порядок соединения атомов друг с другом не меняется.  Подобное вращение атомов в молекулах является результатом теплового движения, если нет препятствующих этому факторов. Наиболее энергетически выгодна вытянутая форма молекулы, в которой фрагменты больше всего удалены друг от друга и испытывают наименьшее отталкивание групп и связей. Разновидности пространственных структур, вызванные вращением вокруг `σ`-связей, называют конформациями. Они легко претерпевают взаимные переходы. Поэтому различные конформации не могут быть разделены.

    Номенклатура

    Молекулы алканов отличаются друг от друга на группу `"CH"_2` – при переходе от одного члена ряда к следующему. Данная группа называется метиленовой группой. Алканы составляют совокупность подобных по структуре, а также по химическим свойствам соединений – гомологов, которая получила название гомологического ряда.

     Если от алкана  «отнять» один атом водорода,  то образуется одновалентный остаток – радикал. Названия некоторых углеводородных ради-калах приведены в таблице.

    Общее (родовое) название предельных углеводородов – алканы.

    По систематической  номенклатуре основой для названия служит наиболее длинная углеродная цепь, а все другие фрагменты молекулы рассматриваются как заместители. Приведём пример структурной формулы `2,5`-диметил-`3`-изопропил-`5`-этилгептана:

    Данный алкан имеет в качестве главной -  цепь, содержащую `7` атомов углерода. При втором и пятом углероде находятся заместители – метилы, при пятом атоме углерода – этил, а при третьем  – изопропил.

    По рациональной номенклатуре алканы рассматривают как производные простейшего углеводорода – метана, в молекуле которого один или несколько атомов водорода замещены на радикалы. Эти радикалы называют в порядке их усложнения. Если заместили одинаковые, то используют приставки умножения (ди, три, тетра) и добавляют слово «метан».

    Физические свойства

    При обычных условиях алканы `"C"_1-"C"_4  -` газы, `"C"_5-"C"_17  -` жидкости, начиная с `"C"_18` - твёрдые вещества. Алканы практически нерастворимы в воде, но хорошо растворимы в неполярных растворителях (бензол и др.) Температуры  кипения алканов с разветвлённой цепью ниже, чем соединений нормального строения. Алканы – горючие вещества.

    Получение

    Основные природные источники алканов – нефть и природный газ. Различные фракции нефти содержат алканы от `"C"_5"H"_12` до `"C"_30"H"_62`. Природный газ  состоит из метана `(96%)` с примесью этана и пропана.

    Из синтетических методов получения алканов можно выделить следующие:

    1. Гидрирование непредельных углеводородов в присутствии металлических катализаторов (`"Ni"`, `"Pd"`):

    $$ {\mathrm{CH}}_{3}-\mathrm{CH}={\mathrm{CH}}_{2}+{\mathrm{H}}_{2}\underset{\mathrm{t}°\mathrm{C}}{\overset{\mathrm{кат}.}{\to }}{\mathrm{CH}}_{3}-{\mathrm{CH}}_{2}-{\mathrm{CH}}_{3}$$

    2. Обработка галогеналканов натрием (реакция Вюрца):

    `2"C"_2"H"_5"Br"+2"Na" -> "C"_2"H"_5 - "C"_2"H"_5+2"NaBr"`

    Эта реакция пригодна только для получения алканов с симметричным углеродным скелетом, так как при введении в реакцию  Вюрца двух разных галогеналканов результатом будет смесь трех продуктов. Так, если обработать натрием смесь бромметана `"CH"_3"Br"` и бромэтана `"C"_2"H"_5"Br"`, то продуктами будут этан `"CH"_3-"CH"_3`, пропан `"CH"_3-"C"_2"H"_5` и бутан `"C"_2"H"_5-"C"_2"H"_5`.

    3. Сплавление солей карбоновых кислот с избытком щёлочи с образованием алканов, содержащих на один атом углерода меньше, чем исходная соль (реакция декарбоксилирования):

    $$ {\mathrm{C}}_{2}{\mathrm{H}}_{5}\mathrm{COOK}+\mathrm{KOH}\stackrel{\mathrm{t}°}{\to }{\mathrm{C}}_{2}{\mathrm{H}}_{6}+{\mathrm{K}}_{2}{\mathrm{CO}}_{3}$$

    4. Алканы симметричного строения могут быть получены в результате электролиза растворов солей карбоновых кислот (реакция Кольбе): 

    5. Промышленный способ получения на металлическом катализаторе (`"Ni"`, `"Co"`) (синтез Фишера-Тропша):

    $$ n\mathrm{CO}+\left(2n+1\right){\mathrm{H}}_{2}\underset{\mathrm{t}°}{\overset{\mathrm{кат}.}{\to }}{\mathrm{C}}_{n}{\mathrm{H}}_{2n+2}+n{\mathrm{H}}_{2}\mathrm{O}$$

    6. В лабораторных условиях простейший алкан – метан можно получить при гидролизе карбида алюминия:

    `"Al"_4"C"_3+12"H"_2"O"->3"CH"_4+4"Al(OH)"_3`

    Метан можно получить при нагревании углерода в атмосфере водорода до `400-500^@"С"` при повышенном давлении в присутствии катализатора  $$ \left(\mathrm{C}+2{\mathrm{H}}_{2}\underset{\mathrm{t}°,\mathrm{p}}{\overset{\mathrm{кат}.}{\to }}{\mathrm{CH}}_{4}\right)$$.

    Химические свойства

    В обычных условиях алканы химически инертны, что объясняется высокой прочностью `σ`-связей `"C" - "C"` и `"C" - "H"`. Поэтому алканы не вступают в реакции присоединения. При обычных условиях алканы проявляют высокую химическую устойчивость. По этой причине алканы получили название парафинов.

    Основные химические превращения алканов идут только при  сообщении им достаточно высокой энергии. Ковалентные связи не склонны к ионному разрыву, но способны расщепляться гомолитически под действием активных свободных радикалов. При этом  может произойти или разрыв связи `"C"–"H"` с последующим замещением атома водорода на другой атом  или группу атомов, или же разрыв молекулы по связи `"C"–"C"`. Несмотря на то, что энергии этих связей равны соответственно `415` – `420` кДж/моль (для первичных атомов углерода) и `350` кДж/моль, разрыв предпочтительнее идёт по связи `"C"–"H"`, т. к. данная связь более доступна для реагента.

    Поэтому алканы вступают в реакции, протекающие по механизму радикального замещения `"S"_"R"` (от англ. substitution radicalic).

    1. Галогенирование. Алканы реагируют с хлором и бромом под действием УФ излучения или высокой температуры. Реакция протекает по цепному механизму, который характеризуется следующими стадиями:

    а) инициирование цепи: `"Cl"_2->2"Cl"*`

    б) рост цепи: `"Cl"*+"CH"_4->"HCl"+"CH"_3*`

                              `"CH"_3*+"Cl"_2->"CH"_3"Cl"+"Cl"*`

    в) обрыв цепи:  `"Cl"*+"Cl"* ->"Cl"_2`

                                 `"Cl"*+"CH"_3* ->"CH"_3"Cl"`

                                  `"CH"_3*+"CH"_3* ->"C"_2"H"_6`. 

    Суммарное уравнение реакции: 

    $$ {\mathrm{CH}}_{4}+{\mathrm{Cl}}_{2}\stackrel{\mathrm{hv}/\mathrm{t}°}{\to }{\mathrm{CH}}_{3}\mathrm{Cl}+\mathrm{HCl}$$.

    Если галоген взят в избытке, то реакция не заканчивается образованием моногалогенпроизводного, а происходит последовательное замещение атомов водорода в алкане на атомы галогена. Так, при радикальном хлорировании метана избытком хлора продуктами реакции будут `"CH"_3"Cl"`, `"CH"_2"Cl"_2`, `"CHCl"_3` и `"CCl"_4`.

    Как правило, селективность (избирательность) радикальных реакций тем больше, чем мягче условия их протекания (например, ниже температура) и меньше активность реагента. Так, в одинаковых условиях проведения реакции атомы брома обладают большей избирательность, чем атомы хлора:

    2. Нитрование (реакция Коновалова). При действии разбавленной азотной кислоты на алканы при `140^@` под давлением протекает реакция `"S"_"R"` с замещением водорода на нитрогруппу:

    $$ {\mathrm{CH}}_{3}-{\mathrm{CH}}_{3}+{\mathrm{HNO}}_{3}\stackrel{\mathrm{t}°,\mathrm{p}}{\to }{\mathrm{CH}}_{3}-{\mathrm{CH}}_{2}-{\mathrm{NO}}_{2}+{\mathrm{H}}_{2}\mathrm{O}$$.

    При  радикальных   реакциях  в  первую  очередь замещаются атомы водорода у третичных, затем у вторичных и в последнюю очередь у первичных атомов углерода.

    3. Изомеризация. Нормальные алканы при определённых условиях могут превращаться в алканы с разветвленной цепью:

          

    4. Крекингэто гомолитический разрыв связей `"C" - "C"`, который протекает при нагревании под действием катализаторов. При крекинге высших алканов образуются алкены и низшие алканы, при крекинге метана и этана образуется ацетилен:

    $$ {\mathrm{C}}_{6}{\mathrm{H}}_{14}\underset{\mathrm{t}°}{\overset{\mathrm{кат}.}{\to }}{\mathrm{C}}_{2}{\mathrm{H}}_{6}+{\mathrm{C}}_{4}{\mathrm{H}}_{8}$$,

    $$ 2{\mathrm{CH}}_{4}\stackrel{1500°\mathrm{C}}{\to }{\mathrm{C}}_{2}{\mathrm{H}}_{2}+3{\mathrm{H}}_{2}$$,

    $$ {\mathrm{C}}_{2}{\mathrm{H}}_{6}\stackrel{1200°\mathrm{C}}{\to }{\mathrm{C}}_{2}{\mathrm{H}}_{2}+2{\mathrm{H}}_{2}$$.

    5. Окисление. При мягком окислении метана кислородом воздуха (`200^@"C"`, катализатор) могут быть получены `"CH"_3"OH"`, `"HCOH"`, `"HCOOH"`. Мягкое окисление бутана дает уксусную кислоту:

    $$ 2{\mathrm{C}}_{4}{\mathrm{H}}_{10}+5{\mathrm{O}}_{2}\underset{\mathrm{t}°}{\overset{\mathrm{кат}.}{\to }}4{\mathrm{CH}}_{3}\mathrm{COOH}+2{\mathrm{H}}_{2}\mathrm{O}$$. 

    На воздухе алканы сгорают до `"CO"_2` и `"H"_2"O"`:

    `"C"_n"H"_(2n+2)+((3n+1))/2 "O"_2 -> n"CO"_2+(n+1)"H"_2"O"`

     

                                     

     

  • 2. Циклоалканы


    Циклоалканы

    это предельные (насыщенные) циклические углеводороды. Простейшие представители этого ряда:

    Общая формула гомологического ряда циклоалканов (циклопарафинов) `"C"_n"H"_(2n)`.  Их разделяют по числу атомов углерода в цикле на малые (три-четыре атома), обычные (пять-семь атомов), средние (восемь – двенадцать атомов) и большие (тринадцать атомов и более).

    Строение

    Каждый атом углерода в циклоалканах находится в `"sp"^3`-гибридизации и образует четыре `σ`-связи (`"C" - "C"` и `"C" - "H"`). Углы между связями зависят от размеров цикла. В малых циклах углы между связями сильно отличаются от тетраэдрического угла `109,5^@`, что создает в молекулах напряжение и обеспечивает их высокую реакционную способность.

    Изомерия

    Для циклоалканов возможна изомерия:

    а) углеродного скелета;

    б) положения заместителей;

    в) пространственная;

    г) межклассовая.

    Так, существует несколько изомерных циклоалканов с молекулярной формулой `"C"_7"H"_14`. Приведем четыре из них:

    Последние два соединения существует в виде пространственных цис- и транс- изомеров:

          

    Каждому циклоалкану изомерен соответствующей алкен (межклассовая изомерия).

    Номенклатура

    Названия циклоалканов строят путём добавления приставки цикло- к названию алкана с соответствующим числом атомов углерода. Нумерацию в цикле производят таким образом, чтобы заместители получили наименьшие номера. Структурные формулы циклоалканов часто записывают в сокращённом виде, используя геометрическую форму цикла и опуская символы атомов углерода и водорода. Ниже приведены примеры для обычных циклов:

     

    Физические свойства

    При обычных условиях `"C"_3 - "C"_4` - газы, `"C"_5 - "C"_16` - жидкости, начиная с `"C"_17` - твёрдые вещества. Поскольку молекулы циклоалканов малополярны, все они нерастворимы в воде.

    Получение

    1. Основной способ получения циклоалканов – отщепление двух атомов галогена от дигалогеналканов при действии на них активными металлами:

     

    2. При каталитическом гидрировании ароматических углеводородов образуется циклогексан и его производные:

    Химические свойства

    По химическим свойствам малые и обычные циклы существенно различаются между собою. Малые циклы склонны к реакциям присоединения, то есть сходны с алкенами. Обычные циклы по своему химическому поведению близки к алканам, так как вступают в реакции радикального замещения `"S"_"R"`.

    1. Гидрирование циклоалканов:

    Циклоалканы, имеющие в цикле пять и более атомов углерода, с водородом в этих условиях не реагируют:

    2. Реакции с галогенами:

    3. Гидрогалогенирование:

    4. Дегидрирование:

    5. Окисление циклогексана под действием сильных окислителей приводит к образованию дикарбоновой кислоты – гександиовой (адипиновой) кислоты:

    При полном сгорании циклоалканов образуются углекислый газ и вода.

     

  • 3. Алкены

    Простейшие непредельные (ненасыщенные) углеводороды, молекулы которых содержат одну двойную связь, называются алкенами. Первый представитель этого класса – этилен (этен) `"CH"_2 = "CH"_2`. Ближайшие гомологи этилена:

    `"CH"_3 - "CH" = "CH"_2`     `"CH"_3 - "CH"_2 - "CH" = "CH"_2`  `"CH"_3 - "CH" = "CH" - "CH"_3`
      пропен  бутен-1 бутен-2


    Другое историческое название алкенов – олефины. Общая формула гомологического ряда алкенов `"C"_n"H"_(2n)`.

    Строение

    Атомы углерода при двойной связи находятся в  `"sp"_2`-гибридизации. Три `σ`-связи, образованные гибридными орбиталями, располагаются в одной плоскости под углом `120^@` друг к другу; `pi`-связь образована при перекрывании негибридных `2"р"`-орбиталей соседних атомов углерода. Двойная связь является сочетанием `σ`- и `π`-связей, её длина составляет `0,134` нм.

    Изомерия

    Наиболее распространенный вид изомерии, характерный для всех органических соединений, – изомерия углеродного скелета. Наличие у алкенов двойной `"C"="C"` связи позволяет этим соединениям иметь гораздо больше изомеров по сравнению с алканами с тем же числом атомов углерода. Изменения положения двойной связи в цепи приводит к различным изомерным структурам. Такой вид изомерии называется изомерией положения кратной связи:

    `"CH"_2="CH"-"CH"_2-"CH"_3`                     `"CH"_3-"CH"="CH"-"CH"_3`
    бутен-1 бутен-2

    Двойная связь является жёстким фрагментом молекулы, т. е. не допускает свободного вращения. Поэтому положение в пространстве заместителей у углеродных атомов, связанных двойной связью, является фиксированным. Следствием этого может быть появление ещё одного вида изомерии – геометрической  или цис-, транс-изомерии (от лат. cis – «по одну сторону», trans – «через»). Такая изомерия характерна только для алкенов, у которых атомы углерода при двойной связи содержат по два разных заместителя.

    У цис-изомера атомы углерода главной цепи находятся по одну сторону относительно плоскости `π`-связи. У транс-изомера фрагменты главной цепи  расположены по разные стороны `π`-связи. Цис- и транс-изомеры – разные индивидуальные вещества.  Различия в геометрии молекулы определяют различия во взаимном влиянии атомов в молекулах, что в конечном итоге приводит к различиям в свойствах этих изомеров. Например, геометрические изомеры бутена-`2` имеют различные температуры кипения, что можно использовать для разделения этих изомеров методом перегонки.

    Межклассовая изомерия с циклоалканами была упомянута выше.

    Номенклатура

    В алкенах с неразветвленной цепью нумерацию начинают с того конца, ближе к которому находится двойная связь. В названии соответствующего алкана суффикс -ан заменяется на суффикс -ен. В разветвленных алкенах выбирают главную цепь так, чтобы она содержала двойную связь, даже если она при этом и не будет самой длинной. Перед названием главной цепи указывают номер атома углерода, при котором находится заместитель. Номер после названия главной цепи указывает на положение двойной связи. Приведём примеры структурных формул октена-`3` и `4`-этилгексена-`2`:

    Некоторые непредельные радикалы имеют тривиальные названия, например, `("CH"_2="CH"-)` - винил, `("CH"_2 = "CH" - "CH"_2-)` - аллил.

    Физические свойства

    алкенов похожи на свойства алканов. При обычных условиях `"C"_2 - "C"_4` - газы, `"C"_5 - "C"_17` - жидкости, начиная с `"C"_18` - твёрдые вещества. Алкены нерастворимы в воде, хорошо растворимы в органических растворителях.

    Получение

    В природе алкены встречаются редко, поэтому разработано много методов получения алкенов различного строения.

    1. Основным промышленным источником алкенов служит крекинг алканов, входящих в состав нефти:

    $$ {\mathrm{CH}}_{3}-{\mathrm{CH}}_{2}-{\mathrm{CH}}_{2}-{\mathrm{CH}}_{2}-{\mathrm{CH}}_{2}-{\mathrm{CH}}_{2}-{\mathrm{CH}}_{3}\underset{\mathrm{t}°}{\overset{\mathrm{кат}.}{\to }}$$

    $$ \underset{\mathrm{t}°}{\overset{\mathrm{кат}.}{\to }}{\mathrm{CH}}_{3}-\mathrm{CH}={\mathrm{CH}}_{2}+{\mathrm{CH}}_{3}-{\mathrm{CH}}_{2}-{\mathrm{CH}}_{2}-{\mathrm{CH}}_{3}$$

    2. Можно получить алкены в результате реакций элиминирования. Это реакции, сопровождающиеся отщеплением двух атомов или групп атомов от соседних атомов углерода и образования между ними `π`-связи (реакции элиминирования обозначаются символом `"E"`).

    а) Дегидрогалогенирование происходит при действии спиртовых растворов щелочей на моногалогенопроизводные алканов:

    $$ {\mathrm{CH}}_{3}-{\mathrm{CH}}_{2}-\mathrm{CHBr}-{\mathrm{CH}}_{3}+\mathrm{KOH}\stackrel{{\mathrm{C}}_{2}{\mathrm{H}}_{5}\mathrm{OH}}{\to }$$

    $$ \stackrel{{\mathrm{C}}_{2}{\mathrm{H}}_{5}\mathrm{OH}}{\to }{\mathrm{CH}}_{3}-\mathrm{CH}=\mathrm{CH}-{\mathrm{CH}}_{3}+\mathrm{KBr}+{\mathrm{H}}_{2}\mathrm{O}$$.

    б) Дегидратация спиртов происходит при их нагревании с серной кислотой выше `150^@`:

    $$ {\mathrm{CH}}_{3}-\mathrm{CH}\left(\mathrm{OH}\right)-{\mathrm{CH}}_{2}-{\mathrm{CH}}_{3}\underset{\mathrm{t}°}{\overset{{\mathrm{H}}_{2}{\mathrm{SO}}_{4}}{\to }}{\mathrm{CH}}_{3}-\mathrm{CH}=\mathrm{CH}-{\mathrm{CH}}_{3}+{\mathrm{H}}_{2}\mathrm{O}$$

    Структура алкена, образующегося при реакции элиминирования, определяется правилом Зайцева: отщепление атома водорода в реакциях происходит преимущественно от наименее гидрогенизированного атома углерода (т. е. связанного с наименьшим числом атомов водорода).

    в) Дегалогенирование происходит при нагревании дигалогенидов, имеющих атомы галогена у соседних атомов углерода, с активными металлами:

    $$ {\mathrm{CH}}_{2}\mathrm{Br}-\mathrm{CHBr}-{\mathrm{CH}}_{3}+\mathrm{Mg}\stackrel{\mathrm{t}°}{\to }{\mathrm{CH}}_{2}=\mathrm{CH}-{\mathrm{CH}}_{3}+{\mathrm{MgBr}}_{2}$$.

    г) Дегидрирование алканов проводят на катализаторе при `500^@"C"`:

    $$ {\mathrm{CH}}_{3}-{\mathrm{CH}}_{2}-{\mathrm{CH}}_{3}\underset{\mathrm{t}°}{\overset{{\mathrm{Cr}}_{2}{\mathrm{O}}_{3}}{\to }}{\mathrm{CH}}_{3}-\mathrm{CH}={\mathrm{CH}}_{2}+{\mathrm{H}}_{2}$$.

    Этот способ получения алкенов является промышленным.

    Химические свойства

    определяются наличием в молекулах алкенов двойной связи. Электронная плотность `π`-связи достаточно подвижна и легко вступает в реакции с электрофильными частицами. Поэтому многие реакции алкенов протекают по механизму электрофильного присоединения, обозначаемому символом `"A"_"E"` (от. aнгл. addition electrofilic). Реакции электрофильного присоединения - это ионные процессы, протекающие в несколько стадий.

    На первой стадии электрофильная частица (чаще всего это бывает протон `"H"^+`) взаимодействует с `π`-электронами двойной связи и образует `π`-комплекс, который затем превращается в карбокатион путем образования ковалентной связи между электрофильной частицей и одним из атомов углерода:

    На второй стадии карбокатион реагирует с анионом `"X"^-`, образуя вторую `σ`-связь за счёт электронной пары аниона:

    Присоединение неполярных молекул происходит по такому же механизму. Отличие лишь в том, что на первой стадии реакции нет готового электрофила. Неполярная молекула при приближении к электронной плотности двойной связи поляризуется, происходит гетеролитический распад, образование `π`-комплекса и его превращение в карбокатион:

    Вторая стадия протекает значительно быстрее, чем первая:

    Если атомы углерода при двойной связи алкена неравноценны (алкен несимметричный), то структура образующегося карбокатиона и, следовательно, продукта реакции при присоединении полярных молекул определяется правилом Марковникова.

    Правило Марковникова: при присоединении полярных молекул типа `"HX"` к несимметричным алкенам водород присоединяется к более гидрогенизированному атому углерода при двойной связи (т. е. к тому атому углерода, при котором находится больше атомов водорода).

    Рассмотрим конкретные примеры реакций присоединения.

    1. Гидрогалогенирование. При взаимодействии бромоводорода с пропеном преимущественно образуется продукт присоединения по правилу Марковникова – `2`-бромпропан:

    `"CH"_3 - "CH" = "CH"_2 +  "HBr" -> "CH"_3 - "CHBr" - "CH"_3`

    Если исходный алкен более сложного  строения, то образуется смесь продуктов с преимущественным образованием более симметричного продукта:

    2. Гидратация. При взаимодействии изобутилена (метилпропена) с водой в присутствии минеральных кислот (серной, фосфорной) также образуется продукт присоединения по правилу Марковникова:

    3. Галогенирование. Алкены обесцвечивают бромную воду:

    `"CH"_2 = "CH"_2 + "Br"_2 -> "BrCH"_2 - "CH"_2"Br"`

    Эта реакция является качественной на двойную связь.

    Однако при нагревании до `500^@"C"` газообразной смеси алкена и галогена может происходить и радикальное замещение `"S"_"R"` атома водорода при соседнем к двойной связи атоме углерода:

    $$ {\mathrm{CH}}_{3}-\mathrm{CH}={\mathrm{CH}}_{2}+{\mathrm{Cl}}_{2}\stackrel{\mathrm{t}°}{\to }\mathrm{Cl}-{\mathrm{CH}}_{2}-\mathrm{CH}={\mathrm{CH}}_{2}+\mathrm{HCl}$$.

    4. Гидрирование. Присоединение водорода происходит в присутствии металлических катализаторов (`"Ni"`, `"Pt"`):

    $$ {\mathrm{CH}}_{3}-\mathrm{CH}={\mathrm{CH}}_{2}+{\mathrm{H}}_{2}\underset{\mathrm{t}°}{\overset{\mathrm{кат}.}{\to }}{\mathrm{CH}}_{3}-{\mathrm{CH}}_{2}-{\mathrm{CH}}_{3}$$.

    5. В присутствии специальных катализаторов молекулы алкенов могут соединяться друг с другом, образуя длинные цепи. Процесс соединения одинаковых молекул в более крупные называют полимеризацией, а продукты такой реакции – полимерами.

    где `"R" = "H"`, `"CH"_3`,  `"Cl"`,  `"C"_6"H"_5`  и т. д.

    Кроме реакций присоединения для алкенов характерны также реакции окисления.

    1. В избытке кислорода алкены полностью сгорают:

    `"C"_n"H"_(2n) + (3n)/2 "O"_2 -> n"CO"_2 + n"H"_2"O"`

    2. При мягком окислении водным раствором перманганата калия (реакция Вагнера) образуются двухатомные спирты:

    Эта реакция является качественной реакцией на двойную связь (обесцвечивание холодного раствора `"KMnO"_4` и образование бурого осадка оксида марганца `("IV")`).

    В щелочной среде также образуются двухатомные спирты и `"K"_2"MnO"_4` (вещество темно-зелёного цвета).

    3. При жёстком окислении линейных алкенов кипящим раствором `"KMnO"_4` в кислой среде происходит полный разрыв двойной связи с образованием двух молекул карбоновых кислот:

    $$ 5{\mathrm{C}}_{2}{\mathrm{H}}_{5}-\mathrm{CH}=\mathrm{CH}-{\mathrm{CH}}_{3}+8{\mathrm{KMnO}}_{4}+12{\mathrm{H}}_{2}{\mathrm{SO}}_{4}\stackrel{\mathrm{t}°}{\to }$$

    $$ \stackrel{\mathrm{t}°}{\to }5{\mathrm{C}}_{2}{\mathrm{H}}_{5}\mathrm{COOH}+5{\mathrm{CH}}_{3}\mathrm{COOH}+8{\mathrm{MnSO}}_{4}+4{\mathrm{K}}_{2}{\mathrm{SO}}_{4}+12{\mathrm{H}}_{2}\mathrm{O}$$.

    Если в молекуле алкена двойная связь находится на конце, то одним из продуктов реакции будет углекислый газ:

    $$ {\mathrm{CH}}_{3}-\mathrm{CH}={\mathrm{CH}}_{2}+2{\mathrm{KMnO}}_{4}+3{\mathrm{H}}_{2}{\mathrm{SO}}_{4}\stackrel{\mathrm{t}°}{\to }$$

    $$ \stackrel{\mathrm{t}°}{\to } {\mathrm{CH}}_{3}\mathrm{COOH}+{\mathrm{CO}}_{2}+2{\mathrm{MnSO}}_{4}+{\mathrm{K}}_{2}{\mathrm{SO}}_{4}+4{\mathrm{H}}_{2}\mathrm{O}$$.

    При жёстком окислении разветвлённых алкенов образуются кетоны:

    Таким образом по продуктам жёсткого окисления можно установить положение двойной связи в исходном алкене.

    Для подбора стехиометрических коэффициентов в окислительно-восстановительных реакциях (ОВР) возможны два метода: электронного и электронно-ионного баланса.

    В методе электронного баланса существует несколько простых правил, с помощью которых можно определить степени окисления атомов в молекулах органических веществ:

    1. Степень окисления водорода в органической молекулы всегда `+1`, а кислорода `-2` (за исключением перекисей, где она составляет `-1`)

    2. Молекулу необходимо разделить на фрагменты, включающие по одному атому углерода, в каждом из которых сумма степеней окисления всех атомов должна быть равна нулю.

    Примеры:

    Пример

    Приведём пример подбора коэффициентов в реакции жёсткого окисления пентена`-1`. Окислитель – `"KMnO"_4`  (за счёт `"Mn"^(+7)`) восстанавливается до `"Mn"^(+2)`. Восстановитель – пентен`-1`. Степень окисления углерода при первом атоме углерода равна `-2`, она увеличивается до `+4` в молекуле углекислого газа. Степень окисления углерода при втором атоме углерода равна  `-1`, она увеличивается до `+3` в карбоксильной группе бутановой кислоты:

    `"CH"_3 - "CH"_2 - "CH"_2 - "C"^(-1)"H" = "C"^(-2)"H"_2+ "KMn"^(+7)"O"_4 + "H"_2"SO"_4 ->`

    `-> "CH"_3 - "CH"_2 - "CH"_2 - "C"^(+3)"OOH" + "C"^(+4)"O"_2  +"Mn"^(+2)"SO"_4+`

    `+"K"_2"SO"_4+"H"_2"O"`

    Схема электронного баланса:

     

    Уравнение химической реакции будет выглядеть следующим образом:

    `"CH"_3 - "CH"_2 - "CH"_2 - "CH" = "CH"_2 +2"KMnO"_4+3"H"_2"SO"_4->`

    `->"CH"_3 - "CH"_2 - "CH"_2 - "COOH"+"CO"_2+2"MnSO"_4+`

    `+"K"_2"SO"_4+4"H"_2"O"`.





    1. 4. Алкадиены
      Алкадиены

      непредельные углеводороды, содержащие две двойные связи. Общая формула алкадиенов `"C"_n"H"_(2n-2)`­. Если двойные связи разделены в углеродной цепи двумя или более одинарными связями (например, `"CH"_2 = "CH" - "CH"_2 - "CH" = "CH"_2`), то такие двойные связи называются   изолированными.

      Химические свойства алкадиенов с изолированными двойными связями не отличаются от свойств алкенов. Если двойные связи разделены в цепи только одной `σ`-связью, то их называют сопряженными. Существуют и кумулированные двойные связи (например, `"CH"_2 = "C" = "CH"_2`). В кумулированных диенах две двойные связи находятся у одного атома углерода. Важнейшие представители сопряженных диенов:

      Строение

      В сопряженных диенах `π`-электронные облака двойных связей перекрываются между собой и образуют единое `π`-электронное облако. В сопряженной системе `π`-электроны уже не принадлежат определенным связям, они делокализованы по всем атомам.

      Изомерия

      Для алкадиенов характерны те же виды изомерии, что и для алкенов. Межклассовая изомерия возможна с алкинами и циклоалкенами:

         

      Номенклатура

      Главную цепь в диенах выбирают так, чтобы она содержала обе двойные связи, и нумеруют с того конца, при котором сумма номеров положений двойных связей минимальна. В названии соответствующего алкана суффикс -ан заменяется на -диен с указанием положения двойных связей .

      Физические свойства

      Бутадиен-`1,3` - легко сжижающийся бесцветный газ с неприятным запахом. Следующие за ним гомологи – жидкости.

      Получение

      Основной промышленный способ получения диенов – дегидрирование алканов. Дивинил получают из бутана:

      $$ {\mathrm{CH}}_{3}-{\mathrm{CH}}_{2}-{\mathrm{CH}}_{2}-{\mathrm{CH}}_{3}\underset{\mathrm{t}°}{\overset{{\mathrm{Cr}}_{2}{\mathrm{O}}_{3}}{\to }}{\mathrm{CH}}_{2}=\mathrm{CH}-\mathrm{CH}={\mathrm{CH}}_{2}+2{\mathrm{H}}_{2}\uparrow $$,

      а изопрен из `2`-метилбутана по аналогичной реакции.

      Бутадиен-`1,3` можно получить по реакции Лебедева путем одновременного дегидрирования и дегидратации этанола:

      $$ 2{\mathrm{C}}_{2}{\mathrm{H}}_{5}\mathrm{OH}\underset{\mathrm{t}°}{\overset{\mathrm{ZnO},{\mathrm{Al}}_{2}{\mathrm{O}}_{3}}{\to }}{\mathrm{CH}}_{2}=\mathrm{CH}-\mathrm{CH}={\mathrm{CH}}_{2}+{\mathrm{H}}_{2}+2{\mathrm{H}}_{2}\mathrm{O}$$.


      Химические свойства

      Для алкадиенов характерны обычные реакции электрофильного присоединения `"A"_"E"`, свойственные алкенам. Особенность сопряженных диенов состоит в том, что две двойные связи в их молекулах функционируют как единое целое, поэтому реакции присоединения могут протекать в двух направлениях:

      а) к одной из двойных связей (`1,2`-присоединение) или

      б) в крайние положения сопряжённой системы с образованием новой двойной связи в центре системы (`1,4`-присоединение). Так, присоединение брома к бутадиену -`1,3` может привести к двум продуктам:

      `"CH"_2 = "CH" - "CH" = "CH"_2+"Br"_2 ->`

      `->"CH"_2 = "CH" - "CHBr" - "CH"_2"Br"`


      `1,2`-присоединение

      или

      `"CH"_2 = "CH" - "CH" = "CH"_2+"Br"_2 ->`

      `-> "BrCH"_2 - "CH" = "CH" - "CH"_2"Br"`

      `1,4`-присоединение

      Подбор реагентов и условий реакций позволяет направлять присоединение по любому из двух направлений.

      Весьма ценной реакцией `1,4`-присоединения является реакция полимеризации бутадиена и его гомолога – изопрена в условияx радикальной или ионной полимеризации, приводящая к образованию полимерных каучукоподобных продуктов:

      $$ n{\mathrm{CH}}_{2}=\mathrm{CH}-\mathrm{CH}={\mathrm{CH}}_{2}\underset{\mathrm{t}°}{\overset{\mathrm{кат}.}{\to }}\overline{)(}{\mathrm{CH}}_{2}-\mathrm{CH}=\mathrm{CH}-{\mathrm{CH}}_{2}{\overline{))}}_{n}$$.

      Использование металлоорганических катализаторов в этой реакции позволяет получить каучук с регулярным строением, в котором все звенья цепи имеют цис-конфигурацию.  Аналогичная реакция с изопреном даёт синтетический изопреновый каучук, который по строению и свойствам близок к природному каучуку:

      В натуральном каучуке группы `– "CH"_2`- находятся по одну сторону двойных связей (цис-форма) и мономерные изопреновые звенья регулярно повторяются:

      Такое пространственное строение молекул полимеров называется стереорегулярным. Именно такое строение молекул придает натуральному каучуку эластичность – способность растягиваться и сжиматься под действием внешней силы, а затем восстанавливать свою прежнюю форму.


       

    2. 5. Алкины
      Алкинами

      называются непредельные углеводороды, молекулы которых содержат одну тройную  связь.  Первый  член  ряда  –  ацетилен `"HC"-="CH"`, поэтому углеводороды этого ряда часто называют ацетиленовыми. Ближайшие гомологи ацетилена:


      Общая формула гомологического ряда алкинов `"C"_n"H"_(2n-2)`­. Она совпадает с общей формулой алкадиенов, поэтому алкины и алкадиены являются межклассовыми изомерами.


      Строение

      Атомы  углерода при тройной связи находятся в состоянии `"sp"`-гибридизации. Две `σ`-связи, образованные гибридными орбиталями, располагаются по одной линии под углом `180^@` друг к другу; две `π`-связи образованы при перекрывании двух пар негибридных `2"р"`-орбиталей соседних атомов углерода. Тройная связь является сочетанием двух π-связей и одной `σ`-связи. Межьядерное расстояние атомов углерода в этилене меньше, чем в этане, а в ацетилене меньше, чем в этилене:

      Связь `"C"-"C"` `"C"="C"` `"C"-="C"`
      Длина, нм `0,154` нм  `0,134` нм `0,120` нм



      Изомерия

      Алкины обладают структурной изомерией:

      а) изомерия строения углеродного скелета (начиная с `"C"_5"H"_8`):

      б) изомерия положения тройной связи в молекуле (начиная с `"C"_4"H"_6`):

      `"HC"-="C" - "CH"_2 - "CH"_3` `"H"_3"C" - "C"-="C" - "CH"_3`
      бутин-1   бутин-2

       
      в) межклассовая изомерия алкинов с алкадиенами:

       

      `"HC"-="C" - "CH"_2 - "CH"_3` `"H"_2"C"="CH" - "CH"="CH"_2`
       бутин-1 бутадиен-1,3

                                                                           

      Пространственная изомерия для алкинов не характерна.


      Номенклатура

      В алкинах с неразветвленной углеродной цепью нумерацию начинают с того конца, ближе к которому находится тройная связь. В названии соответствующего алкана суффикс -ан заменяется на -ин. В разветвленных алкинах выбирают главную цепь так, чтобы она содержала тройную связь, даже если она при этом и не будет самой длинной. Перед названием главной цепи указывают номер атома углерода, при котором находится заместитель, и название этого заместителя.

      Номер после главной цепи указывает положение тройной связи, например:


       



      Физические свойства

      В ряду алкинов наблюдаются те же закономерности, что и у алканов и алкенов. При обычных условиях `"C"_2 - "C"_4` - газы, `"C"_5-"C"_16` - жидкости, начиная с `"C"_17` - твёрдые вещества. Низшие алкины растворяются в воде плохо, однако лучше, чем алканы и алкены. В неполярных органических растворителях низшие алкины растворяются хорошо.


      Получение

      1. Дегидрогалогенирование дигалогенпроизводных соответствующих алканов, у которых два атома галогена находятся или при одном атоме углерода:

      (структура продукта реакции определяется правилом Зайцева), или при двух соседних атомах углерода:

      2. Дегалогенирование тетрагалогеналканов:

      3. Высшие алкины можно получить по реакции:

      `"CH"_3 - "C"-="C" - "Na" + "Br" - "CH"_2 - "CH"_2 - "CH"_3 ->` 

      `-> "CH"_3 - "C"-="C" - "CH"_2 - "CH"_2 - "CH"_3 + "NaBr"`.

      4. Низшие алкины в лаборатории можно получить гидролизом карбидов:

      `"CaC"_2 + 2"H"_2"O" -> "C"_2"H"_2 + "Ca(OH")_2`

      `"CaC"_2 + 2"HCl" -> "C"_2"H"_2 + "CaCl"_2`.

      5. Ацетилен в промышленности получают крекингом углеводородов:

      $$ 2{\mathrm{CH}}_{4}\stackrel{1500°\mathrm{C}}{\to }\mathrm{HC}\equiv \mathrm{CH}+3{\mathrm{H}}_{2}$$.


      Химические свойства

      1. Реакции электрофильного присоединения `"A"_"E"` для алкинов протекают медленнее, чем в случае алкенов. Продукты  реакции определяются правилом Марковникова.

      а) гидрогалогенирование проходит в две стадии, использование катализатора `"AlCl"_3` облегчает протекание реакции:

      б) при гидратации алкинов (реакция Кучерова) на первой стадии образуется неустойчивый непредельный спирт, который затем изомеризуется в альдегид или кетон:


               

      в) галогенирование также проходит в две стадии с промежуточным образованием производных этилена, а затем этана:

      `"HC"≡"CH" + "Br"_2 -> "CHBr"="CHBr"` 

      `"CHBr"="CHBr"+"Br"_2 -> "CHBr"_2 - "CHBr"_2`.

      Обесцвечивание бромной воды является качественной реакцией на тройную связь.

      2. Алкины, содержащие тройную связь в конце цепи, проявляют очень слабые кислотные свойства. Ацетилен и алкины-`1` способны образовывать соли (ацетилениды) при реакции с одновалентными металлами или их ионами:

      $$ {\mathrm{CH}}_{3}-\mathrm{C}\equiv \mathrm{CH}+\left[\mathrm{Cu}{\left({\mathrm{NH}}_{3}\right)}_{2}\right]\mathrm{Cl}\to {\mathrm{CH}}_{3}-\mathrm{C}\equiv \mathrm{C}-\mathrm{Cu}+{\mathrm{NH}}_{4}\mathrm{Cl}+{\mathrm{NH}}_{3}\uparrow $$

      $$ \mathrm{R}-\mathrm{C}\equiv \mathrm{CH}+\mathrm{NaH}\to \mathrm{R}-\mathrm{C}\equiv \mathrm{C}-\mathrm{Na}+{\mathrm{H}}_{2}\uparrow $$

      При взаимодействии ацетилена с аммиачным раствором оксида серебра образуется жёлтый осадок диацетиленида серебра:

      `"HC"-="CH"+2["Ag(NH"_3)_2]"OH" ->`

      `->"Ag" - "C"-="C" - "Ag"darr + 4"NH"_3 + 2"H"_2"O"`.

      Ацетилениды легко гидролизуются растворами кислот:

      `"CH"_3 - "C"-="C" - "Ag" + "HCl" -> "CH"_3 - "C"-="CH" + "AgCl"darr`.

      3. Алкины вступают в реакции окисления и восстановления.

      а) При действии сильных окислителей в кислой среде ацетилен окисляется до щавелевой кислоты:

      5HCCH+8KMnO4+12H2SO45HCOO-COOH+8MnSO4+4K2SO4+12H2O5\mathrm{HC}\equiv \mathrm{CH}+8{\mathrm{KMnO}}_{4}+12{\mathrm{H}}_{2}{\mathrm{SO}}_{4}\to \phantom{\rule{0ex}{0ex}}\to 5\mathrm{HCOO}-\mathrm{COOH}+8{\mathrm{MnSO}}_{4}+4{\mathrm{K}}_{2}{\mathrm{SO}}_{4}+12{\mathrm{H}}_{2}\mathrm{O}

      б) В водном растворе перманганат калия окисляет ацетилен до оксалата калия:

      $$ 3\mathrm{HC}\equiv \mathrm{CH}+8{\mathrm{KMnO}}_{4}\to 3\mathrm{KOOC}-\mathrm{COOK}+8{\mathrm{MnO}}_{2}\downarrow +2\mathrm{KOH}+2{\mathrm{H}}_{2}\mathrm{O}$$

      в) Использование в качестве окислителя раствора KMnO4 в серной кислоте при нагревании приводит к расщеплению тройной связи и образованию карбоновых кислот, в молекулах которых число атомов углерода соответствует числу атомов углерода в «осколках» после разрыва тройной связи:

      5CH3-CC-CH2-CH3+6KMnO4+9H2SO45CH3COOH+5CH3-CH2-COOH+3K2SO4+6MnSO4+4H2O5{\mathrm{CH}}_{3}-\mathrm{C}\equiv \mathrm{C}-{\mathrm{CH}}_{2}-{\mathrm{CH}}_{3}+6{\mathrm{KMnO}}_{4}+9{\mathrm{H}}_{2}{\mathrm{SO}}_{4}\to \phantom{\rule{0ex}{0ex}}\to 5{\mathrm{CH}}_{3}\mathrm{COOH}+5{\mathrm{CH}}_{3}-{\mathrm{CH}}_{2}-\mathrm{COOH}+3{\mathrm{K}}_{2}{\mathrm{SO}}_{4}+6{\mathrm{MnSO}}_{4}+4{\mathrm{H}}_{2}\mathrm{O}

      г) Горение алкинов в кислороде – сильно экзотермическая реакция:

      $$ {\mathrm{CH}}_{3}-\mathrm{C}\equiv \mathrm{CH}+4{\mathrm{O}}_{2}\to 3{\mathrm{CO}}_{2}+2{\mathrm{H}}_{2}\mathrm{O}$$

      д) Гидрирование алкинов протекает при нагревании с металлическими катализаторами (Ni, Pt, Pd). Реакция может идти в две стадии:

      $$ {\mathrm{CH}}_{3}-\mathrm{C}\equiv \mathrm{CH}+{\mathrm{H}}_{2}\underset{t°\mathrm{C}}{\overset{\mathrm{кат}.}{\to }}{\mathrm{CH}}_{3}-\mathrm{CH}={\mathrm{CH}}_{2}$$

      $$ {\mathrm{CH}}_{3}-\mathrm{CH}={\mathrm{CH}}_{2}+{\mathrm{H}}_{2}\underset{t°\mathrm{C}}{\overset{\mathrm{кат}.}{\to }}{\mathrm{CH}}_{3}-{\mathrm{CH}}_{2}-{\mathrm{CH}}_{3}$$

      `4. Алкины способны к полимеризации.

      а) Ацетилен димеризуется при пропускании через водно-аммиачный раствор `"CuCl"`:

      $$ \mathrm{HC}\equiv \mathrm{CH}+\mathrm{HC}\equiv \mathrm{CH}\stackrel{\mathrm{кат}.}{\to }{\mathrm{CH}}_{2}=\mathrm{CH}-\mathrm{C}\equiv \mathrm{CH}  \left(\mathrm{винилацетилен}\right)$$

      Присоединение  к  винилацетилену   хлороводорода  приведёт  к  образованию хлоропрена

        

      – исходного сырья для  производства хлоропренового каучука.

      б) Тримеризация ацетилена на активированном угле приводит к образованию бензола.

        

      Аналогичная реакция пропина приводит к образованию смеси гомологов бензола:



    3. 6. Ароматические углеводороды

      Ароматическими углеводородами

      называются вещества, в молекулах которых содержатся одно или несколько бензольных колец – циклических групп атомов углерода с особым характером связей.

      Рассмотрим только соединения с одним бензольным кольцом. Родоначальником таких соединений является бензол, `"C"_6"H"_6`:

      Ближайшие гомологи бензола:

      Общая формула ароматических углеводородов ряда бензола `"C"_n"H"_(2n-6)`.

      Строение

      Все шесть атомов углерода в молекуле бензола находятся в `"sp"^2`-гибридном состоянии. Каждый атом углерода образует `3` `σ`-связи с двумя другими атомами углерода и одним атомом водорода, лежащие в одной плоскости. Углы между тремя `σ`-связями равны `120^@`. Таким образом, шесть атомов углерода образуют правильный шестиугольник (`σ`-скелет молекулы бензола).

      Каждый атом углерода имеет одну негибридную `2"р"`-орбиталь, на которой находится один электрон. Все шесть `"р"`-электронов взаимодействуют между собой, образуя ароматическую систему – единое `π`-электронное облако  (орбитали  перекрываются  вне  линий,   объединяющих ядра атомов углерода).

      Ароматическая система содержит `6` `π` -электронов, т. е. три `π`-связи, которые равномерно распределены по шести атомам углерода. Общий порядок связи между атомами углерода в бензольном кольце равен `1,5`: одна `σ`-связь и половина `π`-связи. Действительно, длина связей «углерод-углерод» в бензольном кольце равна `0,140` нм. Это меньше длины одинарной связи (`0,154` нм), но больше длины двойной связи (`0,134`нм).

      Изомерия

      Структурная изомерия:

      а) изомерия, связанная со строением заместителя:

      б) изомерия, связанная с наличием разного количества заместителей:

       

      в) изомерия положения заместителей относительно друг друга в кольце. Если с кольцом связаны два заместителя, то они могут находиться в трех разных положениях относительно друг друга (см. выше: ксилолы). Положение заместителей указывают цифрами или обозначают словами: орто (о-), мета (м-), пара (п-).


      Номенклатура

      Названия ароматических углеводородов происходит от слова «бензол» с указанием заместителей в бензольном кольце и их положения, например:

       

      При отщеплении атома водорода от молекул ароматических углеводородов образуются ароматические радикалы, простейшие из которых:

      Физические свойства

      Первые члены гомологического ряда бензола (арены) – бесцветные жидкости со специфическим запахом. Они легче воды и в ней нерастворимы. Хорошо растворяются в органических растворителях и сами являются хорошими растворителями для многих органических веществ. Большинство аренов токсичны, некоторые из них канцерогенны.


      Получение

      1. Для получения бензола и его гомологов в промышленности используют ароматизацию предельных углеводородов. При пропускании алканов, имеющих не менее `6` атомов углерода в молекуле, над нагретой платиной или оксидом хрома происходит дегидрирование с одновременным замыканием цикла (дегидроциклизация):

      2. Дегидрирование циклоалканов также приводит к ароматическим углеводородам. Реакция происходит при пропускании паров циклогексана и его гомологов над нагретой платиной:

       

      3. Бензол получают тримеризацией ацетилена над активным углем при `600^@`:

      3CHCHt°CC6H63\mathrm{CH}\equiv\mathrm{CH}\xrightarrow[{\mathrm t^\circ}]{\mathrm C}{\mathrm C}_6{\mathrm H}_6.

      4. Гомологи бензола получают из бензола при его взаимодействии с алкилгалогенидами в присутствии `"AlCl"_3` (реакция Фриделя-Крафтса):

      5. Алкилирование алкенами. Эти реакции широко используются в промышленности для получения этилбензола и изопропилбензола (кумола). При алкилировании бензола алкенами и спиртами в качестве кислотного катализатора применяют `"AlCl"_3`, фосфорную или серную кислоту. Эти реакции проводят при умеренном нагревании.

       

      6. Бензол и его гомологи можно получить общим для углеводородов методом нагревания соответствующих кислот или их солей с гидроксидом натрия:

      C6H5-COONa+NaOHt°C6H6+Na2CO3{\mathrm C}_6{\mathrm H}_5-\mathrm{COONa}+\mathrm{NaOH}\xrightarrow{\mathrm t^\circ}{\mathrm C}_6{\mathrm H}_6+{\mathrm{Na}}_2{\mathrm{CO}}_3.

      Химические свойства

      бензола и его гомологов определяются, в первую очередь, наличием в их молекулах ароматической системы.

      1. Для этой системы характерны реакции замещения, которые протекают по электрофильному механизму `("S"_"E")`.

      Механизм  `"S"_"E"`    для бензола можно представить следующим образом:

      На первой стадии электрофильная частица `"X"^+` притягивается к `π`-электронному облаку и образует с ним `π`-комплекс. Затем два из шести `π`-электронов кольца образует `σ`-связь между `"X"^+` и одним из атомов углерода. При этом ароматичность системы нарушается, т. к. в кольце остается только четыре `π`-электрона, распределённые между пятью атомами углерода (`σ`-комплекс). Для восстановления ароматичности `σ`-комплекс выбрасывает протон, а два электрона связи `"C" - "H"` переходят в `π`-электронную систему.

      По механизму `"S"_"E"` протекают следующие реакции:

      1) Галогенирование

      2) Нитрование

      3) Алкирование

      4) Ацилирование

      5) Сульфирование

      В том случае, когда в реакцию `"S"_"E"` вводят монопроизводные бензола, в зависимости от свойств заместителя реакции могут идти быстрее или медленнее, чем в самом бензоле, а группы могут направляться в различные положения исходной молекулы. В соответствии с оказываемым воздействием заместители относятся к ориентантам `"I"` и `"II"` родов.

      Заместители (ориентанты) `"I"` рода направляют вступающую группу в орто-  и пара-положения. Продуктом реакции при наличии заместителей `"II"` рода являются мета-дизамещенные соединения. Ориентантами `"I"` рода являются электронодонорные группы `"R"`, `"OH"`, `"OR"`, `"NH"_2`, `"NR"_2`, где `"R"`- алкильный радикал, а также галогены – `"Cl"`, `"Br"`. Они увеличивают электронную плотность в бензольном кольце.

      К ориентантам `"II"` рода относятся электроноакцепторные группы `"NO"_2`, `"COOH"`, `"CHO"`, `"CCl"_3` и др.

      Например, толуол, содержащий заместитель первого рода, нитруется и бромируется в пара- и орто- положения:

       

      Следует учитывать, что объёмные заместители затрудняют атаку электрофильной частицы в орто-положение, поэтому в случае бромирования трет-бутилбензола основным продуктом является п-бром-трет-бутилбензол:

      Нитробензол, содержащий заместитель второго рода, нитруется и бромируется в мета-положение:

        

      Гомологи бензола способны к реакциям замещения в боковой цепи, протекающим по радикальному механизму `("S"_"R")`:

       

      Проводя реакцию в избытке галогена, можно последовательно заместить все три атома водорода метильного радикала на атомы галогена.

      2. Наряду с реакциями замещения, ароматические углеводороды могут вступать в реакции присоединения, однако эти реакции приводят к разрушению ароматической системы и поэтому требуют больших затрат энергии и протекают только в жёстких условиях:

      а) гидрирование

       

      б) радикальное галогенирование

      3. Реакция окисления.

      Бензол и алканы не обесцвечивают раствор перманганата калия. Гомологи бензола окисляются раствором перманганата калия. Какой бы сложной ни была цепь заместителя, она разрушается, в результате образуется бензойная кислота. Окисление идет по α-углеродному атому.  Ароматические кольцо при этом не затрагивается.

      Гомологи, содержащие две боковые цепи, дают двухосновные кислоты:

      Бензол и его гомологи горят в кислороде коптящим пламенем:

      `"C"_6"H"_6+7  1/2"O"_2->6"CO"_2+3"H"_2"O"`.







    4. 1. Спирты
      Спирты

      – производные углеводородов, в которых  один или несколько атомов водорода замещены на гидроксильную группу – `"OH"`. Спирты, содержащие одну -`"OH"` группу, называются алкоголями, две – гликолями, три – глицеринами.

      В зависимости от характера углеводородного радикала спирты делятся на алифатические (метанол, изопропанол и т. п.), циклические (циклопентанол и т. п.), ароматические (бензиловый спирт). 

      Соединения, у которых `"OH"`- группа непосредственно связана с бензольным кольцом, называют фенолами.

      В зависимости от того, при каком углеродном атоме находится гидроксильная  группа, различают спирты первичные `("RCH"_2-"OH")`, вторичные `("R"_2"CH"-"OH")` и третичные `("R"_3"C"-"OH")`.

      Простейшие первичные алифатические спирты: 

      `"CH"_3-"OH"` метанол

      `"CH"_3-"CH"_2-"OH"` этанол

      `"CH"_3-"CH"_2-"CH"_2-"OH"` пропанол-1

      Вторичные:                                                        

      Третичный:     

      По числу гидроксильных групп в молекуле спирты делятся на одноатомные и многоатомные. Общая формула гомологического ряда предельных одноатомных спиртов  - `"C"_"n""H"_(2"n"+1)"OH"`.

      Изомерия спиртов

       связана:  а) со строением углеродного скелета, например,

      б)  c положением функциональной группы – `"OH"`:

                    

                

      в) межклассовые изомеры спиртам – простые эфиры:

      Номенклатура

      Названия спиртов образуют, добавляя суффикс -ол к названию углеводорода с самой длинной углеродной цепью, включающей гидроксильную группу. Нумерацию начинают с того конца, к которому ближе расположена гидроксильная группа. Положение группы указывается цифрой после названия спирта. У циклических спиртов нумерацию атомов углерода в цикле начинают с того атома, при котором находится гидроксильная группа, и ведут таким образом, чтобы заместитель получил возможно меньший номер. Если гидроксильных групп в молекуле несколько, в названии спиртов используется суффикс  -диол,  -триол и т. д. Кроме того, используется заместительная номенклатура, по которой название спирта производится от соответствующего углеводородного радикала, заканчивая его - овый и добавляя слово «спирт». Примеры:

           


      Одноатомные спирты

      Физические свойства.

      Спирты до `"C"_(15)`  – жидкости, высшие спирты – твёрдые вещества. Низшие спирты смешиваются с водой в любых соотношениях. С ростом молекулярной массы растворимость спиртов в воде падает; высшие спирты, начиная с гексилового,  практически нерастворимы. Спирты имеют высокие температуры плавления и кипения за счёт образования межмолекулярных водородных связей:

      Возможность образования водородных связей между молекулами спиртов и воды способствует растворению спиртов в воде, причём чем больше гидроксильных групп и короче углеводородный радикал, тем выше растворимость. Высшие спирты по растворимости подобны углеводородам.

      Получение

      1. Гидратация алкенов при нагревании в присутствии кислотных катализаторов:

      $$ {\mathrm{CH}}_{2}={\mathrm{CH}}_{2}+{\mathrm{H}}_{2}\mathrm{O}\underset{\mathrm{t}°}{\overset{{\mathrm{H}}^{+}}{\to }}{\mathrm{CH}}_{3}-{\mathrm{CH}}_{2}-\mathrm{OH}$$

      Присоединение воды к несимметричным алкенам идёт по правилу Марковникова:

      2. Гидролиз алкилгалогенидов под действием водных растворов щелочей:

      `"R"-"Br"+"NaOH"->"R"-"OH"+"NaBr"`.

      3. Восстановление карбонильных соединений при нагревании над `"Ni"` или `"Pt"`:

      `"R"-"CH"="O"+"H"_2->"R"-"CH"_2-"OH"`

      `"R"-"CO"-"R"^'+"H"_2->"R"-"CH"("OH")-"R"^'`.

      4. Этанол получают при спиртовом брожении сахаров:

      $$ {\mathrm{C}}_{6}{\mathrm{H}}_{12}{\mathrm{O}}_{6}\stackrel{\mathrm{ферменты}}{\to }2{\mathrm{C}}_{2}{\mathrm{H}}_{5}\mathrm{OH}+2{\mathrm{CO}}_{2}\uparrow $$.

      5. Метанол получают из  синтез-газа (промышленный  способ)  под  давлением `5–10` МПа с использованием оксидных катализаторов `("CuO", "ZnO", "Cr"_2"O"_3)` в интервале температур  `250-400^@"C"`:

      $$ \mathrm{CO}+2{\mathrm{H}}_{2}\underset{\mathrm{t}°,\mathrm{p}}{\overset{\mathrm{кат}}{\to }}{\mathrm{CH}}_{3}\mathrm{OH}$$.

      Химические свойства

      Характерные свойства спиртов можно представить в виде схемы:

      Реакции с разрывом связи `"O"-"H"`

      1. Слабые кислотные свойства. Спирты реагируют со щелочными металлами, но не реагируют со щелочами:

      `2"C"_2"H"_5"OH"+2"K"->2"C"_2"H"_5"OK"+"H"_2 uarr` этилат калия

      2. Реакция этерификации. Взаимодействие с органическими и минеральными кислотами:

      $$  {\mathrm{C}}_{2}{\mathrm{H}}_{5}\mathrm{OH}+{\mathrm{CH}}_{3}\mathrm{COOH}\stackrel{{\mathrm{H}}^{+}}{\rightleftarrows }{\mathrm{H}}_{2}\mathrm{O}+{\mathrm{CH}}_{3}{\mathrm{COOC}}_{2}{\mathrm{H}}_{5}  \left(\mathrm{этилацетат}\right)$$

      $$ {\mathrm{C}}_{2}{\mathrm{H}}_{5}\mathrm{OH}+{\mathrm{HONO}}_{2}\rightleftarrows {\mathrm{H}}_{2}\mathrm{O}+{\mathrm{C}}_{2}{\mathrm{H}}_{5}-\mathrm{O}-{\mathrm{NO}}_{2}   \left(\mathrm{этилнитрат}\right)$$

      Реакции с разрывом связи `"C"-"О"`

      1. Реакция нуклеофильного замещения `"S"_"N"`. В процессе разрыва связи `"C"-"O"` происходит замещение гидроксильной группы другими нуклеофилами:

      $$ {\mathrm{CH}}_{3}-{\mathrm{CH}}_{2}-\mathrm{OH}+\mathrm{HBr}\rightleftarrows {\mathrm{CH}}_{3}-{\mathrm{CH}}_{2}-\mathrm{Br}+{\mathrm{H}}_{2}\mathrm{O}$$

      2. Реакции дегидратации протекают при нагревании с водоотнимающими веществами:

      $$ \begin{array}{l}{\mathrm{CH}}_{3}-{\mathrm{CH}}_{2}-\mathrm{OH}\underset{\mathrm{t}°>140°\mathrm{C}}{\overset{{\mathrm{H}}_{2}{\mathrm{SO}}_{4}}{\to }}{\mathrm{CH}}_{2}={\mathrm{CH}}_{2}+{\mathrm{H}}_{2}\mathrm{O}\\     (\mathrm{внутримолекулярная} \mathrm{дегидратация})\end{array}$$

      Реакции окисления

      Для подбора стехиометрических коэффициентов в окислительно-восстано-вительных реакциях (ОВР) возможны два метода: электронного (программа ОГЭ по химии) и электронно-ионного баланса (см. методическое указание «Углеводороды»). Для определения степени окисления атомов в молекулах органических веществ в методе электронного баланса существует несколько правил:

      1. Сумма степеней окисления водорода в органической молекуле всегда `+1`, а кислорода `-2` (за исключением перекисей, где она составляет  `-1`).

      2. Молекулу необходимо разделить на фрагменты, включающие по одному атому углерода, в каждом из которых сумма степеней окисления всех атомов должна быть равна нулю. 

      Примеры:

                              

      Для спиртов возможно полное и неполное окисление:

      1. Горение (полное окисление). Спирты горят на воздухе бледно-голубым пламенем с выделением большого количества теплоты. Горение предельных одноатомных спиртов выражает уравнение в общем виде:

      `"C"_n"H"_(2n+1)"OH"+3n//2"O"_2->n"CO"_2+(n+1)"H"_2"O"`

      2. Неполное окисление. В присутствии окислителей (например, `"CuO", "K"_2"Cr"_2"O"_7)`первичные спирты окисляются до альдегидов, а вторичные – до кетонов.

      а) Рассмотрим окисление этанола до уксусного альдегида под действием  `"K"_2"Cr"_2"O"_7` в кислой среде.  Окислитель – `"K"_2"Cr"_2"O"_7` (за счёт `"Cr"^(+6)`). Восстановитель – этанол (за счёт углерода при гидроксиле `"C"^(-1)`). 

      `3"C"_2"H"_5"OH"+"K"_2"Cr"_2"O"_7+4"H"_2"SO"_4->`

      `->3"CH"_3"COH"+"Cr"_2("SO"_4)_3+"K"_2"SO"_4+7"H"_2"O"`

      $$ \left.\begin{array}{l}2{\mathrm{Cr}}^{+6}+6\left.\mathrm{e}\right.\to 2{\mathrm{Cr}}^{+3}\\    {\mathrm{C}}^{-1}-2\left.\mathrm{e}\right.\to   {\mathrm{C}}^{+1}\end{array}\right|\begin{array}{c}1\\ 3\end{array}$$

      Окисление оксидом меди (II):

      б) Рассмотрим окисление вторичных спиртов:

      $$ \left.\begin{array}{l}{\mathrm{C}}^{0}-2{e}^{-}\to {\mathrm{C}}^{+2}\\ {\mathrm{Mn}}^{+7}+5{e}^{-}\to {\mathrm{Mn}}^{+2}\end{array}\right|\begin{array}{c}5\\ 2\end{array}$$

      Окисление вторичных спиртов оксидом меди (II):

      в) Третичные спирты устойчивы к воздействию окислителей.

      3. В более жёстких условиях (при нагревании в кислой среде с раствором `"KMnO"_4` или `"K"_2"Cr"_2"O"_7`) окисление первичных спиртов идёт до кислот:

      `3"C"_2"H"_5"OH"+2"K"_2"Cr"_2"O"_7+8"H"_2"SO"_4->`

      `->3"CH"_3"COOH"+2"Cr"_2("SO"_4)_3+2"K"_2"SO"_4+11"H"_2"O"`

      Многоатомные спирты

      Многоатомные спирты – это производные углеводородов, молекулы которых содержат несколько гидроксильных групп. Важнейшие из них – этиленгликоль и глицерин:

      Получение

      1. Гидролиз галогеналканов

      2. Окисление алкенов холодным водным раствором `"KMnO"_4`(реакция Вагнера):

      В щелочной среде окисление алкенов также приводит к образованию двухатомных спиртов: 

      3. Глицерин образуется при гидролизе жиров (cм. «Жиры», химические свойства).

      Химические свойства

      Для двух- и трёхатомных спиртов характерны реакции одноатомных спиртов. Взаимное влияние гидроксильных групп проявляется в том, что многоатомные спирты – более сильные кислоты, чем одноатомные спирты. Многоатомные спирты могут реагировать по каждому гидроксилу отдельно.

      1. Взаимодействие со щелочными металлами:

      2. Взаимодействие со щелочами: 

      3. Взаимодействие с органическими или неорганическими кислотами приводит к образованию сложных эфиров:

        4. Замещение гидроксильных групп на галоген:

          1. 5. Качественной реакцией на многоатомные спирты является появление ярко-синего окрашивания при действии свежеосаждённого гидроксида меди (II).

            1. Цвет раствора обусловлен образованием комплексного гликолята (реакция 1) или глицерата меди (реакция 2):



            1. 2. Фенолы
              Фенолами

              называют производные ароматических углеводородов, атомы которых содержат одну или несколько гидроксильных групп, непосредственно соединённых с бензольным кольцом. 

              Строение.

              Одна из двух неподелённых электронных пар атома кислорода втягивается в `π`-электронную систему бензольного кольца (`+"М"`-эффект группы `"ОН"`). Это приводит  к двум эффектам:

              а) увеличивается электронная плотность в бензольном кольце, причём максимумы электронной плотности находятся в орто- и пара-положениях по отношению к группе `"ОН"`;

              б) электронная плотность на атоме кислорода, напротив, уменьшается, что приводит к ослаблению связи `"О"-"Н"`. Первый эффект проявляется в высокой активности фенола в реакциях электрофильного замещения,  а второй – в повышении кислотности фенола по сравнению с предельными спиртами.


              Физические свойства

              Фенол – бесцветное кристаллическое легкоплавкое вещество (Тпл.`=41^@"C"`) с характерным запахом. На воздухе окисляется и становится розовым. Фенол плавится при достаточно низкой температуре `+41^@"C"`. Радикал фенил `"C"_6"H"_5`–  по сравнению с алкильными радикалами от метильного до бутильного объёмный, поэтому растворимость фенола гораздо меньше, чем растворимость низших одноатомных спиртов.

              Фенол – токсичное вещество, вызывающее ожоги кожи.


              Получение

              1. Щелочной гидролиз галогенбензолов:

              `"C"_6"H"_5-"Cl"+2"NaOH"->"C"_6"H"_5-"ONa"+"NaCl"+"H"_2"O"`

              с последующим разложением фенолята при помощи сильной кислоты:

              `"C"_6"H"_5-"ONa"+"HCl"->"C"_6"H"_5-"OH"+"NaCl"`

              2. Каталитическое окисление изопропилбензола (кумола) кислородом воздуха (промышленный способ):

              Химические свойства

              Химические свойства фенолов представим в виде схемы:

              Реакции с участием гидроксильной группы

              1. Кислотные свойства. Фенол, как и спирты, взаимодействует с активными металлами, образуя соли – феноляты:

              `2"C"_6"H"_5"OH"+2"Na"->2"C"_6"H"_5"ONa"+"H"_2 uarr`

              Но в отличие от спиртов фенол диссоциирует в водном растворе по кислотному типу и взаимодействует с растворами  щелочей (реакция нейтрализации):                            

              `"C"_6"H"_5"OH"+"NaOH"->"C"_6"H"_5"ONa"+"H"_2"O"`.

              Однако кислотные свойства фенола выражены слабо, поэтому даже такая слабая кислота, как угольная, вытесняет фенолы из растворов его солей:

              `"C"_6"H"_5"ONa"+"H"_2"O"+"CO"_2->"C"_6"H"_5"OH"+"NaHCO"_3`.

              2. Взаимодействие с раствором `"FeCl"_3` приводит к характерному фиолетовому окрашиванию. Это качественная реакция на фенольную гидроксильную группу.

              3. Образование сложных эфиров (ацилирование фенолов) происходит только с участием ангидридов или галогенангидридов карбоновых кислот:

              Реакции с участием бензольного кольца

              Реакции электрофильного замещения `("S"_"E")` в бензольном кольце фенола протекают легче, чем у бензола, и в более мягких условиях.

              1. Галогенирование. В отличие от бензола фенол реагирует с бромной водой при комнатной температуре и в отсутствие катализаторов с образованием белого осадка `2,4,6`-трибромфенола:

              2. Нитрование. Продукты нитрования зависят от концентрации азотной кислоты. Нитрование разбавленной `"HNO"_3` приводит к образованию о- и п- нитрофенолов. Если же нитрование проводят концентрированной `"HNO"_3`, то образуется `2,4,6`-тринитрофенол:

              3. Реакция поликонденсации с формальдегидом (см. «Карбонильные соединения», химические свойства). В результате реакции поликонденсации образуется высокомолекулярное соединение – фенолформальдегидная смола и вода.


              Окислительно-восстановительные свойства фенола

              1. Гидрирование фенола происходит в присутствии катализатора (реакция присоединения):

              2. Окисление фенолов происходит легко даже  под действием кислорода воздуха. При стоянии на воздухе фенол постепенно окрашивается в розовато-красный цвет. При окислении фенола хромовой смесью основным продуктом является хинон. При окислении гидрохинона также образуется хинон:

            2. 3. Карбонильные соединения. Альдегиды и кетоны

              Органические соединения, в молекуле которых имеется карбонильная группа , называются карбонильными или оксосоединениями. Альдегиды – соединения, в которых карбонильная группа связана с углеводородным радикалом  и с атомом водорода, в кетонах карбонил связан с двумя одинаковыми или различными углеводородными группами. Исключение составляет простейший альдегид – метаналь, в формуле которого вместо радикала содержится атом водорода: . Общая формула предельных альдегидов и кетонов  `"C"_"n""H"_(2"n")"O"`.

              Строение

              Атом углерода в карбонильной группе находится в состоянии `"sp"^2`-гибридизации и образует три `σ`-связи (одна из них `"C"–"O"`). Эти связи располагаются в одной плоскости под углом `120^@`  друг к другу, а `π`-связь образована негибридной `р`-орбиталью атома углерода и `р`-орбиталью атома кислорода.

              Двойная связь `"C"="O"` карбонильной группы является сочетанием `σ`- и `π`-связей; она сильно поляризована за счёт смещения электронной плотности `π`-связи к более электроотрицательному атому кислорода. 

              Поэтому карбонильный атом углерода приобретает частичный положительный заряд, а атом кислорода – частичный отрицательный заряд. Изогнутая стрелка показывает поляризацию `π`-связи.


              Изомерия

              альдегидов связана только с изомерией углеродного скелета, изомерия кетонов со строением углеродного скелета и с положением функциональной группы.  Альдегиды и кетоны с одинаковым числом атомов углерода изомерны друг другу. Примеры изомерии углеродного скелета:

                

              и положения функциональной группы:

              Номенклатура.

              В названии альдегидов по номенклатуре ИЮПАК появляется характерный суффикс - аль, в названии кетонов - он. Для первых членов гомологического ряда альдегидов и кетонов часто используются тривиальные названия: `"HCOH"` - формальдегид (или муравьиный альдегид), `"CH"_3"CH"="O"` ацетальдегид (или уксусный альдегид), `"CH"_3"CH"_2"CH"="O"` пропионовый альдегид, `"CH"_3"COCH"_3` - ацетон. Кетоны часто называют по рациональной номенклатуре:  `"CH"_3"COCH"_3` - диметилкетон, `"CH"_3"COCH"_2"CH"_3` - метилэтилкетон и т. д.


              Физические свойства.

              Карбонильные соединения не образуют между собой водородных связей, поскольку в их молекулах нет атомов водорода с частичным положительным зарядом `delta+` на нём. Формальдегид – газ, остальные – жидкости или твёрдые вещества. Формальдегид, ацетальдегид и ацетон хорошо растворимы в воде, что можно объяснить установлением водородных связей между молекулами этих соединений и воды:

              Увеличение числа углеродных атомов в углеводородном радикале приводит к снижению растворимости  алифатических альдегидов и кетонов.


              Получение.

              1. Окисление спиртов (см. «Спирты», химические свойства, мягкое окисление).

              2. Гидратация алкинов (см. «Алкины», химические свойства, реакция Кучерова).

              3. Простейший кетон – ацетон – получают кумольным методом вместе с фенолом (см. «Фенолы», получение из кумола)

              4. Щелочной гидролиз геминальных (содержащих два галогена около одного углеродного атома) дигалогеналканов. Образующиеся неустойчивые диолы претерпевают самопроизвольную дегидратацию с образованием альдегидов, если гидроксильные группы оказались у концевого атома:

              `"CH"_3-"CH"_2-"CHCl"_2+2"NaOH"->`

              `->"CH"_3-"CH"_2-"CH"("OH")_2+2"NaCl"->`

              `->"CH"_3-"CH"_2-"CH"="O"+"H"_2"O"`

              и кетонов – в остальных случаях:

              5. Каталитическое дегидрирование спиртов (промышленный способ). Процесс осуществляется пропусканием паров спирта над медью, никелем или оксидом цинка. При дегидрировании первичных спиртов получают альдегиды,  вторичных – кетоны:

              $$ {\mathrm{CH}}_{3}-{\mathrm{CH}}_{2}\mathrm{OH}\underset{\mathrm{t}°}{\overset{\mathrm{Cu}}{\to }}{\mathrm{CH}}_{3}\mathrm{CH}=\mathrm{O}+{\mathrm{H}}_{2}\uparrow $$.

              6. Окисление углеводородов кислородом воздуха в присутствии катализаторов (промышленный метод для получения низших альдегидов и кетонов):

              $$ {\mathrm{CH}}_{4}+{\mathrm{O}}_{2}\stackrel{\mathrm{t}°}{\to }\mathrm{HCH}=\mathrm{O}+{\mathrm{H}}_{2}\mathrm{O}  (\mathrm{кат}. \mathrm{Cu} \mathrm{или} \mathrm{Ag})$$     

              `2"CH"_2="CH"_2+"O"_2->2"CH"_3"CH"="O"  ("кат".  "PdCl"_2  "и"  "CuCl"_2)`

              `2"CH"_3-"CH"="CH"_2+"O"_2->2"CH"_3"COCH"_3  ("кат".  "PdCl"_2  "и"  "CuCl"_2)`.

              7. Декарбоксилирование кальциевых или бариевых солей карбоновых кислот приводит к образованию кетонов:


              Химические свойства

              Характерными реакциями для альдегидов являются: нуклеофильное присоединение `"A"_"N"`, реакции окисления,  полимеризация и поликонденсация. Кетоны менее активны в реакциях `"A"_"N"`. Это объясняется тем, что у кетонов в молекуле не один, а два углеводородных радикала, присоединённых к карбонильной группе. Электронодонорные группы уменьшают `delta+` на атоме углерода карбонила, снижая реакционную способность кетонов в реакциях нуклеофильного присоединения. Кетоны  окисляются с большим трудом, при этом происходит расщепление углеродного скелета; они не реагируют c `"Cu"("OH")_2` и `["Ag"("NH"_3)_2]"OH"`. Кетоны не вступают в реакции полимеризации.

              Важнейшие реакции  `"A"_"N"`

              1. Присоединение циановодорода (нуклеофил - `"CN"^-`)

              `"CH"_3-"CH"="O"+"H"-"CN"->"CH"_3-"CH"("CN")-"OH"`.

              2. Реакция с гидросульфитом натрия (нуклеофил – ион `"SO"_3"Na"^-`)

              `"CH"_3-"CH"="O"+"NaHSO"_3->"CH"_3-"CH(OH)"-"SO"_3"Na"`. 

              Эта реакция позволяет не только обнаружить карбонильные соединения, но и выделить альдегиды и кетоны, поскольку сульфопроизводное выпадает в осадок в избытке гидросульфита.

              3. Взаимодействие со спиртами в присутствии каталитических количеств кислоты:

               

              4. Присоединение реактива Гриньяра. Галогеноводороды при взаимодействии с магнием в растворе абсолютного диэтилового эфира образуют магнийорганическое соединение или реактивы Гриньяра:

              `"R"-"X"+"Mg"->"R"-"Mg"-"X"`.

              Присоединение реактивов Гриньяра к карбонильным соединениям с последующим гидролизом промежуточных алкоголятов магния приводит к спиртам:


              5. Присоединение воды. Гидратация оксосоединений – обратимая реакция. Устойчивость образующихся гидратов определяется величиной `delta+` на атоме углерода группы  и её пространственным окружением. Так, формальдегид и трихлорацеталь гидратированы практически нацело, ацетальдегид – наполовину, а ацетон практически не гидратирован:

               

              Окислительно-восстановительные  реакции

              1. Гидрирование (восстановление) карбонильных соединений (см. «Спирты», получение). В лабораторных условиях для восстановления используют `"LiAlH"_4`.

              2. Реакция «серебряного зеркала»:

              $$\mathrm{R}-\mathrm{C}\mathrm{H}=\mathrm{O}+2[\mathrm{A}\mathrm{g}{\mathrm{N}\mathrm{H}}_{3}{}_{2}]\mathrm{O}\mathrm{H}\stackrel{\mathrm{t}°}{\to }{\mathrm{R}\mathrm{C}\mathrm{O}\mathrm{O}\mathrm{N}\mathrm{H}}_{4}+2\mathrm{A}\mathrm{g}\downarrow +3{\mathrm{N}\mathrm{H}}_{3}\uparrow +{\mathrm{H}}_{2}\mathrm{O}$$. 

              Выделяющееся серебро осаждается тонким слоем на стенках пробирки, образуя зеркальный налёт. Это – качественная реакция на альдегиды (формальдегид в этой реакции окисляется до  `"CO"_2`). Раньше эту реакцию использовали для изготовления зеркал, ёлочных игрушек. 

              3. Окисление гидроксидом меди (II) также является качественной реакцией на альдегиды. При нагревании свежеосаждённого `"Cu"("OH")_2` вначале образуется жёлтый осадок `"СuOH"`, который разлагается с образованием оксида меди (I) красного цвета:

              4. Окисление альдегидов раствором перманганата калия:

              а) в кислой среде:

              б) в щелочной среде:

              в) в нейтральной среде:

              Реакции поликонденсации и полимеризации

              1. Реакции полимеризации характерны для низших альдегидов:

              $$ {\mathrm{nH}}_{2}\mathrm{CO}\stackrel{\mathrm{кат}}{\to }[-{\mathrm{CH}}_{2}-\mathrm{O}-{]}_{\mathrm{n}}$$

              В результате реакции получается твёрдое вещество – пара-формальдегид. Кетоны не подвергаются полимеризации.

              2. Формальдегид вступает в реакцию поликонденсации с фенолом. В результате реакции каждая молекула формальдегида связывает между собой две молекулы фенола и происходит отщепление одной молекулы воды:

              Процесс поликонденсации протекает с образованием линейного полимера, в котором молекулы формальдегида присоединяются в орто-положение:

              Возможно образование и более сложных «сшитых» полимерных соединений.

               

            3. 4. Карбоновые кислоты
              Карбоновые кислоты

              - органические соединения, в молекулах которых содержится одна или несколько карбоксильных групп – `"COOH"`.

              По числу карбоксильных групп карбоновые кислоты делят на монокарбоновые, или одноосновные, дикарбоновые, или двухосновные и т. д. В зависимости от строения углеводородного радикала, с которым связана карбоксильная группа, карбоновые кислоты бывают

              алифатические:


              `"HCOOH"`  `"CH"_3-"CH"_2-"COOH"`     `"CH"_2="CH"-"COOH"` `"HOOC"-"COOH"`
              муравьиная   пропионовая     акриловая  щавелевая


              ароматические:   

                

              циклические:       

              Изомерия

              Возможны следующие виды изомерии:

              1. Изомерия углеродного скелета:

              2. Межклассовая изомерия кислот со сложными эфирами:

              3. У гетерофункциональных (содержат наряду с карбоксильной другие функциональные группы) кислот имеется изомерия, связанная с положением функциональной группы, например, существует `2` изомера у хлорпропионовой кислоты:

              4. Карбоновые кислоты, имеющие атом углерода, связанный с четырьмя различными заместителями, обладают оптической изомерией, например, существуют оптические изомеры у `α`-аминопропионовой кислоты:


              Номенклатура

              В основе названий  карбоновых кислот лежат названия соответствующих углеводородов. Наличие карбоксильной группы отражается суффиксом -ов, окончанием -ая и словом «кислота». Углеродную цепь нумеруют начиная с атома углерода карбоксильной группы, например:

              $$\stackrel{5}{\mathrm{C}}{\mathrm{H}}_{3}-\stackrel{4}{\mathrm{C}}{\mathrm{H}}_{2}-\stackrel{3}{\mathrm{C}}\mathrm{H}=\stackrel{2}{\mathrm{C}}\mathrm{H}-\stackrel{1}{\mathrm{C}}\mathrm{O}\mathrm{O}\mathrm{H}-пентен‐2‐овая \text{   }кислота.$$

              Для органических кислот чаще используют тривиальные названия, которые обычно указывают на источник выделения кислот, а не на химическую структуру.


              Физические свойства

              Первые  три члена гомологического ряда предельных одноосновных карбоновых кислот (муравьиная, уксусная и пропионовая) – жидкости, хорошо растворимые в воде. Средние представители этого гомологического ряда – вязкие «маслообразные» жидкости, начиная с `"C"_(10)` - твёрдые вещества.  Карбоновые кислоты имеют аномально высокие температуры кипения из-за наличия межмолекулярных водородных связей и существуют в виде циклических димеров:

              Между двумя молекулами могут образоваться две водородные связи, что и обуславливает сравнительно большую прочность ассоциатов. Образование водородных связей с молекулами воды объясняет растворимость кислот в этом растворителе, причём растворимость понижается с возрастанием молекулярной массы веществ, т. е. с увеличением в его молекуле углеводородного радикала (гидрофобного фрагмента).


               Получение

              Реакции окисления

              1. Окисление альдегидов (см. «Карбонильные соединения», химические свойства, реакции окисления).

              2. Окисление первичных спиртов (см. «Спирты», химические свойства, реакции окисления в жёстких условиях: сильные окислители, кислая среда, нагревание).

              3. Окисление алкинов (см. «Алкины», химические свойства, окисление подкисленным раствором `"KMnO"_4`).

              4. Окисление алкенов (см. «Алкены», химические свойства, жёсткое окисление: нагревание с подкисленным раствором `"KMnO"_4`).


              Реакции гидролиза

              1. Гидролиз галогензамещённых углеводородов

              При гидролизе тригалогенпроизводных  углеводородов `("R"-"CCl"_3)`, в молекулах которых атомы галогена находятся при одном и том же углеродном атоме, образуется неустойчивый триол `("R"-"C"("OH")_3)`, который претерпевает самопроизвольную дегидратацию с образованием карбоновой кислоты:

              `"CH"_3-"CH"_2-"CCl"_3+3"NaOH"->`

              `->"CH"_3-"CH"_2-"COOH"+3"NaCl"+"H"_2"O"`

              2. Гидролиз сложных эфиров (см. «Сложные эфиры», химические свойства»)

              3. Гидролиз ангидридов кислот (общая формула ангидридов `("RCO")_2"O"`)

              4. Гидролиз хлорангидридов карбоновых кислот:

              5. Гидролиз амидов (в кислой среде)

              6. Гидролиз нитрилов кислот. Использование нитрилов позволяет нарастить углеродную цепь на один атом:

              `"CH"_3-"CH"_2-"Br"+"NaCN"->"CH"_3-"CH"_2-"C"-="N"+"NaBr"`.

              Образующийся нитрил пропионовой кислоты при нагревании гидролизуется:

              `"CH"_3-"CH"_2-"C"-="N"+2"H"_2"O"->"CH"_3-"CH"_2-"COONH"_4`.

              Пропионовую кислоту получают при подкислении раствора пропионата аммония:

              `"CH"_3-"CH"_2-"COONH"_4+"HCl"->"CH"_3-"CH"_2-"COOH"+"NH"_4"CL"`.

              Суммарное  уравнение  гидролиза  в кислой среде выглядит следующим образом:

              `"CH"_3-"CH"_2-"C"-="N"+2"H"_2"O"+"HCL"->`

              `->"CH"_3-"CH"_2-"COOH"+"NH"_4"Cl"`.

              Использование реактивов Гриньяра и  `"CO"_2`

              `"R"-"MgBr"+"CO"_2->"R"-"COO"-"MgBr"`.

              Гидролиз образующегося промежуточного продукта минеральными кислотами даёт целевое вещество – карбоновую кислоту c числом атомов на один больше, чем в исходной молекуле реактива Гриньяра:

              `"R"-"COO"-"MgBr"+"H"_2"O"->"R"-"COOH"+"MgOHBr"`

              Специфические способы получения

              1. Муравьиную кислоту получают нагреванием `"CO"` с порошкообразным `"NaOH"` под давлением и обработкой полученного формиата натрия сильной кислотой:

              `"NaOH"+"CO"->"HCOONa"`;

              `2"HCOONa"+"H"_2"SO"_4->2"HCOOH"+"Na"_2"SO"_4`.

              2. Уксусную кислоту получают окислением бутана (см. «Алканы», химические свойства, окисления бутана кислородом воздуха).

              3. Бензойную кислоту получают окислением алкилбензолов (см. «Ароматические углеводороды», жёсткое окисление толуола).

              Химические свойства

              Кислотные свойства карбоновых кислот

              Если пропустить электрический ток через растворы уксусной и серной кислот с одинаковой концентрацией, то окажется, что раствор уксусной кислоты проводит электрический ток намного слабее. Это доказывает, что уксусная кислота является слабой кислотой. Карбоновые кислоты являются слабыми электролитами. Причём по мере повышения молекулярной массы степень их диссоциации понижается.  Только муравьиная кислота относится к кислотам средней силы.

              В водных растворах карбоновые кислоты диссоциируют на ионы:

              $$ \mathrm{RCOOH}\rightleftarrows {\mathrm{H}}^{+}+{\mathrm{RCOO}}^{-}$$.

              Однако равновесие этого процесса сдвинуто влево. Все карбоновые кислоты – слабые электролиты (`"HCOOH"`  – средней силы). Природа заместителя `"R"`  достаточно сильно влияет на силу кислот. Электронодонорные группы (алкильные группы и др.) повышают  электронную  плотность  на атоме углерода –`"COOH"` группы, уменьшают тем самым частично положительный заряд на нем. Следствием этого является уменьшение поляризации связи `"O"–"H"` (усиление её прочности) и ослабление силы кислоты. Электроноакцепторные группы (фтор, хлор, винил, фенил и др.) наоборот повышают кислотные свойства. Ниже представлен ряд кислот по мере возрастания кислотных свойств:

              Подобно минеральным кислотам, карбоновые кислоты реагируют с металлами, основными и амфотерными оксидами, основаниями, солями, вытесняя более слабые кислоты:

              `2"R"-"COOH"+"Zn"->("R"-"COO")_2"Zn"+"H"_2`

              `2"R"-"COOH"+"BaO"->("R"-"COO")_2"Ba"+"H"_2"O"`

              `"R"-"COOH"+"NaOH"->"R"-"COONa"+"H"_2"O"`

              `"R"-"COOH"+"NaHCO"_3->"R"-"COONa"+"H"_2"O"+"CO"_2`

              Поскольку карбоновые кислоты слабые, их соли в водном растворе легко гидролизуются:                                  

              $$ {\mathrm{CH}}_{3}\mathrm{COOK}+{\mathrm{H}}_{2}\mathrm{O}\rightleftarrows {\mathrm{CH}}_{3}\mathrm{COOH}+\mathrm{KOH}$$.

              Сильные неорганические кислоты вытесняют карбоновые кислоты из их солей:                    

              `2"CH"_3"COONa"+"H"_2"SO"_4->2"CH"_3"COOH"+"Na"_2"SO"_4`

              Взаимодействие ацетатов с сильной кислотой является качественной реакцией на ацетат-ионы. Признак её – появление запаха уксусной кислоты.


              Образование функциональных производных

              При замещении группы  – `"OH"` в молекулах карбоновых кислот на другие группы образуются функциональные производные кислот. Общим свойством всех функциональных производных является то, что они могут быть получены из карбоновой кислоты и вновь в неё превращены при гидролизе.

              1. Галогенангидриды получают действием галогенидов фосфора на кислоты:

              `"CH"_3"COOH"+"PCl"_5->"CH"_3"COCl"+"POCl"_3+"HCl"`

              • 2. Амиды кислот можно получить нагреванием соответствующих солей аммония:  

                $$ {\mathrm{CH}}_{3}{\mathrm{COONH}}_{4}\stackrel{\mathrm{t}°}{\to }{\mathrm{CH}}_{3}{\mathrm{CONH}}_{2}+{\mathrm{H}}_{2}\mathrm{O}$$

              Кроме того, амиды могут быть получены при взаимодействии хлорангидридов или сложных эфиров с аммиаком: 

              `"CH"_3"COCl"+2"NH"_3->"CH"_3"CONH"_2+"NH"_4"Cl"`

              `"CH"_3"COOCH"_3+"NH"_3->"CH"_3"CONH"_2+"CH"_3"OH"`

              3. Ангидриды кислот получают действием на кислоты водоотнимающих средств:

              4. Cложные эфиры образуются при нагревании кислоты и спирта в присутствии серной кислоты (обратимая реакция этерификации):

              5. Нитрилы кислот могут быть получены реакцией галогеналканов с цианидом щелочного металла (см. получение кислот, п. 6 ), а также при нагревании амидов:

              $$ {\mathrm{CH}}_{3}{\mathrm{CONH}}_{2}\stackrel{\mathrm{t}°}{\to }{\mathrm{CH}}_{3}\mathrm{CN}+{\mathrm{H}}_{2}\mathrm{O}$$

              Реакции с участием углеводородного радикала

              1. Галогенирование кислот в присутствии красного фосфора даёт `α`-галогензамещённые  кислоты:

              2. Непредельные карбоновые кислоты способны к реакциям присоединения по двойной связи:

              `"CH"_2="CH"-"COOH"+"H"_2`$$ \stackrel{\mathrm{Pt},t°,p}{\to }$$`"CH"_3-"CH"_2-"COOH"`


              `"CH"_2="CH"-"COOH"+"H"_2"O"`$$ \stackrel{{\mathrm{H}}^{+}}{\to }$$`"HO"-"CH"_2-"CH"_2-"COOH"`

              Последняя реакция протекает против правила Марковникова.

              3. Ненасыщенные карбоновые кислоты склонны к реакции полимеризации:

              Окислительно-восстановительные реакции

              Насыщенные карбоновые кислоты устойчивы к действию окислителей. Исключение составляет муравьиная кислота, которая вступает в реакцию «серебряного зеркала», реагирует с гидроксидом меди (II),  хлором и другими окислителями:

              `"HCOOH"+2["Ag"("NH"_3)_2]"OH"->2"Ag"+"NH"_4"HCO"_3+3"NH"_3+"H"_2"O"`

              `"HCOOH"+2"Cu"("OH")_2->"Cu"_2"O"+"CO"_2+3"H"_2"O"`

              `"HCOOH"+"Cl"_2->"CO"_2+2"HCl"`

              В атмосфере кислорода карбоновые кислоты сгорают до углекислого газа и воды. Реакция в общем виде для предельных одноосновных кислот выглядит таким образом:

              `"C"_n"H"_(2n+1)"COOH"+(3n+1)//2"O"_2->(n+1)"CO"_2+(n+1)"H"_2"O"`

              Восстановление карбоновых кислот до соответствующих спиртов идёт существенно труднее, чем альдегидов. Такие реакции возможны только под действием сильных восстановителей, например, используя алюмогидрид лития `("LiAlH"_4)` в безводном эфире.

              Превращение карбоновых кислот в алканы происходит в процессе электролиза:

              $$ 2{\mathrm{CH}}_{3}{\mathrm{CH}}_{2}\mathrm{COOK}+2{\mathrm{H}}_{2}\mathrm{O}\stackrel{\mathrm{электролиз}}{\to }$$

              $$\stackrel{электролиз}{\to }{\mathrm{C}\mathrm{H}}_{3}{\mathrm{C}\mathrm{H}}_{2}{\mathrm{C}\mathrm{H}}_{2}{\mathrm{C}\mathrm{H}}_{3}+2{\mathrm{C}\mathrm{O}}_{2}\uparrow +{\mathrm{H}}_{2}\uparrow +2\mathrm{K}\mathrm{O}\mathrm{H}$$

              Реакции декарбоксилирования

              При сплавлении солей карбоновых кислот со щелочами происходит разрыв связи `"C"-"C"` в углеродном скелете кислоты и отщепление карбоксильной группы:       

              $$ {\mathrm{C}}_{4}{\mathrm{H}}_{9}-\mathrm{COOK}+\mathrm{KOH}\stackrel{\mathrm{t}°}{\to }{\mathrm{C}}_{4}{\mathrm{H}}_{10}+{\mathrm{K}}_{2}{\mathrm{CO}}_{3}$$                  

              Прокаливание кальциевых или бариевых солей карбоновых кислот приводит к образованию кетона и карбоната металла (см. способы получения кетонов).

              Двухосновные карбоновые кислоты при нагревании легко отщепляют молекулу  `"CO"_2`:

              $$ \mathrm{HOOC}-{\mathrm{CH}}_{2}-{\mathrm{CH}}_{2}-\mathrm{COOH}\stackrel{\mathrm{t}°}{\to }{\mathrm{CH}}_{3}-{\mathrm{CH}}_{2}-\mathrm{COOH}+{\mathrm{CO}}_{2}\uparrow $$.


            4. 5. Сложные эфиры

              Среди функциональных производных карбоновых кислот особое место занимают

              сложные эфиры

              - производные карбоновых кислот, в молекулах которых атом водорода в карбоксильной группе замещён на углеводородный радикал. Общая формула сложных эфиров:    где  `R` и `R^'`- углеводородные радикалы.

              Номенклатура

              Названия сложных эфиров происходят от названий кислоты и углеводородного радикала, заместившего водород. В качестве корня используют название кислоты с суффиксом -ат, в виде приставки приводят название радикала:

                                

                           


              Изомерия сложных эфиров

              Для сложных эфиров характерна структурная изомерия

              а) изомерия кислотных и спиртовых радикалов: пропилацетат изомерен изопропилацетату,

              б) изомерия положения сложноэфирной группы в молекуле: пропилацетат изомерен этилпропионату и т. д.

              Межклассовая изомерия сложных эфиров уже упоминалась в разделе «Карбоновые кислоты».


              Физические свойства

              Сложные эфиры представляют собой в основном летучие бесцветные жидкости, нерастворимые в воде и обладающие сравнительно невысокими температурами кипения. Объясняется  это тем, что между молекулами сложных эфиров отсутствуют водородные связи. Сложные эфиры низших карбоновых кислот и низших спиртов имеют ароматные фруктовые запахи.


              Получение

              1. Реакцией этерификации (см. Химические свойства спиртов и карбоновых кислот).

              2. Взаимодействием функциональных производных карбоновых кислот (ангидридов, амидов, галогенангидридов) со спиртами:

              Химические свойства

              1. Гидролиз под действием воды – реакция обратная реакции этерификации:

              CH3COOC2H5+H2OH+CH3COOH+C2H5OH{\mathrm{CH}}_3{\mathrm{COOC}}_2{\mathrm H}_5+{\mathrm H}_2\mathrm O\overset{\mathrm H^+}\rightleftarrows{\mathrm{CH}}_3\mathrm{COOH}+{\mathrm C}_2{\mathrm H}_5\mathrm{OH}

              Для того, чтобы гидролиз протекал необратимо, его проводят в присутствии щелочи:   

              `"CH"_3"COOC"_2"H"_5+"NaOH"->"CH"_3"COONa"+"C"_2"H"_5"OH"` 

              2. Сложные эфиры реагируют с аммиаком, образуя амиды (см. «Карбоновые кислоты», химические свойства, получение амидов).

              3. Взаимодействие со спиртами (реакция переэтерификации):

              C6H5COOCH3+C2H5OHC6H5COOC2H5+CH3OH{\mathrm C}_6{\mathrm H}_5{\mathrm{COOCH}}_3+{\mathrm C}_2{\mathrm H}_5\mathrm{OH}\rightleftarrows{\mathrm C}_6{\mathrm H}_5{\mathrm{COOC}}_2{\mathrm H}_5+{\mathrm{CH}}_3\mathrm{OH}

              4. Сложные эфиры легко сгорают, образуя оксид углерода (IV) и воду:

              `"CH"_3"CH"_2"COOCH"_3+5"O"_2->4"CO"_2+4"H"_2"O"`

              Сложные эфиры широко распространены в природе. Приятный запах многих цветов и плодов в значительный степени обусловлен присутствием в них тех или иных сложных эфиров. Например, этиловый эфир масляной кислоты имеет запах ананасов, изоамиловый эфир уксусный кислоты – запах груши.

            5. 6. Жиры
              Жиры

              – сложные эфиры трёхатомного спирта глицерина и высших карбоновых кислот:

              где `R′, R′′, R′′′` – углеводородные радикалы.


              Карбоновые кислоты, входящие в состав жиров, называют жирными. Они содержат в молекуле от `10` атомов углерода и более,  иногда в составе жиров встречаются и более простые кислоты (масляная, капроновая). Молекулы жиров содержат остатки как предельных, так и непредельных кислот, имеющих чётное число углеродных атомов и неразветвленное строение. В основном, в состав жиров входят три кислоты – предельные пальмитиновая: `"CH"_3-("CH"_2)_(14)-"COOH"`, стеариновая `"CH"_3-("CH"_2)_(16)-"COOH"` и непредельная олеиновая: `"CH"_3-("CH"_2)_7-"CH"="CH"-("CH"_2)_7-"COOH"`.

              Строение простейших видов жиров было установлено благодаря трудам французских химиков Шевреля и Бертло. При нагревании жиров с водой в присутствии щёлочи они получили глицерин и карбоновые кислоты – стеариновую, олеиновую. На основании этих опытов был сделан вывод, что жиры образованы глицерином и высшими жирными кислотами. Позднее установлено, что в природных жирах присутствуют остатки не одной, а нескольких кислот. Позже доказано, что в жирах присутствуют остатки только линейных изомеров высших жирных кислот.

              Физические свойства

              Жиры, образованные предельными кислотами, – твёрдые вещества при комнатной температуре. Как правило, это жиры животного происхождения. Жиры, в составе которых есть непредельные кислоты,– жидкие, они называются маслами. Температура плавления жира зависит от его состава – чем больше в его составе предельных кислот, тем выше его температура плавления. Все жиры нерастворимы в воде и хорошо растворимы в органических растворителях.

              Получение

              Синтез жиров из глицерина и карбоновых кислот отвечает следующему уравнению:

               

              Химические свойства

              1. Гидролиз (омыление) жиров происходит под действием воды (обратимо) или щелочей (необратимо):

              При щелочном гидролизе образуются соли высших жирных кислот, называемые мылами.

              2. Гидрогенизация жиров – присоединение водорода к остаткам непредельных кислот, входящих в состав жиров. При этом жиры из жидких превращаются в твёрдые:

               

              3. Бромирование жиров. Так, для сложного эфира глицерина и олеиновой кислоты реакция обесцвечивания бромной воды записывается следующим образом:

              4. При длительном хранении под действием влаги, кислорода воздуха, света и тепла жиры приобретают неприятный запах и вкус. Этот процесс называется «прогорканием» и обусловлен появлением в жирах продуктов их превращения: свободных жирных кислот, гидроксикислот, альдегидов и кетонов.

              1. 7. Углеводы
                Углеводы

                 – важный класс бифункциональных органических соединений, состав которых обычно выражается общей формулой `"C"_m("H"_2"O")_n(m,n>=3)`. В зависимости от строения углеводы подразделяют на моносахариды, олигосахариды и полисахариды.

                Моносахариды – это углеводы, которые не гидролизуются с образованием более простых углеводов. 

                Олигосахариды –  продукты конденсации двух или нескольких моносахаридов.

                Полисахариды – природные высокомолекулярные вещества, образованные большим числом молекул моносахаридов.

                Моносахариды

                Состав

                В молекулах моносахаридов может содержаться от трёх до шести атомов углерода.  Моносахариды содержат функциональные группы: – `"OH"` и  `>"C"="O"`. Среди них есть альдегидоспирты (альдозы) и кетоноспирты (кетозы).

                Простейший моносахарид – глицериновый альдегид:

                 

                Остальные моносахариды по числу атомов углерода подразделяют не тетрозы `("C"_4"H"_8"O"_4)`, пентозы `("C"_5"H"_(10)"O"_5)` и гексозы `("C"_6"H"_(12)"O"_6)`. Ниже представлены примеры пентоз и гексоз:


                Строение моносахаридов

                Молекулы моносахаридов могут существовать не только в линейной (открытой), но и в циклической форме. Линейные молекулы вследствие вращения групп атомов вокруг простых связей `"C"-"C"` могут быть изогнуты в пространстве таким образом, что гидроксильная группа сблизится с атомом кислорода карбонильной группы, находящейся на противоположном конце молекулы. На предложенном рисунке изображены изогнутая открытая форма глюкозы и фруктозы:

                Функциональные группы – спиртовая и карбонильная –  взаимодействуют между собой: атом водорода `"OH"` – группы присоединяется к кислороду карбонила, а между первым атомом углерода `"C"(1)` (при циклизации глюкозы) и вторым `"C"(2)` (для фруктозы) и атомом кислорода образуется связь. Возникающая новая форма молекулы – шестичленный кислородсодержащий цикл (для глюкозы) и пятичленный (для фруктозы) –  не содержит альдегидную группу. Образовавшуюся гидроксильную группу, связанную с атомом углерода называют гликозидным гидроксилом (помечен звёздочкой):

                Гликозидный гидроксил может по-разному располагаться в пространстве. Это приводит к существованию двух циклических форм моносахаридов: альфа и бета. В `α`-форме гликозидный гидроксил и группа `"CH"_2"OH"` при `"C"(5)` находятся по разные стороны от плоскости кольца , а в `β`-форме  - эти группы находятся по одну сторону от плоскости кольца:

                В кристаллическом состоянии моносахариды находятся только в циклической форме (`α` или `β`), в водных растворах существует равновесие, которое сдвинуто в сторону циклических форм:

                Шестичленные циклы называются пиранозными, а пятичленные – фуранозными. Ниже представлен фуранозный цикл для `β`-рибозы (в данном случае гликозидный гидроксил  и группа `"CH"_2"OH"` при `"C"(4)` находятся по одну сторону от плоскости кольца):


                Физические свойства

                Глюкоза, фруктоза и рибоза – белые кристаллические вещества, обладающие сладким вкусом, хорошо растворимые в воде.


                Получение

                Углеводы являются очень распространёнными природными соединениями, входят в состав растений и живых организмов. В растениях они образуются в результате фотосинтеза: `n"CO"_2+m"H"_2"O"->"C"_n("H"_2"O")_m+n"O"_2`.


                Химические свойства глюкозы

                Реакции с участием альдегидной группы

                1. Глюкоза как альдегид обладает восстановительными свойствами и реагирует с аммиачным раствором оксида серебра (реакция «серебряного зеркала»), окисляясь при этом в соль глюконовой кислоты:

                CH2OH-(CHOH)4-COH+2Ag(NH3)2OHt°{\mathrm{CH}}_2\mathrm{OH}-(\mathrm{CHOH})_4-\mathrm{COH}+2\left[\mathrm{Ag}({\mathrm{NH}}_3)_2\right]\mathrm{OH}\xrightarrow{\mathrm t^\circ}

                t°CH2OH-(CHOH)4-COONH4+2Ag+3NH3+H2O\xrightarrow{\mathrm t^\circ}{\mathrm{CH}}_2\mathrm{OH}-(\mathrm{CHOH})_4-{\mathrm{COONH}}_4+2\mathrm{Ag}\downarrow+3{\mathrm{NH}}_3\uparrow+{\mathrm H}_2\mathrm O.

                2. Аналогично протекает окисление глюкозы свежеприготовленным гидроксидом меди (II) при нагревании до глюконовой кислоты:

                CH2OH-(CHOH)4-COH+2Cu(OH)2t°{\mathrm{CH}}_2\mathrm{OH}-(\mathrm{CHOH})_4-\mathrm{COH}+2\mathrm{Cu}(\mathrm{OH})_2\xrightarrow{\mathrm t^\circ}

                t°CH2OH-(CHOH)4-COOH+Cu2O+2H2O\xrightarrow{\mathrm t^\circ}{\mathrm{CH}}_2\mathrm{OH}-(\mathrm{CHOH})_4-\mathrm{COOH}+{\mathrm{Cu}}_2\mathrm O\downarrow+2{\mathrm H}_2\mathrm O.

                3. Глюкоза окисляется бромной водой до глюконовой кислоты:

                CH2OH-(CHOH)4-COH+Br2+H2O{\mathrm{CH}}_2\mathrm{OH}-(\mathrm{CHOH})_4-\mathrm{COH}+{\mathrm{Br}}_2+{\mathrm H}_2\mathrm O\rightarrow

                CH2OH-(CHOH)4-COOH+2HBr\rightarrow{\mathrm{CH}}_2\mathrm{OH}-(\mathrm{CHOH})_4-\mathrm{COOH}+2\mathrm{HBr}.

                4. Под действием водорода в присутствии катализатора альдегидная группа глюкозы восстанавливается в спиртовую группу, образуется шестиатомный спирт сорбит:

                CH2OH-(CHOH)4-COH+H2t°NiCH2OH-(CHOH)4-CH2OH{\mathrm{CH}}_2\mathrm{OH}-(\mathrm{CHOH})_4-\mathrm{COH}+{\mathrm H}_2\xrightarrow[{\mathrm t^\circ}]{\mathrm{Ni}}{\mathrm{CH}}_2\mathrm{OH}-(\mathrm{CHOH})_4-{\mathrm{CH}}_2\mathrm{OH}

                5. Окисление глюкозы разбавленной азотной кислотой (жёсткое окисление) приводит к образованию двухосновной глюкаровой кислоты:

                CH2OH-(CHOH)4-COH+2HNO3{\mathrm{CH}}_2\mathrm{OH}-(\mathrm{CHOH})_4-\mathrm{COH}+2{\mathrm{HNO}}_3\rightarrow

                HOOC-(CHOH)4-COOH+2NO+2H2O\rightarrow\mathrm{HOOC}-(\mathrm{CHOH})_4-\mathrm{COOH}+2\mathrm{NO}\uparrow+2{\mathrm H}_2\mathrm O.

                Глюкоза не вступает в некоторые реакции альдегидов, например, в реакцию c  `"NaHSO"_3`.

                Реакции с участием гидроксильных групп

                1. Образование гликозидов. При действии метилового спирта в присутствии газообразного хлороводорода с участием гликозидного гидроксила образуется простой эфир – метилгликозид:

                2. Образование простых и сложных эфиров. Простые эфиры образуются при взаимодействии избытка алкилгалогенидов со спиртами:

                Сложные эфиры глюкозы могут быть получены при взаимодействии глюкозы с карбоновыми кислотами и их функциональными производными: ангидридами и галогенангидридами кислот. При избытке ацилирующего агента все спиртовые группы молекулы переходят в сложноэфирные:

                3. С гидроксидом меди (II) без нагревания глюкоза реагирует как многоатомный спирт и даёт характерное синее окрашивание (качественная реакция на многоатомные спирты).

                Брожение

                1. Спиртовое брожение под действием дрожжевых ферментов:

                C6H12O6ферменты2C2H5OH+2CO2{\mathrm C}_6{\mathrm H}_{12}{\mathrm O}_6\xrightarrow{\mathrm{ферменты}}2{\mathrm C}_2{\mathrm H}_5\mathrm{OH}+2{\mathrm{CO}}_2\uparrow.

                2. Молочнокислое брожение с образованием молочной кислоты под влиянием молочнокислых бактерий:

                3. Маслянокислое брожение глюкозы приводит к образованию масляной кислоты:

                C6H12O6ферментыCH3-CH2-CH2-COOH+2CO2+2H2{\mathrm C}_6{\mathrm H}_{12}{\mathrm O}_6\xrightarrow{\mathrm{ферменты}}{\mathrm{CH}}_3-{\mathrm{CH}}_2-{\mathrm{CH}}_2-\mathrm{COOH}+2{\mathrm{CO}}_2+2{\mathrm H}_2\uparrow.

                Окисление глюкозы в живых системах

                В живых организмах большая часть (примерно `70%`) глюкозы подвергается окислению кислородом воздуха (реакция обратна процессу фотосинтеза):

                `"C"_6"H"_(12)"O"_6+6"O"_2->6"CO"_2+6"H"_2"O"+2816` кДж.

                Выделяющаяся энергия используется для обеспечения процессов жизнедеятельности организма (сокращение мышц, синтез белков и т. д.).


                Химические свойства фруктозы и рибозы

                Фруктоза обладает химическими свойствами многоатомных спиртов и кетонов. Как многоатомный спирт фруктоза даёт ярко-синее окрашивание с гидроксидом меди (II) без нагревания (см. хим. свойства  глюкозы), образует простые и сложные эфиры. При восстановлении карбонильной группы образуется шестиатомный спирт. В отличие от глюкозы фруктоза не окисляется аммиачным раствором оксида серебра (не вступает в реакцию «серебряного зеркала») и бромной водой.

                Поскольку рибоза является альдегидоспиртом, её химические  свойства аналогичны свойствам глюкозы.


                Дисахариды

                Состав и строение

                Дисахариды состоят из двух остатков моносахаридов. Циклические молекулы моносахаридов соединены друг с другом простой эфирной связью. Важнейшие дисахариды – сахароза, мальтоза и лактоза. Все они являются изомерами и имеют формулу  `"C"_(12)"H"_(22)"O"_(11)`.

                Молекула сахарозы состоит из двух циклов: шестичленного (остатка `α`-глюкозы в пиранозной форме) и пятичленного (остатка `β`-фруктозы в фуранозной форме):

                В молекуле сахарозы нет гликозидного гидроксила, поэтому её циклическая форма не может раскрываться и переходить в альдегидную форму. Сахароза не окисляется `"Cu"("OH")_2` и `["Ag"("NH"_3)_2]"OH"`, то есть является невосстанавливающим сахаром.

                В молекуле мальтозы остатки циклической глюкозы соединены между собой `1,4`-гликозидной связью, то есть в образовании связи участвуют гидроксильные группы первого углеродного атома одной молекулы (гликозидный гидроксил) и четвёртого – другой (спиртовой гидроксил):

                Мальтоза является восстанавливающим сахаром, поскольку один из остатков глюкозы сохранил гликозидный гидроксил.

                  

                Физические свойства.

                Все перечисленные дисахариды – твёрдые кристаллические вещества, хорошо растворимые в воде и сладкие на вкус.


                Химические свойства дисахаридов

                Определяются их строением.

                1, Все они гидролизуются в кислой среде. Так например, сахароза при нагревании в воде в присутствии минеральной кислоты образует глюкозу и фруктозу:

                C12H22O11+H2Ot°H+C6H12O6глюкоза+C6H12O6фруктоза{\mathrm C}_{12}{\mathrm H}_{22}{\mathrm O}_{11}+{\mathrm H}_2\mathrm O\xrightarrow[{\mathrm t^\circ}]{\mathrm H^+}\underset{\mathrm{глюкоза}}{{\mathrm C}_6{\mathrm H}_{12}{\mathrm O}_6}+\underset{\mathrm{фруктоза}}{{\mathrm C}_6{\mathrm H}_{12}{\mathrm O}_6},

                а мальтоза даёт только глюкозу:   

                C12H22O11+H2OH+2C6H12O6{\mathrm C}_{12}{\mathrm H}_{22}{\mathrm O}_{11}+{\mathrm H}_2\mathrm O\xrightarrow{\mathrm H^+}2{\mathrm C}_6{\mathrm H}_{12}{\mathrm O}_6.

                2, Восстанавливающие дисахариды (мальтоза, лактоза и др.) реагируют с окислителями по упрощённой схеме таким образом:

                C12H22O11+Ag2ONH3C12H22O12+2Ag{\mathrm C}_{12}{\mathrm H}_{22}{\mathrm O}_{11}+{\mathrm{Ag}}_2\mathrm O\xrightarrow{{\mathrm{NH}}_3}{\mathrm C}_{12}{\mathrm H}_{22}{\mathrm O}_{12}+2\mathrm{Ag}\downarrow

                C12H22O11+2Cu(OH)2t°C12H22O12+Cu2O+2H2O{\mathrm C}_{12}{\mathrm H}_{22}{\mathrm O}_{11}+2\mathrm{Cu}(\mathrm{OH})_2\xrightarrow{\mathrm t^\circ}{\mathrm C}_{12}{\mathrm H}_{22}{\mathrm O}_{12}+{\mathrm{Cu}}_2\mathrm O\downarrow+2{\mathrm H}_2\mathrm O

                3, Сахароза реагирует с гидроксидом кальция с образованием растворимого в воде вещества – сахарата кальция.

                4, Будучи многоатомным спиртом, сахароза даёт ярко-синее комплексное соединение – сахарат меди (II) при добавлении к её раствору медного купороса `("CuSO"_4*5"H"_2"O")`.

                Полисахариды

                Состав и строение

                Крахмал, а также целлюлоза относятся к третьей группе углеводов – полисахаридам. Общая формула полисахаридов `("C"_6"H"_(10)"O"_5)_n`. Все они состоят из циклических остатков глюкозы, различным образом соединённых друг с другом.

                Молекулы крахмала состоят из линейных и разветвлённых цепей, содержащих остатки `α`-глюкозы. Фрагмент линейной структуры крахмала:

                Линейная полимерная молекула (амилоза) свёрнута в спираль, куда могут вовлекаться другие молекулы, например, йода. Другая фракция крахмала (амилопектин) имеет разветвлённое строение, а её макромолекулы имеют шаровидную форму.

                Молекулы целлюлозы состоят из линейных цепей, содержащих остатки `β`-глюкозы:

                Основное отличие между крахмалом и целлюлозой заключается в структуре их молекул. Молекулы крахмала имеют линейную и разветвлённую структуру, молекулы целлюлозы – только линейную. Этим объяснятся то, что целлюлоза является основой волокон хлопка, льна и т. д., из которых производят ткани. Целлюлоза отличается от крахмала важным структурным параметром: она построена из β-формы глюкозидных звеньев, а крахмал – из `alpha`-формы. В первом случае считают, что между глюкозными звеньями имеется β-связь, а во втором – `alpha`-связь.

                Линейное строение макромолекул целлюлозы, удерживаемых относительно друг друга межмолекулярными водородными связями с участием гидроксильных групп, обеспечивает ей повышенную механическую прочность.


                Физические свойства.

                Крахмал представляет собой белый порошок, не растворимый в холодной воде. В горячей воде набухает, образует клейстер.  Целлюлоза – твёрдое волокнистое вещество, нерастворимое в воде.


                Химические свойства

                1, Крахмал и целлюлоза подвергаются гидролизу в кислой среде при нагревании:     

                C6H10O5n+nH2Ot°H+nC6H12O6{\left({\mathrm C}_6{\mathrm H}_{10}{\mathrm O}_5\right)}_n+n{\mathrm H}_2\mathrm O\xrightarrow[{\mathrm t^\circ}]{\mathrm H^+}\mathrm nC_6{\mathrm H}_{12}{\mathrm O}_6.                        

                Целлюлоза, в отличие от крахмала, не усваивается организмом, поскольку не подвергается ферментативному гидролизу. Она гидролизуется при длительном кипячении в водных растворах сильных кислот.

                2, Крахмал даёт интенсивное синее окрашивание с йодом – это качественная реакция на крахмал и на йод.

                3, Целлюлоза образует сложные эфиры с азотной кислотой, уксусной кислотой или уксусным ангидридом (это более сильное этерифицирующее средство, чем уксусная кислота):

                Если состав целлюлозы записать таким образом: `["C"_6"H"_7"O"_2("OH")_3]_n`, выделив три гидроксильные группы, которые участвуют в образовании сложноэфирных связей, то уравнение реакции примет вид:

                `["C"_6"H"_7"O"_2("OH")_3]_n+3n"HO"-"NO"_2->["C"_6"H"_7"O"_2("ONO"_2)_3]_n+3n"H"_2"O"`.

                4, Крахмал и целлюлоза не вступают в реакцию «серебряного зеркала».


              2. Список рекомендованной литературы
                1. Кузьменко Н.Е., Еремин В.В., Попков В.А. Начала химии, M.: Экзамен, 2013.
                2. Новошинский И.И., Новошинская Н.С. Органическая химия: учебник для 11(10) класса общеобразовательных учреждений. Углубленный уровень. М. «Русское слово», 2014.
                3. Карцова А.А., Лёвкин А.Н. Химия: 10 класс: учебник для учащихся общеобразовательных учреждений (профильный уровень). М. : Вентана-Граф, 2011.
                4. Цветков Л.А. Органическая химия: учебник для учащихся 10-11 классов общеобразовательных учебных заведений. М.: Гуманитарный издательский центр ВЛАДОС, 2012.
                5. Ардашникова Е.И., Казеннова Н.Б., Тамм М.Е. Курс органической химии для старшеклассников и поступающих в ВУЗы, М.: Аквариум, 1998.
                6. Кузьменко Н.Е., Еремина Е.А., Готовимся к экзамену по химии, М., Юнвес, 2003.
                7. Аргишева А.И., Задумина Э.А. Схемы химических превращений в органической и неорганической химии, Саратов: Издательство «Лицей», 2002.
                8. Кузьменко Н.Е., Еремин В.В. 1000 вопросов и ответов. Химия: Учебное пособие для поступающих в вузы. М.: Книжный дом «Университет», 2001.
              3. §1. Теория химического строения органических соединений А.М. Бутлерова

                Александр Михайлович Бутлеров - профессор Казанского университета, академик, создатель теории химического строения органических соединений. На основе этой теории предсказал и впервые синтезировал ряд новых соединений.  Понятие «химическое строение» в теории является ключевым. А. М. Бутлеров определял «химичес-кое строение» как последовательность соединения атомов в молекуле.

                Другим  значимым аспектом теории А. М. Бутлерова стало утверждение, что химическое строение веществ можно установить опытным путём  химическими методами и отразить в формуле.

                Основные положения теории А. М. Бутлерова

                отражены в следующем:

                1. Атомы в молекулах соединены друг с другом в определённой последовательности согласно их валентности.

                2. Свойства веществ зависят от вида и количества атомов, входящих в состав молекулы, а также от химического строения. Химическое строение определяет взаимное влияние атомов в молекуле.

                3. Химическое строение молекулы может быть установлено в результате изучения свойств вещества.

                Структуры органических соединений отображаются химическими формулами, в которых показан порядок соединения атомов в молекулах. Такие формулы называют формулами химического строения или структурными формулами.

                Структурные формулы отображают только последовательность соединения атомов, но не расположение их в пространстве.

                Каждая структурная формула отображает строение одной и той же молекулы пропана, т. к. последовательность соединения атомов в данном случае не изменяется.

                Структурные формулы веществ обычно изображают в сокращённом виде `"CH"_3-"CH"_2-"CH"_3`.  В сокращённых формулах чёрточки показывают связь атомов углерода друг с другом, но не показывают связи между атомами углерода и водорода. Начиная с бутана возможен различный порядок соединения атомов при одном и том же составе молекулы, т. е. в бутане атомы углерода могут располагаться в виде линейной и разветвлённой цепей.

                `"C"-"C"-"C"-"C"`                        

                В первом случае каждый атом углерода соединён с одним (если он концевой) или с двумя (если он находится внутри цепи) соседними атомами углерода; во втором случае – появляется атом углерода, соединённый с тремя соседними атомами углерода. Различному порядку связывания атомов при одном и том же качественном и количественном составе молекулы должны соответствовать разные вещества.

                Бутан линейного строения и изобутан различаются температурами кипения.

                `"CH"_3-"CH"_2-"CH"_2-"CH"_3`
                бутан (т. кип. `-0,5^@"C"`) изобутан (т. кип. `-11,7^@"C"`)
                Изомерами

                называют вещества, которые имеют одинаковый состав молекулы, но различное химическое строение.

                С увеличением числа атомов углерода в молекуле число возможных изомеров резко возрастает. Различия в химическом строении являются причиной проявления изомерами различных физико-химических свойств.

                Теория А. М. Бутлерова завоевала  признание. Значение теории химического строения А. М. Бутлерова можно сравнить с Периодическим законом и Периодической системой химических элементов Д. И. Менделеева.

                Для изображения электронного строения молекул используются электронные формулы (структуры Льюиса, октетные формулы).  При написании электронной формулы должно выполняться правило октета, согласно которому атом, участвуя в образовании химической связи (отдавая или принимая электроны), стремится приобрести электронную конфигурацию инертного газа - октет (восемь) валентных электронов. Исключение составляет атом водорода, для которого устойчивой является конфигурация гелия, т. е. два валентных электрона.

                Общую пару электронов иногда обозначают чёрточкой, которая и символизирует внутримолекулярную химическую связь: