Статьи , страница 12

  • Вся вселенная в числе Пи.
    • Число Пи - самая известная константа в математическом мире.
    • В эпизоде сериала Стар Трек «Волк в овчарне» Спок командует компьютеру из фольги «вычислить до последней цифры значение числа Пи».
    • Комик Джон Эванс однажды язвительно заметил: «Что Вы получите, если разделите окружность фонаря из тыквы с прорезанными отверстиями в виде глаза, носа и рта на его диаметр? Тыкву π!».
    • Учёные в романе Карла Сагана «Связь» пытались разгадать довольно точное значение числа Пи, чтобы найти скрытые сообщения от создателей человеческой расы и открыть людям доступ к "более глубоким уровням вселенских знаний".
    • Символ Пи (π) используется в математических формулах уже на протяжении 250 лет.
    • Во время знаменитого суда над О.Дж.Симпсоном возникли споры между адвокатом Робертом Бласиером и агентом ФБР о фактическом значении числа Пи. Задумано это всё было для того, чтобы выявить недостатки в уровне знаний агента госслужбы.
    • Мужской одеколон от компании Гивенчи, названный «Пи», предназначен для привлекательных и дальновидных людей.
    • Мы никогда не сможем с точностью измерить окружность или площадь круга, так как не знаем полное значение числа Пи. Данное «магическое число» является иррациональным, то есть его цифры вечно меняются в случайной последовательности.
    • В греческом («π» (piwas)) и английском («p») алфавитах этот символ располагается на 16 позиции.
    • В процессе измерений размеров Великой пирамиды в Гизе оказалось, что она имеет такое же соотношение высоты к периметру своего основания, как радиус окружности к ее длине, то есть 1/2π
    • В математике π определяется отношением длины окружности круга к его диаметру. Другими словами, π число раз диаметра круга равно его периметру.
    • Первые 144 цифры числа Пи после запятой заканчиваются цифрами 666, которые упоминаются в Библии как «число зверя».
    • Если рассчитать длину экватора Земли с использованием числа π с точностью до девятого знака, ошибка в расчетах составит около 6 мм.
    • В 1995 году Хирюки Гото смог воспроизвести по памяти 42 195 знаков числа Пи после запятой, и до сих пор считается действительным чемпионом в этой области.
    • Людольф ван Цейлен (род.1540 – ум.1610 гг.) провёл большую часть своей жизни над расчетами первых 36 цифр после запятой числа Пи (которые были назваными «цифрами Лудольфа»). Согласно легенде, эти цифры были выгравированы на его надгробной плите после смерти.
    • Уильям Шэнкс (род.1812-ум.1882 гг.) работал в течение многих лет, чтобы найти первые 707 цифр числа Пи. Как оказалось позже, он допустил ошибку в 527 разряде.
    • В 2002 году японский учёный просчитал 1,24 триллиона цифр в числе Пи с помощью мощного компьютера Hitachi SR 8000. В октябре 2011 года число π было рассчитано с точностью до 10.000.000.000.000 знаков после зяпятой
    • Так как 360 градусов в полном круге и число Пи тесно связаны, некоторые математики пришли в восторг, узнав, что цифры 3, 6 и 0 находится на триста пятьдесят девятом разряде после запятой в числе Пи.
    • Одно из первых упоминаний о числе Пи можно встретить в текстах египетского писца по имени Ахмес (около 1650 года до н. э.), известных сейчас как папирус Ахмеса (Ринда).
    • Люди изучают число π уже на протяжении 4000 лет.
    • В папирусе Ахмеса запечатлена первая попытка рассчитать число Пи по «квадратуре круга», которая заключалась в измерении диаметра круга по созданным внутри квадратам.
    • В 1888 году доктор по имени Эдвин Гудвин заявил, что он обладает «сверхъестественным значением» точной меры круга. Вскоре был предложен законопроект в парламенте, по принятию которого Эдвин мог бы опубликовать авторские права на свои математические результаты. Но этого так и не произошло - законопроект не стал законом, благодаря профессору математики в законодательном органе, которые доказал, что метод Эдвина привел к очередному неверному значению числа Пи.
    • Первый миллион знаков после запятой в числе Пи состоит из: 99959 нулей, 99758 единиц, 100026 двоек, 100229 троек, 100230 четвёрок, 100359 пятёрок, 99548 шестёрок, 99800 семёрок, 99985 восьмёрок и 100106 девяток.
    • День Пи отмечается 14 марта (выбран был по причине схожести с 3.14). Официальное празднование начинается в 1:59 после полудня, дабы соблюсти полное соответствии с 3/14|1:59.
    • Значение первых чисел в числе Пи после впервые правильно рассчитал одни из величайших математиков древнего мира, Архимед из Сиракуз (род.287 – ум.212 г. до н. э.). Он представил это число в виде нескольких дробей По легенде, Архимед был настолько увлечён расчетами, что не заметил, как римские солдаты взяли его родной город Сиракузы. Когда римский солдат подошел к нему, Архимед закричал по-гречески: «Не трогай моих кругов!». В ответ на это солдат заколол его мечом.
    • Точное значение числа Пи было получено китайской цивилизацией намного раньше, чем западной. Китайцы имели два преимущества по сравнению с большинством других стран мира: они использовали десятичную систему обозначения и символ нуля. Европейские математики как раз-таки наоборот не использовали символическое обозначение нуля в счетных системах до позднего средневековья, пока не вступили в контакт с индийскими и арабскими математиками.
    • Аль-Хорезми (основатель алгебры) упорно работал над расчетами числа Пи и добился первых четырёх чисел: 3,1416. Термин «алгоритм» происходит от имени этого великого среднеазиатского учёного, а из его текста Китаб аль-Джабер валь-Мукабала появилось слово «алгебра».
    • Древние математики пытались вычислить Пи, каждый раз вписывая полигоны с большим количеством сторон, которые намного теснее вписывались в площадь круга. Архимед использовал 96-угольник. Китайский математик Лю Хуэй вписал 192-угольник, и потом 3072-угольник. Цу Чун и его сыну удалось  вместить многоугольник с 24576 сторонами
    • Уильям Джонс (род.1675 – ум.1749) ввел символ «π» в 1706 году, который позднее был популяризирован в математическом сообществе Леонардо Эйлером (род.1707 – ум.1783).
    • Символ Пи «π» стал использоваться в математике лишь в 1700-х годах, арабы изобрели десятичную систему в 1000 г., а знак равенства «=» появился в 1557 году.
    • Леонардо да Винчи (род.1452 – ум.1519) и художник Альбрехт Дюрер (род.1471 – ум.1528) имели небольшие наработки по «квадратуре круга», то есть владели приблизительным значением числа Пи.
    • Исаак Ньютон рассчитал число Пи до 16 знаков после запятой.
    • Некоторые учёные утверждают, что люди запрограммированы для нахождения закономерностей во всём, потому что только так мы можем придать смысл всему миру и самим себе. И именно поэтому нас так привлекает "незакономерное" число Пи.
    • Число Пи также может упоминаться как «круговая постоянная», «архимедова константа» или «число Лудольфа».
    • В семнадцатом веке число Пи вышло за пределы круга и стало применяться в математических кривых, таких как арка и гипоциклоида. Произошло это после обнаружения, что в данных областях некоторые величины могут быть выражены через само число Пи. В двадцатом веке число Пи уже использовалось во многих математических областях, таких как теория чисел, вероятности и хаоса.
    • Первые шесть цифр числа Пи (314159) располагаются в обратном порядке, по крайней мере, шесть раз в числе первых 10 миллионов десятичных знаков после запятой.
    • Многие математики утверждают, что правильным будет такая формулировка: «круг - фигура с бесконечным количеством углов».
    • Тридцать девять знаков после запятой в числе Пи достаточно для вычисления длины окружности, опоясывающей известные космические объекты во Вселенной, с погрешностью не более чем радиус атома водорода.
    • Платон (род. 427 – ум.348 гг. до н. э.) получил довольно точное значение числа Пи для своего времени: √ 2 + √ 3 = 3,146.
  • Юных инженеров-участников фестиваля «От винта!» поддерживают лучшие танцоры страны

    Участники Международного фестиваля молодежного научно-технического творчества «От винта!», по приглашению Аллы Духовой побывали в Музыкальном Театре TODES. Творческий коллектив и молодых изобретателей связывает давнее сотрудничество, несмотря на разные сферы деятельности. К примеру, именно участники танцевального коллектива TODES помогали юным инженерам подготовиться к флеш-мобу «Молодежь за науку», который состоялся на открытии Фестиваля научно-технических знаний «ФаНТаЗия». Накануне руководитель знаменитого танцевального коллектива Алла Духова дала согласие войти в состав оргкомитета фестиваля «От винта!».

    «Мы очень благодарны за сотрудничество и творческую поддержку Алле Духовой и всем членам этого замечательного коллектива! Когда юных талантливых изобретателей, будущих инженеров поддерживают представители творческой элиты страны – это помогает им более гармонично развиваться и открывать в себе новые грани!», - отметила глава Координационного совета по развитию детского и молодежного научно-технического творчества СоюзМаш России, директор фестиваля «От винта!», член президиума общественной организации «Офицеры России» Виктория Соболева.

    В знак признательности за дружеское отношение, поддержку и многолетнее взаимодействие директор фестиваля «От винта!» и юные изобретатели, которые занимаются в ГБПОУ «Воробьевы горы», вручили благодарственный диплом Алле Духовой, а также подарок от космецевтического инкубатора, разработанный специалистами легендарного Московского косметического объединения «Свобода», наноцентра «Дубна» и МГУ имени М.В. Ломоносова.

    Напомним, Международный фестиваль молодежного научно-технического творчества фестиваль «От винта!» проводится с 2005 года. Организаторами выступают Координационный совет по развитию детского и молодежного научно-технического творчества Союза машиностроителей России и Общероссийская общественная организация «Офицеры России». Фестиваль проводиться при поддержке Министерства промышленности и торговли Российской Федерации, ОАО «Объединенная авиастроительная корпорация», холдинга «Вертолеты России», ФГУП «ЦАГИ» и ОАО «Авиасалон». Почетный Президент Фестиваля «От винта!» - Владимир Путин.

  • Российские учёные ускорили сверхпроводящую память в сотни раз

    Группа ученых из МФТИ и МГУ предложила принципиально новый тип ячеек памяти на основе сверхпроводников, способный работать в сотни раз быстрее своих ближайших аналогов.

    Подробнее:
    https://goo.gl/JkUpqL

  • ‘Nanospike’ in Glass Optical Fibers

    Silicon Windows dERLANGEN, Uk, 03 eighteen, 2016 -- Choosing device lgt to control a fabulous magnifying glaas optical fabric tapered into a astute phase reduced compared to a speck about airborne dust, in the center of optical fabric by means of some sort of ineffective foremost, is actually highlighted. Optical stresses reason this astute phase, or possibly “nanospike, ” to make sure you self-align located at center of all the ineffective foremost, entangling the software a great deal more and even more fervently inside the foremost coronary heart for the reason that device vitality accelerates. The latest succeed could possibly strengthen job applications just for hollow-core material, an exciting new quality about fabric that also includes a fabulous ineffective foremost as an alternative to a produced with a glass want normal optical material. Hollow-core staple fibers are specifically effective in treatment high-power lasers, having individuals often times great for device machining and additionally chopping about materials, pockets, wood made as well products.

    Fused Silica Wafer In making all the nanospike, all the study workers initiated with the usual single-mode magnifying glaas optical linens approximately 100 μm with length. All the fabric was first orthopedic in order that it might worked out in order to create a fabulous tapered aspect then all the fiber’s end seemed to be imprinted by means of hydrochloric chemical to manufacture a nanospike round 100 nm with length -- reduced versus wavelength about noticed lgt -- and additionally a lot less than 1 mm huge. All the nanospike was first appended into your ineffective foremost fabric as well as a high-power 1064-nm lazer premiered throughout the single-mode linens, setting up all the optical pitfall. When device light-weight went into all the tapered component of all the fabric the software did start to disseminate over all the nanospike into your unload breathing space throughout this ineffective foremost fabric. For the taper bought reduced and additionally reduced, all the lgt developed to help meaning all the border on the higher fabric foremost, inflicting all the lgt to help share back to the inside regarding this tapered fabric. This approach replicated lgt exerted a fabulous clockwork trigger within the nanospike, providing any optical pitfall. “Launching really large electric power device lgt right into a optical fabric, most definitely a fabulous hollow-core linens, are often complicated and additionally constantly will involve comprehensive consumer electronics and additionally optics to help keep place, ” articulated Philip Russell, home inside the Sloth Planck Company with the Knowledge about Lgt with Erlangen, Uk, and additionally tops about the analysis party.

    Sapphire Windows “This is established with the cutting edge model just by purely continuously pushing all the nanospike into your ineffective foremost thereafter arriving all the evice vitality slowly but surely. The moment the nanospike self-stabilizes, you’re able to simply turn in the device vitality and additionally almost nothing should push or possibly receive defective. “The nanospike is normally scheduled constantly in place through lgt located at precisely the most suitable spot for a properly unveil all the lgt into your ineffective foremost lacking almost any consumer electronics or possibly other sorts of platforms and keep the software on hand, ” Russell talked about. “If in either of the equipment push a bit, there’s basically no results within the device lgt as this nanospike self-aligns and additionally self-stabilizes. ” Roughly 3 percentage point on the device lgt was first copied on the nanospike to hollow-core linens, study workers talked about. “The natural splendor for the nanospike is normally so it plays its part such as minuscule particle, still while it is normally snugly placed on a great product connected with fabric located at a conclude, the software isn’t damaged or lost any time the software gets outside the hole, ” talked about Russell. “

    CaF2 Windows This model will allow for you to make sure you strategy stresses which might be usually very hard to make sure you gauge for other sorts of platforms, getting practical to make sure you experience of sort of elemental physics which usually isn’t wonderfully appreciated. ” Additionally correctly coupling high-power device light-weight to make sure you hollow-core staple fibers, the latest model provides an exclusively cutting edge solution to check all the clockwork stresses exerted by means of lgt, or possibly optomechanics, most definitely located at particularly small constraints. Whenever trying to review optomechanical stresses using superior void factors are hampered through habit about debris to make sure you increase outside of optical blocks like fresh air anxiety is normally below of by atmospheric tiers. The explanations for the leaning will not be well appreciated.

  • 55-я Выездная физико-математическая олимпиада

    Выездная физико-математическая олимпиада МФТИ ежегодно проводится в конце января - начале февраля студентами и аспирантами МФТИ, начиная с 1962 года во всех регионах страны. Физтех - единственный университет России, который организовывает столь масштабное международное мероприятие для школьников, дающее возможность получить льготы при поступлении.

    В этом году Выездная олимпиада продлится до 10 февраля, точную дату можно узнать у организаторов в вашем городе.

    Выездная олимпиада  —  отборочный этап олимпиад «Физтех», призеры и победители которого получают 100 баллов за ЕГЭ по математике и физике, а победители по физике  —  возможность поступить в МФТИ без вступительных экзаменов. При поступлении призеры и победители Выездной олимпиады получают до 2-х дополнительных баллов в портфолио, эти баллы могут оказаться решающими.

    Олимпиада проводится отдельно по математике и физике для 5-11 и 7-11 классов соответственно. На каждый предмет дается по 2 часа. Задачи подготовлены преподавателями и студентами МФТИ, по типу соответствуют задачам заключительного этапа олимпиад «Физтех».

    Во время Выездной олимпиады у школьников из разных городов есть возможность лично задать вопросы представителям МФТИ и узнать о жизни на Физтехе от физтехов.

    Чтобы принять участие в олимпиаде необходимо на сайте abitu.net  в событии олимпиады нажать в левой части «Принять участие» и выбрать точку проведения (ваш родной город или ближайший населенный пункт).

    ВНИМАНИЕ! Список городов будет пополнятся. В любой момент Вы можете изменить город проведения. Ориентировочно, список всех городов будет к середине января 2016. Если Вашего города нет в местах проведения, то Вы можете оставить заявку на создание точки в обсуждении данного события. Команда организаторов постарается учесть все пожелания.

    Следите, в каком ближайшем для вас городе будет проводится Выездная олимпиада, чтобы успеть принять в ней участие, регистрируйтесь на сайте abitu.net!

  • Нанобиотехнологи ИОФ РАН и МФТИ уместили высокоточный анализ крови в обычную тест-полоску

    Нанобиотехнологи из ИОФ РАН и МФТИ разработали новую биосенсорную тест-систему, основанную на применении магнитных наночастиц и предназначенную для очень точного измерения концентрации белковых молекул в различных образцах, включая непрозрачные или сильно окрашенные жидкости.

    Это улучшит работу с так называемыми «маркерами», которые указывают на начало или развитие заболеваний.

    Подробнее: https://goo.gl/kyarxe

  • Ученые из МФТИ признаны самыми цитируемыми в мире

    Всего в список самых цитируемых исследователей, составленный международной компанией Thomson Reuters, попало 3 126 человек из 21 области науки, среди которых выпускники и учёные Физтеха: Валерий Фокин, Вадим Черезов, Константин Новосёлов, Александр Баландин, Михаил Лукин.

    Цитируют и ценят исследования наших ученых в области химического синтеза и катализа, структурной биологии рецепторов, сопряжённых с G белком, электротехники, квантовой физики и других научно-технических направлений.

  • РОБОТники

    Журнал "Форбс" включил трех россиян в список специалистов моложе 30 лет, на идеях и разработках которых будет строиться наше будущее.

    Два студента и аспирант из Перми — авторы уже успевшего всем полюбиться робота-промоутера с горящими голубыми глазами-кругами.

    Молодые люди, младшему из которых всего 23 года, организовали целое производство автономного искусственного разума. Роботы не только рекламируют, выполняют роль администраторов, экскурсоводов, но и постоянно развиваются, запоминают информацию. Учёные говорят: благодаря таким сотрудникам скоро может появиться новый термин — рОботник, через букву о.  В общем, смотрите сами на сайте 1 канала http://www.1tv.ru/news/social/300267. 

    Вы тоже можете проявить себя и показать свои разработки на Международной конференции научно-технических работ школьников «Старт в Науку». Успейте подать заявку на официальном сайте конференции http://abitu.net/start до 1 февраля!

  • Новые разработки "Швабе" отмечены дипломами научной конференции

    На 58-й научной конференции МФТИ российские исследователи представили новейшие научные и технические разработки в области физической электроники.

    Результаты исследований в области космической фотосенсорики, фотоприемных устройств позволят дистанционно зондировать Землю и решать другие задачи, используя только отечественную методику и технику.

    Подробнее https://clck.ru/9hADH

  • Школьники сразились со студентами в хакатоне по конструированию и гонкам на беспилотниках в Университете машиностроения

    В Университете машиностроения прошел турнир «Гонки беспилотных автомобилей», в котором приняли участие команды студентов и старшеклассников. В ходе соревнований команды должны были собрать и запрограммировать беспилотный автомобиль. Участникам был предоставлен корпус машины, а также набор датчиков и компонентов, из которых нужно было сделать автомобиль-робот, умеющий ездить по узкому коридору, не врезаясь в препятствия. Турнир был разделен на этапы, каждый из которых приносил победные баллы: сборка «железа», настройка работы датчиков, езда по коридору и подключение задней скорости.

    Команды, сумевшие пройти все этапы, соревновались в прохождении трассы на скорость.

    Первое место заняла команда старшеклассников «ФМЛ 5», учащихся кружка спортивной робототехники МФТИ. Второе место – команда студентов Университета машиностроения, третье - команда Smart robot (Колледж приборостроения и информационных технологий).

    Участники соревнования выполняли задания с большим энтузиазмом, в том числе команда одной из московских школ, которая была вынуждена прервать участие в турнире из-за проводимой в воскресенье олимпиады.

    Турнир был организован Университетом машиностроения при всесторонней поддержке кружка спортивной робототехники МФТИ и лично его руководителя – Эдуарда Петренко.

  • Результаты сборной Росии

    Команду сборной России успешно выступила на международной естественнонаучной олимпиаде школьников и завоевала 4 золотых и 2 серебряных медали.

    В команду вошли:
    Станислав Крымский – золотая медаль (Санкт-Петербургский Академического университета – научно-образовательный центр нанотехнологий Российской академии наук);
    Владимир Голод – золотая медаль (№ 1329, г. Москва);
    Сергей Власенко – золотая медаль (школа с углубленным изучением отдельных предметов № 8, Воронеж);
    Ярослав Гребняк – золотая (лицей № 1557, Москва);
    Игорь Сивцев – серебряная медаль (лицей-интернат «Республиканский лицей», Якутия);
    Владимир Малиновский – серебряная медаль (лицей «АРИСТОС», Санкт-Петербург).

    Поздравляем ребят и желаем им дальнейших успехов!

  • Каннибализм среди кристаллов

    Кристаллы мембранных белков способны поедать более мелкие в процессе роста.

    Исследование процесса кристаллизации белков имеет огромное значение в медицине. Изучая то, как рассеивает рентгеновское излучение кристалл, мы способны получить структуру отдельного белка.
    Открытие группа биофизиков из МФТИ при участии иностранных коллег позволит ускорить процесс поиска лекарственных молекул, действующих на эти белки.

    Подробнее: https://mipt.ru/newsblog/lenta/bacteriorodopsin_cryst..

  • Университетские субботы

    5 декабря в 12:30 на базе МФТИ пройдет очередная открытая лекция в рамках цикла «Университетские субботы».

    На это раз речь пойдет об уникальных явлениях в области атмосферного электричества, о перспективах использования на благо человечества. Например, как альтернативного источника энергии.

    Во второй части встречи Вам будут продемонстрированы захватывающие физические опыты из различных разделов физики. Вы сможете не только наблюдать, но и сами принять непосредственное участие в их проведении.

    В стенах МФТИ всех школьников будут встречать студенты, которые с удовольствием ответят на все вопросы о поступлении и жизни на Физтехе.

    Ведущий лекции: Аланакян Юрий Робертович, доктор физико-математических наук, профессор.

    Предварительная регистрация обязательна и доступна по ссылке http://us.dogm.mos.ru/events-list/37/9460

  • Награждение на чемпионате WorldSkills Hi-Tech

    Университет машиностроения принял активное участие в чемпионате WorldSkills Hi-Tech 2015 в Екатеринбурге. Площадка II Национального чемпионата была выбрана местом официального вручения наград участникам российской сборной, показавшей выдающиеся результаты на мировом чемпионате WorldSkills в Бразилии в августе 2015 года. В состав российской сборной вошли два студента Университета машиностроения: Дмитрий Карасев (компетенция “Инженерная графика CAD”) и Иван Хохлов (“Электроника”). В эти выходные, на соревнованиях WorldSkills Hi-Tech 2015 в Екатеринбурге, Дмитрий Карасев и Иван Хохлов в числе других участников российской сборной получили награды из рук помощника Президента РФ Андрея Белоусова.

    Дмитрий Карасёв, чемпион России 2015 года, и недавний выпускник университета Илья Лаврененко приняли участие в WorldSkills Hi-Tech в компетенции “Инженерная графика CAD” под руководством экспертов: декана факультета информатики и систем управления Андрея Филипповича, экспертов WorldSkills по САПР Антона Толстикова и Евгения Петрова. В ходе соревнований Дмитрию Карасеву и Илье Лаврененко пришлось противостоять состоявшимся молодым профессионалам ведущих российских технологических компаний.

    Кроме того, представители университета участвовали в мероприятиях WorldSkills HiTech в рамках деловой программы. В экспертных круглых столах и дискуссиях приняли участие проректор по развитию Университета машиностроения Владимир Тимонин, директор по управлению образовательными программами Дмитрий Земцов, декан факультета информатики и систем управления Андрей Филиппович, декан транспортного факультета Пабло Итурральде, руководитель образовательной программы “Управление в технических системах” и национальный эксперт WorldSkills Андрей Крюков.

    В частности, проректор по развитию Владимир Тимонин принял участие в круглых столах «Кадровое обеспечение промышленного развития: ключевые вызовы и механизмы управления в опыте стран БРИКС. Презентация лучших практик» и  «Новое инженерное образование», а также, совместно с директором по управлению образовательными программами Дмитрием Земцовым, в круглом столе “Национальная технологическая инициатива: сквозная система подготовки кадров “От школьной скамьи до специалиста высокотехнологичной компании”. Университет машиностроения уделяет повышенное внимание работе со школьниками 12-14 лет: именно в этом возрасте наиболее эффективны профориентационные мероприятия, привлечение школьников к работе над реальными проектами под экспертным руководством представителей отрасли и с методологической поддержкой вуза.

    Университет машиностроения активно и всесторонне сотрудничает с движением WorldSkills. Университет первым интегрировал форматы и стандарты WorldSkills непосредственно в учебный процесс: так, в январе 2015 года студенты IT-направлений подготовки впервые сдали экспериментальный экзамен по методике WorldSkills.

    Кроме того, на базе Университета создан Центр компетенций WorldSkills, который играет важную роль в образовательном процессе: программы подготовки по прикладным инженерным дисциплинам перестраиваются в соответствии с международными стандартами и отраслевыми критериями качества образования.

  • Университет машиностроения принял участие в Форуме «Открытые инновации-2015»

    Университет машиностроения принял всестороннее участие в форуме «Открытые инновации-2015». На стенде Министерства образования и науки Российской Федерации были представлены разработки университета:

    - гоночный болид Iguana G8 2015 года,

    - электромотоцикл MIG Titan, победитель чемпионата Smartmoto Challenge-2015 в Барселоне,

    - проект развития кампуса Университета машиностроения,

    - биореактор Homunculus с технологией "Человек на чипе".

    Первый день работы форума 28 октября 2015 года был посвящен автоматизации и роботизации производства, новым материалам и развитию 3D-печати, достижениям современной инженерии.

    Стенд Минобрнауки России с представленными на нем разработками Университета машиностроения посетили помощник Президента Российской Федерации Андрей Фурсенко и директор Департамента науки и технологий Минобрнауки России Сергей Салихов, отметившие высокий уровень представленных разработок.

    Кроме того, 28 октября первый проректор Университета машиностроения Никита Анисимов и заведующий лабораторией трансляционных исследований Дмитрий Сахаров приняли участие в стратегической сессии "Исследовательская инфраструктура стран БРИКС", а также в пленарном заседании форума.

    На форуме «Открытые инновации» высокую оценку также получила разработка «Рука-сурдопереводчик»: Мэр Москвы Сергей Собянин вручил дипломы «Юный инноватор» 12 ученикам московских школ, чьи разработки имеют практическое значение для города. В число высоко оцененных проектов вошла рука-сурдопереводчик, которая умеет распознавать речь и переводить её на язык жестов. Сурдопереводчик ,был разработан студентом второго курса Университета машиностроения Александром Лениным совместно с одиннадцатиклассником из зеленоградской школы № 1739.

    30 октября работа форума «Открытые инновации» была посвящена образованию: новым моделям взаимодействия университетов и корпораций, мобильным технологиям и геймификации образования. Первый проректор Университета машиностроения Никита Анисимов принял участие в панельной дискуссии «Как взломать университет? Новые форматы высшего образования», а директор по управлению образовательными программами Дмитрий Земцов выступил в качестве модератора круглого стола «Новые сообщества изобретателей как двигатель прогресса».

  • В МФТИ состоялся традиционный осенний День карьеры

    Центр карьеры МФТИ провёл в эту пятницу ставшую уже традиционной ярмарку вакансий для студентов и аспирантов Физтеха. Число работодателей составило около 40. Помимо знакомства с различными компаниями, у участников была возможность пройти тест на профориентацию от лаборатории «Гуманитарных технологий» МГУ.

    «День карьеры» является ежегодным событием в сфере graduate recruitment. В качестве  работодателей выступают крупнейшие российские и международные компании и агентства. На выставке присутствуют представители администрации и общественных организаций Москвы и Московской области. За день выставку посещает около 1000 физтехов. Проект полностью проходит на площадке МФТИ.

  • На Физтехе подписан трёхсторонний меморандум о Глобальном альянсе лабораторий
    23 октября МФТИ, Физический институт им. Лебедева и Университет электрокоммуникаций (UEC, Токио, Япония) подписали меморандум о создании так называемого Global Alliance Laboratory  — Международного альянса лабораторий, который станет открытой площадкой для посещения института учёными, студентами и аспирантами со всего мира. 

    В каждом институте создаётся интернациональная лаборатория, которая по сути является рабочим местом для приезжающих в институт зарубежных учёных и студентов, что будет давать возможность беспрепятственно участвовать в коллаборациях между тремя институтами, облегчит процесс обмена студентами и будет способствовать развитию совместных теоретических и практических разработок.


    В руководящий комитет Альянса будут входить представители трёх институтов: проректор по научной работе МФТИ Тагир Аушев, директор Физического института им. Лебедева Николай Колачевский и президент по науке Национального университета электрокоммуникаций (Япония) Такаси Фукуда.


    Подписание меморандума состоялось в рамках международного договора о сотрудничестве между Московским физико-техническим институтом и Университетом электрокоммуникаций (договор подписан ректором МФТИ Николаем Кудрявцевым и президентом УЭК Макото Катджитани 23 июля 2012 года) и стало завершающим этапом Третьего международного семинара МФТИ по современной атомной, молекулярной и оптической физике.

  • Аспирант МФТИ стал финалистом Всероссийского нанотехнологического инженерного конкурса

    Аспирант кафедры нанометрологии и наноматериалов ФФКЭ МФТИ Степан Лисовский вышел в финал конкурса ВНИК со своим проектом катодолюминесцентной лампы бактерицидного ультрафиолета на основе наноматериалов. 

    Нанотехнологический инженерный конкурс в этом году проводится впервые и является частью Всероссийского инженерного конкурса, организованного Минобрнауки РФ по поручению президента России Владимира Путина. Прием заявок на конкурс начался 7 сентября. Ранее экспертная комиссия после рассмотрения заявок и видеотелефонных бесед с конкурсантами выбрала полуфиналистов.

    В Москву для очного представления своих проектов приехали студенты и аспиранты из десяти городов России. Все они в своих вузах ведут активную научную работу в сфере нанотехнологий и теперь перед представителями ФИОП РОСНАНО должны были рассказать о перспективах коммерциализации своих разработок.

    Технология, которую представил на конкурсе Степан Лисовский, не использует вредных для здоровья материалов, тогда как современные бактерицидные приборы содержат ртуть и обладают рядом других недостатков. Катодолюминесцентная лампа на основе уникального люминофора имеет хороший КПД и долгий срок службы (в отличие от ультрафиолетовых светодиодов). На базе данной разработки возможно создание портативных дезинфицирующих приборов.

    Финал Всероссийского нанотехнологического инженерного конкурса состоится 25 ноября в Троицком наноцентре. Там в ходе очного отбора будут определены три победителя. Они получат возможность в течение двух недель стажироваться в наноцентрах, использовать оборудование для проверки результатов исследований и консультироваться с ведущими экспертами в своей области.

  • «Мы пытаемся просканировать всю Россию, чтобы понять, какие новые области науки она нам несёт»

    Один из крупнейших издательских домов мира — издательство Elsevier, которое ежегодно выпускает около четверти всех статей из издаваемых в мире научных журналов, — встретился вчера в Климентовском переулке с научным сообществом Москвы и Московской области. Встреча была организована Московским физико-техническим институтом и проходила в его стенах — в корпусе в центре Москвы.


    Исполнительный директор по науке и технологиям Elsevier Ю-С Чи обозначил несколько больших позиций, по которым сейчас ведётся совместная с российским научным комплексом работа, и это, как отметил Чи, главные направления деятельности по увеличению заметности российской науки в мировом сообществе и по открытию новых научныхнаправлений в России.

       

    Одной из приоритетных позиций, обсуждаемых на встрече, была поддержка совместной работы над индексацией российских журналов в базе данных Scopus, которая сейчас является крупнейшей библиографической базой данных и инструментом для отслеживания цитируемости статей, опубликованных в научных изданиях. Особенность системы Scopusсостоит в том, что она индексирует научные источники, издаваемые на различных языках, при условии наличия у них англоязычных версий аннотаций. По состоянию на 2014 год более 300 российских журналов входит в базу данных Scopus, то есть мир уже получил доступ к исследованиям, которые проводятся в России. Но Ю-С Чи пообещал не останавливатьсяна достигнутом:


    «Мы обещаем включать в индекс каждый хороший журнал из России. Я прошу вас всех определить: что это за журналы, чтобы мы могли их оценить  сотни так сотни, тысячи  так тысячи. Но скажите, какие журналы хорошего качества, и мы оценим их на полном серьёзе».


    Инвестиции в аналитику контента

     

    Elsevier привлекает огромное количество экспертов для налаживания вопроса по поиску и систематизации данных, потому что понять, что же делать с таким большим количеством контента, — приоритетная и не самая легкая задача. Вполне очевидна ценность инвестирования в расширение доступа к информации, и любая страна, которая делает упор наинфраструктуру, а не на доступ к информации, ошибается:

    «Мы пытаемся просканировать с помощью автоматического поиска информации в тексте всю Россию — чтобы понять, какие новые области науки она нам несёт. И, что интересно, мы находим новые слова, выражения, такие как,например, устойчивое энергоснабжение. Вы понимаете? Мы теперь имеем возможность прогнозировать новые области исследования».


    Решение на государственном уровне

     

    Вопрос возможности формирования национальной лицензии 

    доступа к базе данных Elsevier  для всей России обсуждается с государственными чиновниками в Москве уже давно. Насегодня это довольно амбициозный проект, требующий заинтересованности со стороны российского правительства, поддержки Министерства образования и науки и, кончено, президента.

     

    «Я один из наиболее оптимистически настроенных поклонников России. Никаких политических заявлений я сейчас делать не буду, но стоимость обеспечения полного доступа для всех институтов России эквивалентна обслуживанию одного самолёта в год. Вполне очевидна ценность инвестирования в расширение доступа к информации. Надеюсь в следующий раз, когда мы с вами встретимся, новости будут о полном доступе всех институтов России к базе данных Elsevier».
  • МФТИ патентует высокочувствительные графеновые биосенсоры в США

    Московский физико-технический институт патентует биосенсорные чипы на основе графена, оксида графена и углеродных нанотрубок, которые позволят увеличить точность анализа биохимических реакций и ускорят поиск новых жизненно важных лекарственных средств.

    На днях американское патентное ведомство опубликовало заявку на патент №20150301039, поданную МФТИ в мае этого года. В заявке описаны «биологический сенсор и способ создания биологического сенсора». В России эта разработка уже защищена патентом №2527699 с приоритетом от 20 февраля 2013 года. Ключевой особенностью сенсора является использование в качестве связующего слоя тонкой пленки из нескольких слоев графена или оксида графена. Графен - это первый истинно двумерный кристалл экспериментально полученный в лабораторных условиях, обладающий уникальными физико-химическими свойствами. В 2010 году выпускникам МФТИ Андрею Гейму и Константину Новоселову была присуждена Нобелевская премия по физике за “передовые опыты с двумерным материалом - графеном”. В настоящее время наблюдается взрывной рост исследований, направленных на поиск  коммерческих приложений для графена и других двумерных материалов. В рамках только одного европейского проекта “The Graphene Flagship” на эти цели выделено финансирование в размере 1 млрд. евро. Во всем мире открываются новые технологические компании в продуктах которых используются двумерные материалы, а такие гиганты, как Apple и Samsung, активно скупают патенты на графеновые технологии. По сообщению агентства Bloomberg, графен станет одним из основных инструментов борьбы этих корпораций за первенство на рынке мобильных технологий. При этом одним из наиболее перспективных применений графена рассматриваются биомедицинские технологии, над чем и работают исследователи из лаборатории нанооптики и плазмоники центра наноразмерной оптоэлектроники МФТИ.

    Схематичное изображение поперечного сечения графенового биосенсорного чипа из заявки US Patent Application No. 20150301039 (Oct 2015)

    Безметковые биосенсоры сравнительно недавно появились в лабораториях биохимиков и фармацевтов, значительно облегчив и упростив их работу. Эти сенсоры позволяют обнаруживать малые концентрации биологически важных молекулярных объектов (РНК, ДНК, белки, включая антитела и антигены, вирусы и бактерии) и исследовать их химические свойства. В отличие от других биохимических методов, для работы биосенсоров не нужно использовать флуоресцентные или радиоактивные метки-маркеры, что упрощает проведение эксперимента, а также снижает вероятность получения ошибочных данных, связанную с влиянием меток на прохождение биохимических реакций. Основными областями применения данной технологии являются фармацевтические и научные исследования, медицинская диагностика, контроль качества продуктов питания и обнаружение токсинов. Безметковые биосенсоры уже зарекомендовали себя, как средство получения максимально информационно полных и надежных данных о фармакокинетике и фармакодинамике лекарственных средств на стадии доклинических исследований. Преимущества данного метода объясняются тем, что кинетика прохождения биохимических реакций лиганда (действующего вещества) с различными мишенями может наблюдаться в режиме реального времени, что позволяет наиболее точно извлечь данные о скорости прохождения реакции, что было недоступно ранее. Эти данные в свою очередь представляют собой информацию об эффективности действия лекарственного средства, а также об его токсичности, в случае, если в качестве мишеней рассматриваются «здоровые» клетки или их части, на которые лекарство в идеальном случае не должно воздействовать.

    Работа большей части безметковых биосенсоров основана на использовании спектроскопии поверхностного плазмонного резонанса. Параметры “резонанса” зависят от свойств поверхности настолько сильно, что даже ничтожные количества «постороннего» вещества заметно на них влияют. Биосенсоры в состоянии обнаружить присутствие триллионных долей грамма детектируемого вещества на площадке в квадратный миллиметр.

    Коммерческие приборы такого типа продаются в формате «принтер-картридж». «Принтером» является сам биосенсор, включающий в себя оптическую часть, микрофлуидику и электронику. «Картриджами» или расходными материалами для биосенсоров являются сенсорные чипы, включающие в себя стеклянную подложку, тонкую золотую пленку и связующий слой для адсорбции биомолекул. Существующие сейчас сенсорные чипы используют две технологии связующих слоев, которые появились более 20 лет назад и основаны либо на слое самособирающихся тиоловых молекул, либо слое гидрогеля (чаще всего это карбоксиметилированный декстран). При этом прибыль, получаемая компаниями от продаж биосенсоров и расходных материалов к ним, распределяется в соотношении 50:50.

    Авторы патента, Алексей Арсенин и Юрий Стебунов, предлагают альтернативу существующим сенсорным чипам для биосенсоров на основе поверхностного плазмонного резонанса. При определенных условиях использование графена или оксида графена в качестве связующего слоя между металлической пленкой и биологическим слоем, включающим в себя молекулы-мишени позволяет существенным образом улучшить чувствительность биодетектирования. Графеновые сенсорные чипы были протестированы на биосенсорах Biacore™ T200 (General Electric Company) и BiOptix 104sa.

    Использование сенсорных чипов на основе оксида графена для анализа реакции гибридизации ДНК подробно описано в недавней работе авторов разработки в журнале Американского химического общества ACS Applied Materials & Interfaces. Помимо более высокой чувствительности, по сравнению с коммерческими аналогами, предложенные сенсорные чипы обладают необходимым свойством биоспецифичности и могут быть использованы многократно, что сильно снижает издержки на проведение биохимических исследований с их помощью.

    Использование графена позволяет повысить чувствительность проводимых с помощью спектроскопии поверхностного плазмонного резонанса анализов в десятки раз, что приведет к революции в области фармацевтического биодетектирования. Применение биосенсоров в настоящее время ограничено анализом биологических препаратов, основанных на крупных молекулах, в то время как более половины ежегодно выпускаемых лекарственных препаратов имеют низкую молекулярную массу (не более нескольких сотен дальтон). Осаждение лекарственных мишеней на поверхность графенового чипа делает возможным тестирование взаимодействия мишеней с малыми молекулами. Примером может служить разработка лекарственных препаратов, воздействующих на рецепторы, сопряженные с G-белками (GPCR), которые на данный момент являются мишенью для 40% выпускаемых на рынке лекарств. При этом сейчас фармацевтические исследования лекарственных средств, воздействующих на GPCR не проводятся с использованием биосенсоров на основе явления поверхностного плазмонного резонанса по причине недостаточной чувствительности метода. В результате ожидается, что использование графеновых биосенсоров в фармацевтических исследованиях  позволит ускорить разработку лекарств и победить опасные заболевания, найти защиту от которых не получается средствами, имеющимися на сегодняшний день у фармакологов.

    “Допустим, мы хотим узнать эффективность лекарства от рака. В случае, если лекарство связывается с белком-мишенью на раковой клетке, то оно деактивирует дальнейшее развитие опухоли. Но, чтобы оценить действенность анализируемого препарата - необходимо понять насколько сильно оно связывается с ней” - говорит Юрий Стебунов, один из авторов разработки. Помещая на поверхность графенового чипа белки клеток раковой опухоли наряду с белками из легких, сердца, мозга и других здоровых тканей организма можно отобрать действующие лекарственные кандидаты и оценить их эффективность.

    «Еще несколько лет назад считалось, что финансирование исследований в области графена – это вложения в фундаментальную науку. Сегодня эти исследования перешли в стадию прикладных инновационных разработок, и наши графеновые биосенсоры - отличное тому подтверждение. В перспективе это не просто новый продукт на рынке, а вклад в развитие российской фармацевтики в части разработки новых лекарственных средств и создания высокотехнологичного медицинского оборудования. Пока наши разработки финансируются только Министерством образования и науки РФ, но мы уверены, что достигнутые успехи позволят привлечь дополнительное внешнее финансирование» - говорит Алексей Арсенин, соавтор разработки.

    Авторы продолжают работу над совершенствованием своей разработки и ожидают, что для определенных реакций биосенсорные чипы на основе новых углеродных материалов обеспечат чувствительность в десятки и сотни раз большую, чем существующие коммерческие аналоги. Также они рассматривают возможность коммерциализации графеновых чипов. Только в 2014 году на доклинические исследования было потрачено около 10 млрд. долларов США. По оценкам суммарный годовой рынок биосенсорных чипов составляет около 300 млн. долларов США. Отличные характеристики графеновых биосенсорных чипов позволяют рассчитывать на серьезную конкуренцию с существующими типами чипов - вплоть до одной трети всего рынка.