Статьи , страница 5

  • 11. Возвратные уравнения.


    определение

    Уравнение вида `ax^4+bx^3+cx^2+-bx+a=0` называется возвратным.

    Чтобы его решить, надо вынести за скобку `x^2`. Тогда выражение в скобке приведётся к квадратному уравнению относительно

    `ax^4+bx^3+cx^2+-bx+a=0hArrx^2(ax^2+bx+c+-fracbx+fraca{x^2})=0hArrx+-frac1x`:

    `a(x^2+frac1{x^2}+2-2)+b(x+-frac1x)+c=0`.

    При этом,

    `ax^4+bx^3+cx^2-bx+a=0hArra(x-frac1x)^2+b(x-frac1x)+(c+2a)=0`

    `ax^4+bx^3+cx^2+bx+a=0hArra(x+frac1x)^2+b(x+frac1x)+(c-2a)=0`


    Пример 20

    Решите уравнение `t^4+8t^3+6t^2-8t+1=0`.


    Решение

    Уравнение является возвратным. Вынесем за скобку `t^2`, а затем оставшееся выражение в скобке группировкой сведется к квадратному трёхчлену: 

    `t^2(t^2+8t+6-frac8t+frac1{t^2})=0hArrt^2+frac1{t^2}+8t-frac8t+6=0hArr`

    `(t^2-2+frac1{t^2})+8(t-frac1t)+8=0hArr(t-frac1t)^2+8(t-frac1t)+8=0hArr`

    t-1t=-4±22t2+22-2t-1=0,t2+22+2t-1=0t=-2-2±7-42,t=-2+2±7+42t-\dfrac1t=-4\pm2\sqrt2\Leftrightarrow\left[\begin{array}{l}t^2+2\left(2-\sqrt2\right)t-1=0,\\t^2+2\left(2+\sqrt2\right)t-1=0\end{array}\Leftrightarrow\left[\begin{array}{l}t=-\left(2-\sqrt2\right)\pm\sqrt{7-4\sqrt2},\\t=-\left(2+\sqrt2\right)\pm\sqrt{7+4\sqrt2}\end{array}\right.\right.

    Ответ

     2-2±7-42,  -2-2±7+42\sqrt2-2\pm\sqrt{7-4\sqrt2},\;\;-2-\sqrt2\pm\sqrt{7+4\sqrt2}.




  • Уравнение вида `sqrt{ax+b}=cx+d`

    Это уравнение можно решать стандартным способом. Но иногда ответить на поставленный вопрос помогает график. Уметь строить эскизы левой и правой частей уравнения `sqrt{ax+b}=cx+d` очень полезно. Графическая интерпретация решения такого уравнения помогает быстро решить некоторые задачи ЕГЭ.

    Пример 19

    Какое утверждение

    1) уравнение имеет два корня одного знака (оба корня или положительны, или отрицательны);

    2) уравнение имеет только один корень, и он отрицателен;

    3) уравнение имеет два корня разных знаков;

    4) уравнение имеет только один корень, и он положителен;

    верно по отношению к корням уравнения `sqrt{x+4}=3(x+1)`?


    Решение

    Для ответа на поставленный вопрос не обязательно решать уравнение. Часто достаточно аккуратно начертить эскизы левой и правой частей.

    На оси надо отметить точки пересечений полупараболы и прямой с осями координат. Из рисунка ясно, что пересечение графиков происходит на отрицательной полуоси – это обеспечивается тем, что прямая пересекает ось `Ox` правее, а ось `Oy` выше полупараболы.

    Ответ

    `2`.

  • Уравнения вида `sqrt{f(x)}=sqrt{g(x)}`

    В ОДЗ обе части неотрицательны, и возведение в квадрат даёт равносильное в ОДЗ уравнение `f(x)=g(x)`. Поэтому 


    f(x)=g(x)f(x)0,f(x)=g(x).g(x)0,f(x)=g(x).\sqrt{f(x)}=\sqrt{g(x)}\Leftrightarrow\left\{\begin{array}{l}f(x)\geq0,\\f(x)=g(x).\end{array}\Leftrightarrow\left\{\begin{array}{l}g(x)\geq0,\\f(x)=g(x).\end{array}\right.\right. (УРК2)

    Пример 18

    Найдите сумму квадратов всех корней уравнения x2-3x=4x-10\sqrt{x^2-3x}=\sqrt{4x-10}.

    Решение

    x2-3x=4x-104x-100,x2-3x=4x-102x5,x2-7x+10=0x=7±32 x=5  x2=25.\begin{array}{l}\sqrt{x^2-3x}=\sqrt{4x-10}\Leftrightarrow\left\{\begin{array}{l}4x-10\geq0,\\x^2-3x=4x-10\end{array}\right.\Leftrightarrow\\\left\{\begin{array}{l}2x\geq5,\\x^2-7x+10=0\Leftrightarrow x=\dfrac{7\pm3}2\end{array}\right.\Leftrightarrow\;x=5\;\Rightarrow\;x^2=25.\end{array}

    Ответ

    `25`.

    При таком способе решения достаточно проверить неотрицательность одной из функций – можно выбрать более простую функцию.

    Рекомендация

    При решении уравнений ОДЗ пишем, но не находим, т. к. решение неравенств, определяющих ОДЗ, часто требует даже больше усилий, чем решение самого уравнения. Поэтому не надо тратить на это время.

    1. Если при решении уравнения использовались только равносильные преобразования, то найденные корни достаточно подставить в ОДЗ. Если они принадлежат ОДЗ, то являются решениями уравнения.
    2. Если при решении уравнения не следить за равносильностью преобразований, то после нахождения корней надо сделать проверку. Можно сначала подставить их в ОДЗ – если они не принадлежат ОДЗ, то не являются решениями уравнения, но, если принадлежат ОДЗ, то это ещё не значит, что они являются решениями уравнения – их надо теперь подставить в само уравнение.

    Это была рекомендация, полезная при решении большинства уравнений, но, конечно, бывают исключения, когда изучение ОДЗ сразу приводит к решению.




  • Уравнения вида $$\sqrt{f(x)}=g(x)$$

    При решении уравнений этого вида очень многие школьники, прежде всего, находят ОДЗ: `f(x)>=0`, затем решают получившееся квадратное уравнение, проверяют после нахождения решений условие  и успокаиваются. Ответ может оказаться неверным. Почему? Потому что могут появиться “лишние” корни. Почему? Потому, что после возведения в квадрат решаются сразу два уравнения: f(x)=g(x)\sqrt{f(x)}=g(x) и f(x)=-g(x)\sqrt{f(x)}=-g(x), но на разных промежутках числовой оси: f(x)=g(x)\sqrt{f(x)}=g(x) – там, где `g(x)>=0`, и f(x)=-g(x)\sqrt{f(x)}=-g(x) – там, где `g(x)<=0`. “Лишние” корни – это корни второго уравнения, геометрически это пересечение графика функции `y=g(x)` с графиком функции `y=-sqrt{f(x)}`. 

    Как быть?

    Дело в том, что обе части любого уравнения всегда можно возвести в квадрат, но при этом может получиться неравносильное уравнение, а, значит, могут появиться посторонние корни. В нашем случае получится уравнение `f(x)=g^2(x)`, при этом очень важно, что ОДЗ уравнения выполняется автоматически – поэтому при таком способе решения не надо тратить энергию на решение неравенства `f(x)>=0`!

    Заметим, что уравнение `sqrt{f(x)}=g(x)` может иметь решение для `g(x)>=0`, но не имеет решений, если `g(x)<0`.

    Вспомним, что, если `f(x)>=0`, `g(x)>=0`. то `f(x)=g(x)hArrf^2(x)=g^2(x)`.

    Так как уравнение `sqrt{f(x)}=g(x)` может иметь решение лишь при условии `g(x)>=0` (т. е. обе части в ОДЗ уравнения неотрицательны), то 

    f(x)=g(x)f(x)=g2(x)g(x)0.\sqrt{f(x)}=g(x)\Leftrightarrow\left\{\begin{array}{l}f(x)=g^2(x)\\g(x)\geq0.\end{array}\right.                 (УРК1)

    Это очень важное условие равносильности.

    Во-первых, оно освобождает от необходимости исследовать, а после нахождения решений и проверять условие `f(x)>=0` – неотрицательности подкоренного выражения, т. к. это условие выполняется автоматически.

    Во-вторых, акцентирует внимание на проверке условия `g(x)>=0`  неотрицательности правой части – это условие “отсекает” посторонние корни – корни уравнения `-sqrt{f(x)}=g(x)`. При этом сначала решается уравнение, а затем найденные корни подставляются в неравенство. Неравенство (за редким исключением, когда корни “плохие”) заранее решать не надо.

    Наше условие равносильности особенно полезно при решении тригонометрических уравнений, в которых нахождение ОДЗ связано с решением тригонометрических неравенств, что гораздо сложнее, чем решение тригонометрических уравнений. Проверку в тригонометрических уравнениях даже условия `g(x)>=0` не всегда просто сделать.

    Замечание. При решении любых уравнений, где есть хотя бы один неравносильный переход, надо делать проверку, подставляя найденные корни в исходное уравнение!

    Пример 16

    Решите уравнение `sqrt{2x^2-8x+9}=x-1`.

    Решение

    2x2-8x+9=x-1x-10,2x2-8x+9=x2-2x+1x=2,x=4.\sqrt{2x^2-8x+9}=x-1\Leftrightarrow\left\{\begin{array}{l}x-1\geq0,\\2x^2-8x+9=x^2-2x+1\Leftrightarrow\left[\begin{array}{l}x=2,\\x=4.\end{array}\Rightarrow\right.\end{array}\right.

    Ответ

    `2`; `4`. В этом примере не оказалось лишних корней.

    Пример 17

    `sqrt{2x^3+2x^2-3x+3}=x+1`.

    Решение

    Видно, что важным при решении является условие `x+1>=0`, 
    а ОДЗ корня искать не надо, да и найти трудно.

    2x3+2x2-3x+3=x+1x+10,2x3+2x2-3x+3=x2+2x+1x+10,2x3+x2-5x+2=0x+10,(x-1)(x+2)x-12=0x=1,12.\begin{array}{l}\sqrt{2x^3+2x^2-3x+3}=x+1\Leftrightarrow\left\{\begin{array}{l}x+1\geq0,\\2x^3+2x^2-3x+3=x^2+2x+1\end{array}\Leftrightarrow\right.\\\Leftrightarrow\left\{\begin{array}{l}x+1\geq0,\\2x^3+x^2-5x+2=0\end{array}\Leftrightarrow\left\{\begin{array}{l}x+1\geq0,\\(x-1)(x+2)\left(x-\dfrac12\right)=0\end{array}\Leftrightarrow x=\left[\begin{array}{l}1,\\\dfrac12.\end{array}\right.\right.\right.\end{array}

    Любопытно, что `x=-2` принадлежит ОДЗ корня `(-16+8+6+3>0)`, но не является решением, т. к. для него не выполнено условие `x+1>=0`.

    Ответ

    `0,5;  1`.



  • Уравнения вида $$\alpha^2\sqrt{x+a}+\beta^2\sqrt{x+b}=\mathbf{const}.$$ Монотонность


    Пример 14

    Решите уравнение 2x-3+4x+1=4.\sqrt{2x-3}+\sqrt{4x+1}=4.

    Решение

    Функция монотонно возрастает на всей области определения – любая горизонтальная прямая, если пересекает график, то только один раз. Этим и воспользуемся. Иногда точку пересечения удаётся найти подбором (если авторы, конечно, на это рассчитывали!).

    Прежде всего, надо пробовать подставлять такие числа, чтобы корни извлекались нацело. Например, в нашем случае можно подставить `x=2`: 4-3+8+1=4.\sqrt{4-3}+\sqrt{8+1}=4.

    Ответ
    2.
    Пример 15

    Решите уравнение 9x+31+x+3=2-x-2.\sqrt{9x+31}+\sqrt{x+3}=2\sqrt{-x-2}.

    Решение

    Заметим, что слева стоят монотонно возрастающие функции, а справа – монотонно убывающая – поэтому равенство возможно лишь в одной точке. Подставим точку, когда извлекаются все корни: `x=-3`.

    Ответ

    -3.



  • 6, Уравнения вида |f(x)|=|g(x)|

    Так как обе части уравнения неотрицательны, то 

    |f(x)|=|g(x)|f2(x)=g2(x)f2(x)-g2(x)==(f(x)-g(x))(f(x)+g(x))=0\begin{array}{l}\vert f(x)\vert=\vert g(x)\vert\Leftrightarrow f^2(x)=g^2(x)\Leftrightarrow f^2(x)-g^2(x)=\\=(f(x)-g(x))(f(x)+g(x))=0\Rightarrow\end{array}

    f(x)=g(x)f(x)=g(x),f(x)=-g(x).\left|f(x)\right|=\left|g(x)\right|\Leftrightarrow\left[\begin{array}{l}f(x)=g(x),\\f(x)=-g(x).\end{array}\right.                 (УРМ3)

    Оно удобно тем, что никак не связано со знаками  `f(x)` и `g(x)`.  Важно, что мы пишем разность квадратов, но в квадрат не возводим!

    Пример 12

    Решите уравнение `|3x-2|=|2x-3|`.

    Решение

    Воспользуемся условием равносильности для модулей (УР М3):

    |3x-2|=|2x-3|3x-2=2x-3,3x-2=-(2x-3)x=-1,x=1.\vert3x-2\vert=\vert2x-3\vert\Leftrightarrow\left[\begin{array}{l}3x-2=2x-3,\\3x-2=-(2x-3)\end{array}\Leftrightarrow\right.\left[\begin{array}{l}x=-1,\\x=1.\end{array}\right.

    Ответ
    `1,  -1`.
    Пример 13

    Найдите сумму квадратов всех корней уравнения (5x-1)x2-16=0(5x-1)\sqrt{x^2-16}=0.


    Решение


    Ответ

    `32`.







  • 5. Уравнения вида |f(x)| = g(x)

    Решают такие уравнения по-разному. 

    Первый способ, который чаще всего используется в школе. Он применяется в том случае, когда функция `f(x)` проще, чем `g(x)`.

    f(x)=g(x)f(x)0,f(x)=g(x),f(x)<0,f(x)=-g(x).\begin{array}{l}{\left|f(x)\right|=g(x)\Leftrightarrow\left[\begin{array}{l}\left\{\begin{array}{l}f(x)\geq0,\\f(x)=g(x),\end{array}\right.\\\left\{\begin{array}{l}f(x)<0,\\f(x)=-g(x).\end{array}\right.\end{array}\right.}\\\\\end{array} (УРМ1)

    Там, где `f(x)>=0`, `|f(x)|=f(x)`, уравнение примет вид `f(x)=g(x)`; там, где `f(x)<0`, `|f(x)|=-f(x)`, уравнение примет вид `-f(x)=g(x)`.

    И, наоборот, если `f(x)>=0` и `f(x)=g(x)`, то `|f(x)|=g(x)`, а если `f(x)<0` и `-f(x)=g(x)`, то опять `|f(x)|=g(x)`, или при этом НЕ НАДО решать неравенства, а необходимо только подставить в них решения соответствующих уравнений. 

    Второй способ (это способ применяется обычно, если функция `g(x)` проще, чем `f(x)`).

    Уравнение `|f(x)|=g(x)` не имеет решений, если `g(x)<0`. Если же `g(x)>=0`, то там, где `f(x)>=0` уравнение имеет вид `f(x)=g(x)`, а там, где `f(x)<0`, уравнение имеет вид `-f(x)=g(x)`. Отсюда следует 

    f(x)=g(x)g(x)0,f(x)=g(x),f(x)=-g(x)\left|f(x)\right|=g(x)\Leftrightarrow\left\{\begin{array}{l}g(x)\geq0,\\\left[\begin{array}{l}f(x)=g(x),\\f(x)=-g(x)\end{array}\right.\end{array}\right. (УРМ2)

    При решении вторым способом можно не писать условий равносильности, а просто решить совокупность уравнений [f(x)=g(x),f(x)=-g(x),[\begin{array}{l}f(x)=g(x),\\f(x)=-g(x),\end{array} и найденные корни подставить в условие `g(x)>=0`.

    Пример 10

    Решите уравнение x-7=3x2+4x-1\left|x-7\right|=3x^2+4x-1

    Решение

    Так как подмодульное выражение проще, чем правая часть, применим (УР М1): 

    x-7=3x2+4x-1x-70,x-7=3x2+4x-1;x-7<0,-x+7=3x2+4x-1,x-70,3x2+3x+6=0;x-7<0,3x2+5x-8=0x=-5±116,x=-83x=1.\begin{array}{l}\left|x-7\right|=3x^2+4x-1\Leftrightarrow\left[\begin{array}{l}\left\{\begin{array}{l}x-7\geq0,\\x-7=3x^2+4x-1;\end{array}\right.\\\left\{\begin{array}{l}x-7<0,\\-x+7=3x^2+4x-1,\end{array}\right.\end{array}\Leftrightarrow\right.\\\Leftrightarrow\left[\begin{array}{l}\left\{\begin{array}{l}x-7\geq0,\\3x^2+3x+6=0\Leftrightarrow\varnothing;\end{array}\right.\\\left\{\begin{array}{l}x-7<0,\\3x^2+5x-8=0\Leftrightarrow x=\dfrac{-5\pm11}6,\end{array}\right.\end{array}\Leftrightarrow\left[\begin{array}{l}x=-\dfrac83\\x=1.\end{array}\right.\right.\end{array}

    Ответ
     -83,  1.-\dfrac83,\;\;1.
    Пример 11

    Решите уравнение `|x^2+x-3|=-2x+1`.

    Решение

    Так как правая часть проще, чем подмодульное выражение, применим (УР М2):

    x2+x-3=-2x+1-2x+10,x2+x-3=-2x+1,x2+x-3=2x-1,x0,5,x2+3x-4=0x=-3±52,x2-x-2=0x=1±32,x=-4,x=-1.\begin{array}{l}\left|x^2+x-3\right|=-2x+1\Leftrightarrow\left\{\begin{array}{l}-2x+1\geq0,\\\left\{\begin{array}{l}x^2+x-3=-2x+1,\\x^2+x-3=2x-1,\end{array}\right.\end{array}\Leftrightarrow\right.\\\left\{\begin{array}{l}x\leq0,5,\\\left\{\begin{array}{l}x^2+3x-4=0\Leftrightarrow x=\dfrac{-3\pm5}2,\\x^2-x-2=0\Leftrightarrow x=\dfrac{1\pm3}2,\end{array}\right.\end{array}\Leftrightarrow\left[\begin{array}{l}x=-4,\\x=-1.\end{array}\right.\right.\end{array}

    Ответ

    -4,  -1.-4,\;\;-1.






  • 4. Рациональные неравенства. Метод интервалов.

    В 9-м классе изучается метод интервалов прежде всего для многочленов. Он основан на том, что

    а) двучлен `(x-a)` положителен при `x > a` и отрицателен при `x < a`, т. е. меняет знак при переходе через точку `a`,

    б) квадрат двучлена `(x-a)^2` при переходе через точку `a` знак не меняет,

    в) квадратный трёхчлен `x^2+px+q`, `p^2-4q < 0`, имеющий положительный коэффициент при `x^2` и отрицательный дискриминант, всегда положителен и может быть опущен при решении любого неравенства.

    Заметим, что:
    1) двучлен `(x-a)` в любой нечётной степени `(x-a)^(2n-1)`, n n\in\mathbb{N}  ведёт себя так же, как и `(x-a)`,

    2) двучлен `(x-a)` в любой чётной степени `(x-a)^(2n)`, n n\in\mathbb{N}  ведёт себя так же, как и `(x-a)^2`,

    Важно, что при переходе через точку `a`, может изменить знак только один множитель `(x-a)^(2k-1)`, а выражение `(x-b)^(2n-1)`, ba, b\neq a,  при переходе через `a` ни при каком `n` знак не меняет.

    Прежде чем расставлять знаки, необходимо все многочлены записать правильно. Это значит, что во всех скобках коэффициенты при старшей степени переменной должны быть положительны, множители при произведениях в числителе и знаменателе тоже положительны – при больших `x` (когда `x` больше самого большого корня) многочлен всегда принимает положительные значения.


    Итак, сформулируем
    «Метод интервалов для многочленов (рациональных функций)»
    1. Проверяем, все ли множители записаны “правильно”.
    2. Находим корни числителя и знаменателя.
    3. Представляем числитель и знаменатель в виде произведения неприводимых множителей, т. е. множителей вида `(x-a)^k` (все квадратные трёхчлены, имеющие отрицательный дискриминант, не записываем – их «опускаем»).
    4. Наносим на числовую ось корни числителя (точками, если неравенство нестрогое, или “дырками”, если неравенство строгое) и знаменателя (в любом неравенстве “дырками”).
    5. Расставляем знаки дроби в промежутках между корнями, учитывая, что многочлен меняет знак при переходе через точку `a`, если в многочлене стоит `(x-a)^{2n-1}`, `ninN`

    и не меняет знак, если в многочлене стоит `(x-a)^{2n}`,   `ninN`.
    6. Отмечаем прямоугольниками решение заданного неравенства и “снимаем ” с рисунка ответ. При этом помним, что,
    а) если неравенство строгое, то решением являются открытые промежутки;
    б) если неравенство нестрогое, то к предыдущим решениям добавляются все “точки”.
    Когда говорим: Решим неравенство методом интервалов, – имеется в виду, что будут выполнены именно вышеприведённые действия.
    Метод интервалов затем распространяется на рациональные функции.
    Рациональной называется функция, которая может быть представлена в виде частного двух многочленов, т. е. в виде `{P(x)}/{Q(x)}`. 
    Например, функции `y=x-2`, `y={x^3-x+5}/{x+4}` - рациональные, а функция не является рациональной – она называется иррациональной.
    Неравенства называются рациональными, если их правые и левые части являются рациональными функциями. Рациональные неравенства чаще всего решаются сравнением с нулём, т. е. решаются неравенства вида `{P(x)}/{Q(x)}>0(<0)`. 
    Заметим, что дробь положительна (отрицательна) тогда и только тогда, когда числитель и знаменатель имеют одинаковые (противоположные) знаки, т. е.

    `{P(x)}/{Q(x)}>0(<0)hArrP(x)Q(x)>0(<0)`,

    поэтому метод интервалов применяется к дроби точно так же, как и к многочленам.
    Замечание 1. В школе принято писать для дроби ОДЗ: `Q(x)!=0`, но это является совершенно излишним. В самом алгоритме решения таких неравенств учитывается условие, что знаменатель не равен `0` – нули знаменателя отмечаются всегда кружочками («дырками»). Именно поэтому ОДЗ для рациональной дроби не пишут.
    Некоторые учащиеся после нахождения ОДЗ даже «бросают» знаменатель. Они не понимают, что решение зависит не от того, равен или не равен `0` знаменатель, а от того, где знаменатель положителен, а где отрицателен.
    Замечание 2. При применении этого метода интервалов нет необходимости в рассмотрении «пробных» точек.
    Пример 5. Найдите наименьшую длину промежутка, в котором расположены все решения неравенства 2-x54x+50\dfrac{\displaystyle\dfrac{2-x}5}{4x+5}\geq0.</a`,>

    Рис. 1

    Переписываем наше неравенство в правильном виде: С рисунка "снимаем" 2-x54x+50x-2x+540\dfrac{\displaystyle\dfrac{2-x}5}{4x+5}\geq0\Leftrightarrow\dfrac{x-2}{x+{\displaystyle\dfrac54}}\leq0 и применяем метод интервалов - рис. 1.

    Ответ: `3,25`.

    Заметим, что на нашей картинке нет никаких «змеек». Такой способ отмечать решение неравенства (который, с непривычки, некоторые отвергают, не попробовав) имеет преимущество, потому что он выделяет именно решение, а, кроме того, он даёт возможность «красиво» решать системы неравенств.

    Пример 6. Решите систему неравенств 

    Здесь очень «плохие» пробные точки – дробные и близкие. Это сделано специально, чтобы привыкнуть их не использовать.
    Решаем сначала первое неравенство: наносим на числовую ось нули точками, т. к. неравенство нестрогое.

    Теперь расставим знаки. Замечаем, что при больших `x` все множители положительны. При переходе через точку `x=1` функция меняет знак, т. к. `(x-1)` входит в нечётной (первой) степени. По этой же причине при переходе и через остальные точки функция опять меняет знак.

             

    Рис. 2

    Теперь отметим “ прямоугольниками” решение неравенства.

    Рис. 3

    Теперь решаем второе: наносим на числовую ось нули и числителя, и знаменателя кружочками (дырками), т. к. неравенство строгое. Получаем картинку

    Рис. 4

    Теперь надо обе картинки поместить на одну ось. Надо ли соблюдать масштаб? А зачем? Не надо. Ведь нас интересует только взаимное расположение точек относительно друг друга, а расстояния между ними никакой роли не играют.

    Теперь заштриховываем общие части прямоугольников – отлично виден ответ.

    Рис. 5

    Ответ. `x in(-3/16;-1/8]uu(51/50;2)`.

    Пример 7. Найдите наименьшую длину промежутка, в котором расположены все решения неравенства 

    `(x-1)^2(x+1,5)^3(x-12)(x+2)^4(x-25)^8<=0`.

    При решении неравенств, левая часть которых содержит чётные степени, можно поступать по-разному.
    Первый способ
    Левая часть уже записана правильно, корни видны сразу. Отмечаем их точками на числовой оси, а затем по вышеприведённым правилам расставляем знаки и отмечаем решение прямоугольниками – рис. 6.

    Рис. 6

    С рисунка снимаем ответ, что `x in{-2;25}uu[-1,5;12]`.  Отсюда следует, что наименьшая длина промежутка равна `25-(-2)=27`.

    Второй способ
    Можно заранее учесть, что бином `(x-a)^{2k}` принимает либо значение, равное `0`, либо положительно на всей числовой оси – поэтому можно записать в решение а бином «опустить», т. к. он не влияет на знак оставшегося выражения:

    (x-1)2(x+1,5)3(x-12)(x+2)4(x-25)80x=1,x=-2,x=25,(x+1,5)(x-12)0x-2:25-1,5;12.(x-1)^2(x+1,5)^3(x-12)(x+2)^4(x-25)^8\leq0\Leftrightarrow\left[\begin{array}{l}\begin{array}{c}x=1,\\x=-2,\\x=25,\end{array}\\(x+1,5)(x-12)\leq0\end{array}\right.\Leftrightarrow x\in\left\{-2:25\right\}\cup\left[-1,5;12\right].

    Ответ. `27`.

    Пример 8. Решите неравенство `x<={8x-2}/{x+5}`.

    Решение `x<={8x-2}/{x-5}hArr{x^2-3x+2}/{x+5}<=0hArr{(x-1)(x-2)}/{x+5}<=0`

    Из картинки следует 

    Рис. 7

    Ответ`(-oo;-5)uu[1;2]`.

  • 3. Квадратные уравнения и сводящиеся к ним

    На вступительных экзаменах не разрешается пользоваться калькуляторами. Поэтому полезной оказывается следующая формула для корней квадратного уравнения ax2+bx+c=0, a0.ax^2+bx+c=0,\;a\neq0.

    x1,2=-b2±b24-aca.x_{1,2}=\frac{-{\displaystyle\frac b2}\pm\sqrt{\displaystyle\frac{b^2}4}-ac}a.


    Она особенно удобна, когда коэффициент при `x` число чётное.

    Пример 3

    Решите уравнение 144x2+24x-287=0144x^2+24x-287=0.

    Решение

    x1,2=-12±144+144·287144=-1±28812=-1±12212=±2-112x_{1,2}=\frac{-12\pm\sqrt{144+144\cdot287}}{144}=\frac{-1\pm\sqrt{288}}{12}=\frac{-1\pm12\sqrt2}{12}=\pm\sqrt2-\frac1{12}

    Ответ±2-112\pm\sqrt2-\frac1{12}

    Заметим, что использование других формул привело бы к более громоздким вычислениям.

    Уравнение можно считать решённым, если удаётся найти замену переменных, сводящую заданное уравнение к квадратному.

    Пример 4

    Решите уравнение x+2x-1-4(x-1)x+2=1\sqrt{\frac{x+2}{x-1}}-\frac{4(x-1)}{x+2}=1

    Решение

    Сделаем замену переменных x+2x-1=t0\sqrt{\frac{x+2}{x-1}}=t\geq0.  

    Тогда уравнение примет вид t-4t2=1t3-t2-4t2=0t3-t2-4=t3-2t2+t2-4=(t-2)(t2+t+2)=0t=2,t0.t=2.\begin{array}{l}t-\frac4{t^2}=1\Leftrightarrow\frac{t^3-t^2-4}{t^2}=0\Leftrightarrow\\\Leftrightarrow\left\{\begin{array}{l}t^3-t^2-4=t^3-2t^2+t^2-4=(t-2)(t^2+t+2)=0\Leftrightarrow t=2,\\t\neq0.\end{array}\right.\Leftrightarrow t=2.\end{array}

    В старых переменных x+2x-1=2x+2x-1=4x=2.\sqrt{\frac{x+2}{x-1}}=2\Leftrightarrow\frac{x+2}{x-1}=4\Leftrightarrow x=2.

    Ответ: 2.


  • 2. Система уравнений и неравенств.совокупность уравнений и неравенств.

    Пусть задано неравенствоf(x)g(x)f(x)\geq g(x) . По определению, неравенство выполнено, если разность функций f(x)-g(x)0f(x)-g(x)\geq0. Поэтому, за редким  исключением, неравенства будем решать “сравнением с нулём” и записывать их в виде f(x)0(0)f(x)\geq0(\leq0).

    Часто приходится иметь дело не с одним неравенством или уравнением, а с  несколькими. При этом важно различать две задачи:
    1) решить систему уравнений или систему неравенств,
    2) решить совокупность уравнений или совокупность неравенств.

    определение

    Пусть дано mm неравенств (или уравнений) f1(x1,x2,...xk)0(=0)f_1(x_1,x_2,...x_k)\geq0(=0),f2(x1,x2...,xk)0(=0)...fm(x1,x2,...,xk)0(=0)f_2(x_1,x_2...,x_k)\geq0(=0)...f_m(x_1,x_2,...,x_k)\geq0(=0) на некотором множестве XX. Если стоит задача – найти все  порядоченные наборы чисел
    a=(a1,a2,...,ak)Xa=(a_1,a_2,...,a_k)\in X , каждый из которых является решением каждого из заданных неравенств (уравнений), то говорят, что задана система неравенств (уравнений). Такое aa называется решением системы.

    Решить систему – это значит найти множество всех решений. Обычно систему неравенств (уравнений) записывают в столбик и объединяют фигурной скобкой

    {f1(x1,x2,...,xk)0(=0),f2(x1,x2,...,xk)0(=0),...,fm(x1,x2,...,xk)0(=0).\{\begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}f_1(x_1,x_2,...,x_k)\geq0(=0),\\f_2(x_1,x_2,...,x_k)\geq0(=0),\\...,\\f_m(x_1,x_2,...,x_k)\geq0(=0).\end{array}\end{array}\end{array}\end{array}

    определение

    ОДЗ системы называется множество, являющееся пересечением областей допустимых значений всех этих неравенств.

    Если для неравенств (уравнений)

    f1(x1,x2,...,xk)0(=0)f_1(x_1,x_2,...,x_k)\geq0(=0),f2(x1,...,xk)0(=0)f_2(x_1,...,x_k)\geq0(=0),...,fm(x1,...,xk)0(=0)f_m(x_1,...,x_k)\geq0(=0)
    стоит задача – найти все такие упорядоченные наборы чисел a=(a1,a2,...,ak)Xa=(a_1,a_2,...,a_k)\in X , каждый из которых является решением хотя бы одного из заданных неравенств (уравнений), то говорят, что на XX задана совокупность неравенств (уравнений). Такое aa называется решением совокупности неравенств (уравнений). Решить совокупность неравенств (уравнений) – это значит найти всё множество её решений. В современной литературе совокупность записывают в столбик и объединяют квадратной скобкой

    [f1(x1,x2,...,xk)0(=0),f2(x1,x2,...,xk)0(=0),...,fm(x1,x2,...,xk)0(=0).\lbrack\begin{array}{c}f_1(x_1,x_2,...,x_k)\geq0(=0),\\f_2(x_1,x_2,...,x_k)\geq0(=0),\\...,\\f_m(x_{1,}x_2,...,x_k)\geq0(=0).\end{array}

    определение

    ОДЗ совокупности называется объединение областей допустимых значений всех заданных неравенств (уравнений).


    Во всех случаях количество заданных неравенств (число mm ) никак не связано с количеством неизвестных (число kk).
    f(x)>g(x)

  • 1. Понятие равносильности уравнений и неравенств

    Пусть на некоторых числовых множествах Х1, Х2Х_1,\;Х_2 заданы соответственно функции f(x), g(x)f(x),\;g(x) . 

    Определение

    Отношения вида f(x)>g(x)f(x)\gt g(x), f(x)g(x)f(x)\leq g(x)f(x)=g(x)f(x)=g(x) называют неравенствами и уравнением с одной переменной.

    определение

    Если функции f(x), g(x)f(x),\;g(x) - алгебраические, то неравенства и уравнения называются алгебраическими.

    ОПределение

    Областью допустимых значений (ОДЗ) неравенства или уравнения называют множество всех значений переменной xx, при которых одновременно определены обе части неравенства или уравнения, т. е. пересечение множеств Х1, Х2Х_1,\;Х_2.

    Пример

    Рассмотрим неравенство x2-14-x\sqrt{x^2-1}\leq\sqrt{4-x}. Левая часть определена при x2-10x^2-1\geq0, а правая при 4-x04-x\geq0. Поэтому областью определения этого неравенства является множество (-;-1][1;4](-\infty;-1\rbrack\cup\lbrack1;4\rbrack.

    Решить неравенство (уравнение) – это значит найти все числа aa, после подстановки которых, вместо xx получается верное числовое неравенство (равенство), или доказать, что неравенство (уравнение) не имеет решений. Ясно, что число aa является решением только тогда, когдa aa принадлежит ОДЗ.

    При решении неравенств и уравнений фундаментальное значение имеет понятие равносильности, и в нашем задании это будет играть большую роль.


    определение

    Два неравенства

     f1(x)>g1(x)f_1(x)>g_1(x) и f2(x)>g2(x)f_2(x)>g_2(x)

    или два уравнения           

    f1(x)=g1(x)f_1(x)=g_1(x) и f2(x)=g2(x)f_2(x)=g_2(x)

    называются равносильными на множестве XX , если каждое решение первого неравенства (уравнения), принадлежащее множеству XX, является решением второго, и, наоборот, каждое решение второго, принадлежащее XX, является решением первого; или ни одно из неравенств (уравнений) на XX не имеет решений, т. е. множества решений этих неравенств (уравнений) совпадают.

    Отсюда следует, что вместо того, чтобы решать данное неравенство (уравнение), можно решать любое другое, равносильное данному. Замену одного неравенства (уравнения) другим, равносильным данному на XX, называют равносильным переходом на XX. Равносильный переход обозначают двойной стрелкой \Leftrightarrow.


    Пример

    x21x1x^2\leq1\Leftrightarrow\left|x\right|\leq1 ; а неравенства 4x+52\sqrt{4x+5}\leq2 и 4x+544x+5\leq4 не равносильны, т. к., если 4x+504x+5\leq0, то первое неравенство не имеет решений, а второе имеет, например, x=-2x=-2

    Важно понимать, что для доказательства неравносильности двух неравенств (уравнений) нет необходимости решать каждое из неравенств (уравнений), а затем убеждаться в том, что множества их решений не совпадают – достаточно указать одно решение одного из неравенств (уравнений), которое не является решением другого неравенства (уравнения).


    Пример 1

    Равносильны ли уравнения 2x+3=x\sqrt{2x+3}=x и 2x+3=x22x+3=x^2?
    Нет, не равносильны, т. к. решение x=-1x=-1 второго уравнения не является решением первого.

    Пример 2

    Равносильны ли уравнения sin x=3\sin\;x=3 и -x2=1\sqrt{-x^2}=1?

    Да, равносильны, т. к. ни одно из них не имеет решения.

    Приведём несколько примеров операций, приводящих к равносильным уравнениям или неравенствам.

    1 . Если функции  f(x),g(x),h(x)f(x),g(x),h(x) определены на множестве XX, то на XX
    а) f(x)g(x)f(x)+g(x)g(x)+h(x)f(x)\leq g(x)\Leftrightarrow f(x)+g(x)\leq g(x)+h(x).
    б) f(x)=g(x)f(x)+h(x)=g(x)+h(x)f(x)=g(x)\Leftrightarrow f(x)+h(x)=g(x)+h(x).

    2. Если h(x)0h(x)\geq0 на XX, то на XX

    f(x)g(x)f(x)h(x)g(x)h(x)f(x)\leq g(x)\Leftrightarrow f(x)h(x)\leq g(x)h(x),

    т. е. при умножении неравенства на положительную функцию знак неравенства не меняется

    3. Если h(x)0h(x)\neq0 на XX, то на XX

    f(x)=g(x)f(x)h(x)=g(x)h(x)f(x)=g(x)\Leftrightarrow f(x)h(x)=g(x)h(x)..

    4. Если h(x)0h(x)\leq0 на XX, то на XX

    f(x)g(x)f(x)h(x)g(x)h(x)f(x)\leq g(x)\Leftrightarrow f(x)h(x)\leq g(x)h(x),

    т. е. при умножении неравенства на отрицательную функцию знак неравенства меняется на противоположный.

    5. Если f(x)0,g(x)0f(x)\geq0,g(x)\geq0 на XX, то на XX


    а) f(x)g(x)f2(x)g2(x)f(x)\leq g(x)\Leftrightarrow f^2(x)\leq g^2(x) ,


    т. е. если обе части неравенства неотрицательны, то возведение в квадрат обеих частей приводит к равносильному неравенству. Если обе части неравенства неположительны, то умножим обе части на -1-1, придём к неравенству противоположного знака, но с неотрицательными частями, и теперь можно пользоваться свойством 5a5a.
    Если левая и правая части неравенства имеют разные знаки, то возведение в квадрат может привести как к равносильному неравенству,
    так и к неравносильному: -45-4\leq5 и 162516\leq25; -75-7\leq5, но 492549\geq25; ,-75-7\leq5 , но 4925 49\geq25, поэтому в этом случае нельзя  возводить неравенство в квадрат.

    б)f(x)=g(x)f2(x)=g2(x)f(x)=g(x)\Leftrightarrow f^2(x)=g^2(x).

    6. Для любых f(x)f(x) и g(x)g(x) на XX и любого натурального nn


    f(x)=g(x)f2n+1(x)=g2n+1(x)f(x)=g(x)\Leftrightarrow f^{2n+1}(x)=g^{2n+1}(x)

  • 4. Примеры из физики

    Простейшие примеры векторов в физике - скорость и сила.

    1. Всякое движение можно представить как результат сложения нескольких движений, его составляющих. Скорость результирующего движения изображается по величине и направлению диагональю параллелограмма, построенного на отрезках, изображающих составляющие скорости, как на сторонах. Рассмотрим конкретный пример.

    Пример 9

    Рыбак переправляется на лодке `A` через реку, которая течёт в сторону, указанную стрелкой.

    Пусть скорость течения воды `vec(v_1)` изображается по величине и направлению отрезком `AB`, а скорость `vec(v_2)` движения лодки относительно воды под влиянием усилий гребца изображается отрезком `AC` (в стоячей воде лодка двигалась бы по направлению `AC` со  скоростью `vec(v_2)`). Лодка будет двигаться относительно берега по направлению `AM` со скоростью `vec v`, изображаемой диагональю `AD` параллелограмма, постро­енного на векторах `vec(v_1)` и `vec(v_2)` (в данном случае параллелограмм `ABCD` является прямоугольником).

    2. Сила - как векторная величина - всегда имеет определённое направление, модуль, а также точку приложения.

    Часто встречаются случаи, когда на тело действуют несколько сил. Тогда бывает удобно заменить их одной силой, которая производит на тело такое же действие, как и несколько одновременно действующих сил. Такую силу (если она существует) называют равнодействующей. Нахождение равнодействующей нескольких сил осуществляется с по­мощью правил векторного сложения, при этом слагаемые силы назы­вают составляющими.

    Так, несколько сил, действующих на одну и ту же точку тела, всегда можно заменить одной равнодействующей, как бы ни были направлены силы  и каковы бы ни были их величины. Пусть, например, на тело действуют  четыре  силы `vec(F_1)`, `vec(F_2)`,  `vec(F_3)` и `vec(F_4)`, приложенные  к  одной  точке `O` и лежащие в одной плоскости.

    Тогда их равнодействующая `vec F` будет равна векторной  сумме  этих  сил,  найденной   по  правилу   многоугольника.

    Пример 10

    Найти равнодействующую `vec R` трёх равных по модулю сил, приложенных к телу в одной точке и расположенных в одной плоскости, если углы между всеми силами равны между собой.

    `F_1 = F_2 = F_3 = F`.

    Решение

    Углы между парами векторов  `vec(F_1)` и `vec(F_2)`, `vec(F_2)` и `vec(F_3)`, а также между векторами `vec(F_1)` и `vec(F_3)`, равны друг другу и равны `120^@`. Сложим силы `vec(F_2)` и `vec(F_3)` по правилу параллелограмма. Вследствие равенства модулей сил `vec(F_2)` и `vec(F_3)` этот параллелограмм есть ромб. Сумма сил `vec(F_2) + vec(F_3)` есть диагональ ромба, поэтому углы между парами векторов `vec(F_2)` и `vec(F_2) + vec(F_3)`, а также `vec(F_3)` и `vec(F_2) + vec(F_3)` равны по `60^@`, т. е. векторы `vec(F_1)` и `vec(F_2) + vec(F_3)` направлены вдоль одной прямой, но в противоположные стороны. Силовой параллелограмм, построенный на векторах `vec(F_2)` и `vec(F_3)`, состоит из двух равносторонних треугольников, поэтому модуль силы

    `|vec(F_2) + vec(F_3)| = F_2 = F_3 = F = F_1`,  т. е  `vec F_1 = - (vec(F_2) + vec(F_3))`, 

    откуда следует  `vec(F_1) + vec(F_2) + vec(F_3) = 0`.

    Пример 11*

    К телу приложено `6` сил, лежащих в одной плоскости и составляющих друг с другом углы в `60^@`. Силы последовательно равны `1`, `2`, `3`, `4`, `5` и `6 Н`. Найти равнодействующую `vec R`  этих шести сил.

    Решение

    Сложение сил по правилу многоугольника здесь нецелесообразно. Поступим иначе.  Сложим сначала попарно силы, направленные вдоль одной прямой.

    Получим

     `|vec(F_2) + vec(F_4)| = 4 - 1 = 3`,

    аналогично  `|vec(F_2) + vec(F_5)| = 5 - 2 = 3`  и `|vec(F_3) + vec(F_6)| = 6 - 3 = 3`.

    Сумма сил `vec(F_2) + vec(F_5)` направлена вдоль вектора `vec(F_5)`. Туда же направлена и сумма сил `vec(F_1) + vec(F_4) + vec(F_3) + vec(F_6)`, причём модуль этой силы равен `3`. В итоге получаем, что сумма всех шести сил `vec(F_1) + vec(F_2) + vec(F_3) + vec(F_4) + vec(F_5) + vec(F_6)` направлена вдоль направления силы `vec(F_5)`, а модуль этой силы `|vec(F_1) + vec(F_2) + vec(F_3) + vec(F_4) + vec(F_5) + vec(F_6)| = 3 + 3 = 6 Н`.

    Пример 12

    Найти равнодействующую `vec R` пяти равных по модулю сил, приложенных к телу в одной точке и расположенных в одной плоскости, если углы между всеми соседними силами равны между собой.

    (Эти углы, разумеется, равны `360^@ //5 = 72^@`.) 

    Решение

    В отличие от предыдущего примера здесь мы имеем нечётное число сил, поэтому невозможно образовать из них целое число пар. Поступим иначе. Возьмём какую-нибудь силу, например, `vec(F_1)`, а остальные сгруппируем в пары и попарно сложим их:

     `vec(F_2) + vec(F_5)` и `vec(F_3) + vec(F_4)`.

    Почему удобна именно такая группировка сил в пары? Дело в том, что обе суммы сил (и `vec(F_2) + vec(F_5)` и `vec(F_3) + vec(F_4)`)  направлены вдоль линии действия силы `vec(F_1)`. Ясно, что равнодействующая всех сил будет направлена вдоль линии действия силы `vec(F_1)`. Модули сумм сил легко найти из геометрии. Например, в силовом параллелограмме, построенном на векторах `vec(F_2)` и `vec(F_5)`, который является ромбом, длина диагонали ромба (модуль силы `vec(F_2) + vec(F_5)`) равна удвоенной половинке диагонали, а та легко ищется из любого из 4-х прямоугольных треугольников, на которые ромб разбивается диагоналями. В результате

    `|vec(F_2) + vec(F_5) | = 2F cos 72^@`,

    где `F` - модуль любой из 5-ти исходных сил. Аналогично

    `|vec(F_3) + vec(F_4)| = 2F cos 36^@`.

    В итоге для модуля искомой силы получаем формулу

    `R = F(1 + 2 cos 72^@ - 2 cos 36^@)`      (*).

    Для углов `72^@` и `36^@` нет таких простых формул, как для углов `30^@`, `45^@` или `60^@`. Пользуясь калькулятором, можно, однако, показать, что согласно формуле (*) `R = 0`.

    Имеется и более красивое доказательство того, что результирующий вектор есть нулевой вектор. В самом деле, мы довольно произвольно взяли в качестве силы, которой не хватило пары, силу `vec(F_1)`. Если бы в качестве такой взять силу `vec(F_2)`, а в пары объединить `vec(F_1)` и `vec(F_3)` (одна пара) и `vec(F_4)` и `vec(F_5)`, то, повторив рассуждения, получим, что равнодействующая всех пяти сил `vec R` должна быть направлена вдоль линии действия силы `vec(F_2)`. Возможно ли, чтобы вектор был одновременно направлен вдоль двух несовпадающих друг с другом направлений (и `vec(F_1)`, и `vec(F_2)`; а на самом деле, как догадался читатель, ещё и вдоль направления действия сил `vec(F_3)`, `vec(F_4)` и `vec(F_5)`!)? Ненулевым вектор не может быть! Остаётся одна возможность: суммарный вектор – нулевой!


    В примерах 10 и 11 мы искали по правилу параллелограмма суммы сил. В примере 12 нас  интересовала лишь проекция равнодействующей силы на направление (например, силы `vec(F_1)`). В следующих примерах наш интерес будет также скорее не к равнодействующей силе, а только к каким-то её проекциям.

    Пример 13

    Электрический фонарь весом `Q = 16 Н` укреплён, как показано на рисунке.

    Определите отношение натяжений `T_1` и `T_2` в проволоках `BA` и `BC`, углы наклона которых даны на рисунке.

    Решение

    В условиях равновесия сумма всех сил, приложенных к точке `B`, равна нулю. Поэтому проекция равнодействующей всех сил на горизонтальное направление тоже равна нулю. Проекция силы со стороны проволоки, идущей к фонарю, на это направление равна нулю (эта сила вертикальна). Остаются вклады от двух натяжений со стороны проволок `BA` и `BC`. Горизонтальную ось направим слева направо. Тогда имеем:  T1, гор+T2, гор=0T_{1,\;\mathrm{гор}}+T_{2,\;\mathrm{гор}}=0,

    т. е.

    `T_1 * cos 60^@ - T_2 cos 45^@ = 0`

    (или `T_1 * sin 30^@ - T_2 sin 45^@ = 0`), откуда получаем `T_1//T_2 = sqrt2`.

    Пример 14*

    Однородная массивная верёвка подвешена за два конца на разных высотах.

    Масса верёвки `m`.  Углы, которые составляет верёвка с вертикалью в точках закрепления, равны `30^@` и `60^@`. Определите силы натяжения верёвки вблизи её точек крепления.

    Решение

    Задача кажется очень трудной, т. к. не ясно, какую роль играет неизвестная нам форма верёвки, которую она примет под действием сил тяжести всех частей верёвки. (В предыдущем примере мы не интересовались провисанием проволок под действием силы тяжести, молчаливо считая провисание малым.) И всё же задача в той постановке, в какой дана,  имеет простое решение. Мысленно проведём горизонтальную ось слева направо. Поскольку верёвка находится в равновесии, то сумма проекций всех сил на горизонтальное направление равна нулю. Сила тяжести верёвки имеет нулевую проекцию на это направление (эта сила направлена вертикально). Снова остаются вклады от двух натяжений:

     

    T1, гор+T2, гор=0T_{1,\;\mathrm{гор}}+T_{2,\;\mathrm{гор}}=0, или `- T_1 * sin 30^@ + T_2 sin 60^@ = 0`. Полагая `sin 30^@ = 1//2` и `sin 60^@ = sqrt3 //2`, находим `T_1 // T_2 = sqrt3`. Мысленно проведём ещё и вертикальную ось, направив её вниз. Сумма проекций всех сил на эту ось также равна нулю:

    `mg - T_1 cos 30^@ - T_2 cos 60^@ = 0`.

    Учитывая найденное ранее соотношение между `T_1` и `T_2` и значения `cos 60^@ = 1//2` и `cos 30^@ = sqrt3 //2`, получаем:

    `mg - sqrt3 * T_2 * sqrt3 //2 - T_2 //2 = 0`,  

    откуда

    `T_2 = mg//2` и `T_1 = sqrt3 mg//2`.

    Пример 15

    На гладкой наклонной плоскости с углом наклона  лежит брусок массой m. Какую горизонтальную силу нужно приложить к бруску, чтобы он находился в покое?

    Определите также модуль нормальной силы реакции на брусок со стороны наклонной плоскости.

    Решение

    Брусок по условию задачи  покоится. Значит, сумма всех сил, приложенных к бруску, равна нулю. Равны нулю и суммы проекций сил на любые направления,  в частности, на направление вдоль наклонной плоскости и перпендикулярное ему. Нормальная сила реакции `vec N` со стороны наклонной плоскости имеет равную нулю составляющую вдоль наклонной плоскости.

    Проекция сила тяжести `m vec g` на ось `Ox` вдоль наклонной плоскости

    равна `- mg sin alpha`, а проекция горизонтальной силы `F` на эту ось равна `F cos alpha`. Других сил вдоль наклонной плоскости не действует (плоскость, по условию задачи, гладкая, т. е. сила трения пренебрежимо мала). Приравнивая нулю сумму проекций на ось `Ox` всех сил, действующих на тело, получаем: `- mg sin alpha + F cos alpha = 0`, откуда находим

      `F = mg  (sin alpha)/(cos alpha) = mg * bbb"tg"  alpha`.     

    Для отыскания `N` обратимся к проекциям сил на направление `Oy`. Приравняем нулю и сумму проекций на ось `Oy`:

     `N - mg cos alpha - F sin alpha = 0`,        

    откуда `N = mg cos alpha + F sin alpha`, или с учётом найденного значения `F`:

    `N = mg cos alpha + mg  (sin^2 alpha)/(cos alpha) = mg  (cos^2 alpha + sin^2 alpha)/(cos alpha)`,

    тогда с учётом основного тригонометрического тождества, `sin^2 alpha + cos^2 alpha = 1`, получаем окончательно

    `N = (mg)/(cos alpha)`.

    Пример 16

    На шероховатой поверхности доски лежит брусок массой `m`. К нему приложена сила, направленная под углом `alpha` к горизонту.

    Определите модуль нормальной силы реакции со стороны поверхности.

    Решение

    Поскольку брусок не проваливается и не подскакивает вверх, то сумма проекций сил на вертикальную ось равна нулю:

    `N + F * sin alpha - mg = 0`,

    откуда находим

                     `N = mg - F * sin alpha`.

    Замечание

    Часто совершенно безосновательно приравнивают силу реакции `N` силе тяжести `mg`. Мы видим, что даже в случае горизонтальной поверхности это в общем случае не так. Для наклонной плоскости это тоже не так. В предыдущем примере нормальная сила реакции равнялась `mg//cos alpha`. Кстати, если бы удерживающая сила `F` действовала там не вдоль горизонтали, а вдоль наклонной плоскости, то для удержания бруска на наклонной плоскости потребовалась бы сила величиной `F = mg sin alpha`, а нормальная сила реакции была бы равна `N = mg cos alpha` (и снова не равнялась бы `mg`!)  

    Докажите это самостоятельно.

    Пример 17

    Самолёт взлетает с аэродрома со скоростью v=220 км/чv=220\;\mathrm{км}/\mathrm ч под углом `alpha = 20^@` к горизонту. Найдите модули горизонтальной и вертикальной составляющих скорости самолёта.

    Решение

    В данном примере мы имеем дело с весьма простым случаем разложения скорости на два взаимно перпендикулярных направления:  

    `vec v = vec(v _sf"гор") + vec(v_sf"верт")`,

    vгор=v cos α207 км/чv_\mathrm{гор}=v\;\cos\;\alpha\approx207\;\mathrm{км}/\mathrm ч,  vверт=v sin α75 км/чv_\mathrm{верт}=v\;\sin\;\alpha\approx75\;\mathrm{км}/\mathrm ч.

    Пример 18

    В  безветренную  погоду  самолёт  летит  со   скоростью 180 км/ч180\;\mathrm{км}/\mathrm ч (50 м/с50\;\mathrm м/\mathrm с) относительно земли. С какой скоростью относительно земли будет лететь самолёт, если дует западный ветер со скоростью   10 м/с10\;\mathrm м/\mathrm с?

    Решение

    В данном случае мы имеем дело со сложением движений: `vec(v_sf"с") = vec(v_sf"св") + vec(v_sf"в")`, где `vec(v_sf"св")` - скорость самолёта относительно воздуха (модуль которой равен скорости самолёта относительно земли в безветренную погоду), а `vec(v_sf"в")` - скорость воздуха. Далее по теореме Пифагора получаем:

    vс=502+102=260051 м/сv_\mathrm с=\sqrt{50^2+10^2}=\sqrt{2600}\approx51\;\mathrm м/\mathrm с.

    Пример 19

    Лодка пытается пересечь реку, текущую со скоростью u=3 км/чu=3\;\mathrm{км}/\mathrm ч. Скорость лодки в стоячей воде v=5 км/чv=5\;\mathrm{км}/\mathrm ч. Под каким углом `alpha` к нормали к берегу надо направить лодку, чтобы она двигалась поперек реки (без сноса)? Какой будет при этом модуль скорости лодки `v` относительно берега?

    Решение

    Как и в примере 9, мы также имеем дело со случаем сложения движений. Но там было проще: не требовалось выбирать никакой стратегии, рыбак лишь наблюдал, как снесёт его лодку течением воды в реке. Если бы вода в реке покоилась, то, направив корпус лодки под углом `alpha` к нормали, мы заставили бы её двигаться в направлении вектора `vec V`.

    В действительности, вода в реке не стоячая, а имеет скорость `vec u` Поэтому сносимая течением лодка будет двигаться в направлении вектора `vec v` таком, что `vec v = vec V + vec u`. Учитывая, что оба треугольника в параллелограмме прямоугольные (по условию, лодка должна двигаться перпендикулярно берегам), находим

    `sin alpha = u//V = 3//5`, `alpha ~~ 37^@`,

    а по теореме Пифагора v=V2-u2=4 м/сv=\sqrt{V^2-u^2}=4\;\mathrm м/\mathrm с.

    Пример 20

    Лодка  пытается  пересечь  реку, текущую  со    скоростью u=5 км/чu=5\;\mathrm{км}/\mathrm ч. Скорость лодки в стоячей воде V=3 км/чV=3\;\mathrm{км}/\mathrm ч.   Под каким углом `alpha` к нормали к берегу надо направить корпус лодки, чтобы её снесло как можно меньше? Под каким углом `beta` к нормали к берегу будет при этом плыть лодка?

    Решение

    В данном примере скорость лодки относительно воды меньше, чем скорость воды в реке, `V < u`, поэтому реализовать план из предыдущего примера невозможно. Наша цель состоит в том, чтобы направить корпус лодки под таким углом `alpha` к нормали к берегу, чтобы сносимая течением лодка двигалась под углом `beta`, по возможности наименьшим.

    В данном примере складывать скорости (лодки относительно воды `vec V` и воды в реке `vec u`) удобно по правилу треугольника, а не параллелограмма: приставим начало вектора `vec V` к концу вектора `vec u`. Выбирая оптимальный план (с наименьшим углом сноса), будем мысленно поворачивать вектор `vec V`. При этом конец вектора будет описывать окружность с центром в конце вектора `vec u`. Из рисунков видно, что минимальному углу сноса лодки `beta` соответствует случай, когда вектор `vec v = vec V + vec u` направлен по касательной к этой окружности. При этом вектор `vec V _|_ vec v` т. е. треугольник скоростей на  рис. 36 в прямоугольный. Отсюда получаем:

    `sin alpha = V//u = 3//5`;  `alpha ~~37^@`; `beta = 90^@ - alpha ~~53^@`.   

    Пример 21*

    Лодку вытягивают из воды, стоя на крутом берегу и выбирая верёвку, которая привязана к носу лодки, со скоростью `v`.

    Какой будет скорость лодки `u` в момент, когда верёвка будет составлять угол `alpha` с горизонтом? Верёвка нерастяжима.

    Решение

    Традиционная ошибка решающих эту задачу состоит в том, что пытаются разложить движение лодки на два направления – горизонтальное и вертикальное, делая (неправильное!) построение, как показано на рисунке

    и получая неверный ответ `u = v * cos alpha`. Что здесь неправильно? В отличие от самолёта из примера 17, который двигался под отличным от нуля углом к горизонту, здесь лодка движется горизонтально! Сделаем другое разложение скорости лодки `vec u` по двум направлениям – вдоль верёвки (в данный момент времени!) и перпендикулярно ей.

    Проекция вектора `vec u` на направление верёвки будет равна скорости `v`, с которой выбирают верёвку: `v = u cos alpha`, поэтому `u = v/(cos alpha)`.

    Поясним ещё, почему проекция вектора `vec u` на направление верёвки будет равна скорости `v` с которой выбирают верёвку. Если мы имеем абсолютно твердое тело (АТТ), деформациями в котором можно пренебречь, или нерастяжимую нить (но уже максимально натянутую), то как бы ни двигались АТТ или нерастяжимая нить, они будут обладать следующим свойством. Возьмём две произвольные точки `A` и `B` нити или АТТ и мысленно соединим их прямой. Тогда составляющие скоростей выбранных точек вдоль этой прямой в любой момент времени будут равны друг другу: vA=vB\overrightarrow{v_{A\parallel}}=\overrightarrow{v_{B\parallel}}.

    В противном случае изменялось бы расстояние между точками `A` и `B`. Составляющие скорости, перпендикулярные отрезку прямой `AB`, могут быть при этом любыми.

    Пример 22

    Две лодки 1 и 2 буксируют третью лодку с помощью двух тросов.

    В некоторый момент времени силы натяжения тросов, идущих от лодок 1 и 2, равны друг другу по модулю и равны `F`. Угол между тросами равен `2 alpha`. Какая равнодействующая сила приложена к буксируемой лодке со стороны тянущих её лодок? Чему будет равна эта сила в случае малого угла `alpha`  (когда буксирующие лодки тянут третью лодку почти в одном направлении)?

    Решение

    Две силы нужно сложить по правилу параллелограмма, который в данном случае будет ещё и ромбом с перпендикулярными друг другу диагоналями, разбивающими его на четыре равных прямоугольных треугольника. Из геометрии

    видно, что модуль равнодействующей силы `R` равен удвоенной длине прилежащего катета: `R = 2F cos alpha`. При стремлении угла между направлениями тросов к нулю `R -> 2F`   (`cos alpha -> 1`  при  `alpha -> 0`).

    Хитрее оказывается похожая задача, когда заданы не силы, а скорости.

    Пример 23*

    Две лодки 1 и 2 буксируют третью лодку с помощью двух тросов.

    В некоторый момент времени модули скоростей лодок 1 и 2 равны друг другу и равны `v_1 = v_2 = v`. Найти модуль и направление скорости буксируемой лодки `u`. Тросы нерастяжимы. Чему будет равна эта скорость в случае малого угла `alpha`  (когда буксирующие лодки тянут третью лодку почти в одном направлении)?

    Решение

    Ясно, что «решение» `u = 2v cos alpha` (как в предыдущем примере) не подходит, т. к. при `alpha -> 0` мы получили бы, что `u -> 2v`, чего не может быть. Если, например, две собаки в упряжке бегут с одинаковыми скоростями `v` в одном направлении, то и скорость упряжки будет равна этой же скорости `v` (если, конечно, упряжка не отцепилась или к ней не подключили дополнительно мотор).

    Решение задачи такое же, как в примере 21. В данном примере важнейшими словами являются «Тросы нерастяжимы». Ясно, что правильное построение, учитывающее это условие, должно быть таким, как на рисунке ниже,

    откуда немедленно получаем `v = u cos alpha`, поэтому `u = v/(cos alpha)`. Тогда в предельном случае, когда `alpha -> 0`, имеем `u -> v`,  как и должно быть.

    Заметим, что четырёхугольник весьма мало похож на параллелограмм из предыдущего примера. Еще меньше будет похож на параллелограмм этот четырёхугольник, когда модули скоростей `v_1 != v_2`.

    Пример 24*

    Две лодки буксируют третью с помощью двух тросов.

    В некоторый момент времени скорость 2-ой лодки в 2 раза больше, чем скорость 1-ой, `v_2 = 2v_1 = 2v`, а угол между тросами равен `90^@`. В каком направлении и с какой скоростью движется в этот момент буксируемая лодка? Тросы нерастяжимы.

    Решение

    В данном случае четырёхугольник будет прямоугольником (т. е. всё же параллелограммом).

    По определению тангенса угла  tg`phi _1 = v_2 //v_1 = 2`, откуда, пользуясь калькулятором, находим `phi _1 ~~63^@`; `phi _2 = 90^@ - phi _1 ~~ 27^@`.                

    Модуль скорости буксируемой лодки найдём по теореме Пифагора (раз уж у нас «случайно» появились прямоугольные треугольники):    

    `u = sqrt(v_1^2 + v_2^2) = sqrt(v^2 + (2v)^2) = sqrt5 * v ~~ 2,2 v`. 



  • 3. Скалярное произведение векторов

    1. 

    Определение

    Скалярным произведением  двух векторов `vec a` и `vec b` называется число, равное произведению модулей этих векторов на косинус угла между ними, и обозначается `vec a * vec b`.

    Таким образом,

    `vec a * vec b = a * b * cos alpha` (6)

    Иногда используют более сложные обозначения для скалярного произведения векторов: `(vec a vec b)` или даже `(vec a, vec b)`.

    Если векторы `vec a` и `vec b` ортогональны `(vec a _|_ vec b)`, то `cos alpha = 0` и поэтому `vec a * vec b = 0`. Скалярное произведение двух векторов также равно нулю, если  хотя бы один из векторов является нулевым.

    Если векторы коллинеарны и одинаково направлены, то `cos alpha = 1`, поэтому скалярное произведение векторов `vec a` и `vec b` равно произведению модулей векторов `vec a` и `vec b`. В частности, скалярное произведение вектора на самого себя равно квадрату его модуля: `vec a * vec a = a^2`.

    2. Имеется ещё одна важная  форма записи скалярного произведения: через проекции векторов в прямоугольной системе координат `xOy`. Пусть в некоторой системе координат векторы `vec a` и `vec b` имеют координаты `(a_x ; a_y)` и `(b_x ; b_y)`. Тогда для скалярного произведения векторов справедлива формула

    `vec a * vec b = a_x b_x + a_y b_y` (7)

    Действительно, имеем `vec a * vec b = (a_x vec i + a_y vec j) * (b_x vec i + b_y vec j)`, или после перемножения скобок `vec a * vec b = a_x b_x vec i vec i + a_x b_y vec i vec j + a_y b_x vec j vec i + a_y b_y vec j vec j`. Учитывая, что векторы `vec i` и `vec j` единичные и взаимно перпендикулярные, (`vec i * vec i = vec j * vec j = 1` и `vec i * vec j = vec j * vec i = 0`),  получим (7).

    Уточнение

    (написано по просьбе Володковича Н.А., преподавателя школы Смоленской обл.). Кажущееся привычным перемножение скобок

    `vec a * vec b = (a_x vec i + a_y vec j) * ( b_x vec i + b_y vec j) = a_x b_x vec i vec i + a_x b_y vec i vec j + a_y b_x vec j vec i + a_y b_y vec j vec j` 

    не так очевидно для векторов. Во всяком случае, нужно ещё доказать, что оно согласуется с определением (6) скалярного произведения. Докажем, что

    `(vec a + vec b)(vec c + vec d) = vec a * vec c + vec a * vec d + vec b * vec c + vec b * vec d`.    (*)

    Для этого заметим, что скалярное произведение (6) можно переписать в виде

    `vec a * vec b = a * b_a`       (6'),

    где `b_a` – проекция вектора `vec b` на направление вектора `vec a`.

    (Можно было записать и иначе:

    `vec a * vec b = a_b * b` (6"),

    где `a_b` – проекция вектора `vec a` на направление вектора `vec b`.)

    Далее – цепочка простых выкладок:

    `vec a * (vec c + vec d) = (vec c + vec d) * vec a = a (c_a + d_a) = a * c_a + a * d_a = vec a * vec c + vec a * vec d`,

    `(vec a + vec b)(vec c + vec d) -= (vec a + vec b) * vec e = vec a * vec e + vec b * vec e = vec a * (vec c + vec d) + vec b * (vec c + vec d)`,

    откуда следует равенство (*) (было введено обозначение `vec c + vec d -= vec e`).

    При другом выборе системы координат векторы `vec a` и `vec b` имели бы другие  координаты `(a_x ; a_y)` и `(b_x ; b_y)`. Поэтому могло бы показаться, что в новой системе координат скалярное произведение векторов (7) будет иметь другое значение. На самом деле, согласно (6) величина скалярного произведения останется такой же: модули векторов и угол между ними не зависят от поворотов и сдвигов системы координат.

    Пример 3

    `vec a = (3; lambda)`, `a = 5`. Определите `lambda`.

    Решение

    Согласно формуле (4) имеем `3^2 + lambda ^2 = 5^2`, откуда `lambda = 16`  и  `lamda =+- 4`. Заметим, что условию задачи удовлетворяют два разных вектора.

    Пример 4

    Векторы `vec a = (0; 3)` и `vec b = (lambda ; 5)` коллинеарны друг другу. Определите `lambda`.

    Решение

    Вектор `vec a` параллелен оси `Oy` (перпендикулярен оси `Ox`: `a_x = 0`). Поэтому коллинеарный ему вектор `vec b` также должен быть перпендикулярен оси `Ox`, т. е. должно выполняться равенство `b_x = 0`,  или `lambda = 0`.

    Пример 5

    Векторы `vec a = (- 1; 3)` и `vec b = (lambda; 5)` перпендикулярны друг другу. Определите `lambda`.

    Решение

    Векторы `vec a` и `vec b` перпендикулярны друг другу, поэтому равно нулю скалярное произведение этих векторов (см. формулу (6) и вывод после неё). Тогда по формуле (7) для скалярного произведения векторов имеем: `(- 1) * lambda + 3 * 5 = 0`, откуда `lambda = 15`.

    Пример 6

    `vec p = vec b (vec a vec c) - vec c (vec a vec b)`. Докажите, что `vec p _|_ vec a`.

    Решение

    Надо доказать, что скалярное произведение векторов `vec a` и `vec p` равно нулю. В самом деле, `vec a * vec p = (vec a vec b)(vec a vec c) - (vec a vec c)(vec a vec b) = 0`.

    Пример 7

    Векторы `vec a`, `vec b`, `vec c` составляют треугольник.

    Воспользовавшись  свойствами скалярного произведения векторов, докажите теорему косинусов

    `c^2 = a^2 + b^2 - 2 ab cos phi` (8)

                             

    Решение

    По условию задачи имеем `vec c = - (vec a + vec b)`. Квадрат модуля  вектора `vec c` можно представить как скалярное произведение его на самого себя: `c^2 = vec c * vec c`. Вычислим это скалярное произведение:

    `vec c * vec c = + (vec a + vec b) * (vec a + vec b) = vec a * vec a + vec a * vec b + vec b * vec a + vec b * vec b = a^2 + b^2 + 2ab cos alpha`.

    Угол `alpha` между векторами `vec a`  и `vec b` и угол `phi` (см. рис.17) - два смежных угла,   т. е. `alpha = 180^@ - phi` .  Поэтому  имеем `c^2 = a^2 + b^2 + 2 ab cos (180^2 - phi)`.

     Пользуясь известной из тригонометрии формулой приведения `cos (180^@ - phi) =- cos phi`, получаем формулу (8)

    Пример 8

    Найдите угол `alpha` между векторами `vec a = 3 vec i + 2 vec j` и `vec b = - 2 vec i - vec j`.

    Решение

    По определению скалярного произведения `vec a * vec b = a * b * cos alpha`,  где `alpha` - искомый угол, `a` и `b` - модули векторов `vec a` и `vec b` соответственно. Отсюда `cos alpha = (vec a * vec b)/(a * b)`.  В свою очередь,

     `vec a * vec b = a_x b_x + a_y b_y = 3 * (- 2) + 2 * (- 1) = - 8`,

    `a = sqrt(a_x^2 + a_y^2) = sqrt(3^2 + 2^2) = sqrt13`,

    `b = sqrt(b_x^2 + b_y^2) = sqrt((- 2)^2 + (- 1)^2) = sqrt5`. 

     Тогда  `cos alpha = (- 8)/(sqrt13 * sqrt5) = (- 8)/sqrt(65) ~~ - 0,992`. Отсюда `alpha ~~ 173^@`.



  • 2. Проекция вектора на заданное направление

    1. Проекция вектора на заданное направление. 

    Пусть заданы два вектора `vec a` и `vec b`. Приведём эти векторы к одному началу `O`.

    Угол, образованный лучами, исходящими из точки `O` и  направленными вдоль векторов `vec a` и `vec b`, называют углом между векторами `vec a` и `vec b`. Обозначим этот угол через `alpha`.

    Число `a_b = a cos alpha` называется проекцией вектора `vec a` на направление вектора `vec b`. Проекция вектора `vec a` получается, если из его конца опустить перпендикуляр на направление вектора `vec b` (рис. 10), тогда расстояние от общего  начала векторов - точки `O` - до точки пересечения указанного перпендикуляра с прямой, на которой лежит вектор `vec b`, будет равно модулю проекции вектора `vec a` на направление вектора `vec b`.

    Угол `alpha` может принимать различные значения, поэтому в зави­симости от знака `cos alpha` проекция может принимать положительные, отрицательные значения или нуль. Например, если угол `alpha` тупой, т. е. больше, чем `90^@`, но меньше `180^@`,  то косинус такого угла отрицателен.

    Проекция равна нулю, если направления векторов `vec a` и `vec b` взаимно перпендикулярны.

    Проекции равных векторов на любые направления равны друг другу. Проекции противоположных векторов отличаются знаком.

    Легко показать, что проекция суммы векторов равна алгебраической сумме их проекций и что при умножении вектора на число его проекция умножается на то же число.

    2. Разложение вектора.

    До сих пор мы говорили о сложении векторов. Для решения многих задач бывает необходимо произвести обратную процедуру - разложить вектор на составляющие, например, найти несколько сил, которые своим совместным действием могли бы заменить одну данную силу. Такая операция называется разложением сил.

    Пусть на плоскости задан вектор `vec a` и две пересекающиеся в точке `O`  прямые `AO` и `OB`.

    Вектор `vec a` можно представить в виде суммы двух векторов, направленных вдоль заданных прямых. Для этого параллельным переносом совместим начало вектора `vec a` с точкой `O` пересечения прямых. Из конца вектора `vec a` проведём два отрезка прямых, параллельных `AO` и `OB`.  В результате получится параллелограмм. По построению

    `vec a = vec(a_1) + vec(a_2)` (*)

    Векторы `vec(a_1)` и `vec(a_2)` называются составляющими вектора `vec a` по заданным направлениям, а само представление вектора в виде суммы (*) - разложением вектора по двум направлениям.

    Пример 1

    В чём разница между проекцией вектора на ось и составляющей (компонентой) вектора вдоль этой оси?

    Ответ

    Проекция вектора - скаляр; составляющая вектора вдоль этой оси - вектор, направленный вдоль этой оси.

    Пример 2

    Пусть `a = 1`, угол между прямыми `AO` и `OB` равен `phi = 45^@`, а угол между векторами `vec a` и `vec(a_1)` равен `phi = 15^@`.    Определите модули векторов `vec a_1` и `vec a_2` в разложении (*), а также значения проекций вектора `vec a` на направления `vec(a_1)` и `vec(a_2)`.

    Решение

    `a_(a1) = a cos phi_1 ~~ 0,97`, `a_(a2) = a cos phi_2 = cos 30^@ ~~ 0,87`.

    Далее по теореме синусов , `a_1/(sin phi_2)  = a/(sin (180^@ - phi_1 - phi_2))`,

    откуда  `a_1 = (sin phi_2)/(sin (phi_1 + phi_2)) = (sin 30^@)/(sin 45^@) ~~ 0,71`

    и аналогично `a_2 = (sin 15^@)/(sin 45^@) ~~ 0,37`.

    3. Проектирование вектора на оси координат. 

    Особенно важен частный случай разложения вектора по двум взаимно перпендикулярным направлениям. Пусть на плоскости задана прямоугольная система координат `xOy` и некоторый вектор `vec a`. Отложим из начала координат вдоль положительного направления осей `Ox` и `Oy` векторы `vec i` и `vec j` соответственно такие, что `|vec i| = 1` и `|vec j| = 1`. Векторы `vec i` и `vec j`  назовём единичными векторами.

    Перенесём  вектор `vec a` так,  чтобы его начало совпало с началом координат. Пусть  в  этом положении он изображается направленным отрезком `AO`.

    Опустим из точки `A` перпендикуляры на оси `Ox` и `Oy`. Тогда  векторы `vec(a_x)` и `vec(a_y)` будут  составляющими  вектора `vec a` по координатным осям, причём вектор `vec(a_x)` будет коллинеарен вектору `vec i`, а вектор `vec(a_y)` - коллинеарен вектору `vec j`. Следовательно, существуют такие  числа `a_x` и `a_y`, что `vec(a_x) = a_x vec i` и `vec(a_y) = a_y vec j`. Таким образом, вектор `vec a` может быть представлен в виде разложения по осям:

    `vec a = vec(a_x) + vec(a_y) = a_x vec i + a_y vec j`. (3)

    Числа `a_x` и `a_y` суть проекции вектора `vec a` на направления векторов `vec i` и `vec j` соответственно, то есть на оси `Ox` и `Oy`. Используется и иная, чем (3), форма записи векторов, а именно `vec a = (a_x ; a_y)`.

    Иногда говорят о составляющей вектора вдоль одной единственной оси - без указания второй. Просто молчаливо предполагается, что вторая ось перпендикулярна первой (но почему-то не нарисована).

    Пусть угол между положительным направлением оси `Ox` и вектором `vec a` равен `alpha`. Тогда `a_x = a cos alpha`, `a_y = a sin alpha`.

    В зависимости от значения угла `alpha` проекции вектора `vec a` на оси прямоугольной системы координат могут быть положительными, отрицательными или равными нулю.

    Зная проекции вектора `vec a` на оси координат, можно найти его вели­чину и направление по формулам:

    `a = sqrt( a_x^2 + a_y^2)` (4)

    и 

    `bbb"tg"  alpha = (a_y)/(a_x)` (5)

    причём знаки `a_x` и `a_y` будут указывать на то, какому квадранту при­надлежит значение `alpha`.

    4. Пусть теперь нам задано векторное равенство `vec a + vec b = vec c`.

    Проектируя все векторы на оси координат, получим очевидные равенства 

    `c_x = a_x + b_x`,  `c_y = a_y + b_y`,

    или

    `c_x = a cos alpha + b cos beta`,

    `c_y = a sin alpha + b sin beta`,

    т. е. по проекциям  векторов `vec a` и `vec b` легко находятся проекции суммарного вектора `vec c`.

  • 1. Определение вектора. Операции над векторами

    1. Основные определения

    Удивительно, но с векторными величинами разной природы (перемещением, скоростью, силой, импульсом и др.) можно работать в значительной мере единообразно - как с геометрическими объектами - геометрическими векторами, или просто векторами, хотя есть и нюансы (см. ниже).

    Определение

    Вектор пред­ставляет собой направленный отрезок прямой, для которого определены правила (законы) сложения с другими векторами, правило вычитания векторов, правило умножения вектора на число, скалярное произведение двух векторов и некоторые другие операции.

    Стрелка компаса - не вектор, т. к. для неё нет таких операций.

    Мы будем рассматривать векторы на плоскости и в соответствии со сложившейся традицией обозначать их латинскими буквами со стрелками наверху, например: `vec v`, `vec F`, `vec a`, `vec b` и т. п. Часто в целях экономии используют упрощённое обозначение - букву с чертой, например, `bar v` или `bar F`.

    Одну из граничных точек вектора называют его началом, а другую - концом. Направление вектора задаётся от начала к концу, причём на чертеже конец вектора отмечают стрелкой. Начало вектора называют также точкой его приложения. Если точка `A` является нача­лом вектора `vec a`, то мы будем говорить, что вектор `vec a` приложен в точке `A`.

    Число, выражающее длину направленного отрезка, называют модулем вектора и обозначают той же буквой, что и сам вектор, но без стрелки наверху, например: модулем вектора `vec v` является число `v`. Часто для обозначения модуля вектора прибегают к помощи знака абсолютной величины и пишут, например, `|vec v|` или `|vec F|`.

    Вектор называется нулевым, если его начало и конец совпадают. Нулевой вектор не имеет определённого направления и его длина (модуль) равна нулю.

    Векторы называются коллинеарными, если они лежат либо на одной прямой, либо на параллельных прямых. Так, например, на рисунке

    векторы `vec a`, `vec b` и `vec c` коллинеарны. 

    Два вектора называются равными, если они коллинеарны, имеют одинаковую длину и одинаковое направление.

    Слева изображены неравные векторы `vec a` и `vec f`, `vec g` и `vec h`, а справа - равные векторы `vec p` и `vec q`. Точка приложения геометрического вектора `vec a` может быть выбрана произвольно. Мы не различаем двух равных векторов, имеющих разные точки приложения и получающихся один из другого параллельным переносом. В соответствии с этим векторы, изучаемые в геометрии, называют свободными (они определены с точностью до точки приложения).

    В физике точка приложения вектора иногда имеет  принципиальное значение. Достаточно вспомнить рычаг: две равные по модулю силы, направленные в одну и ту же сторону, производят на рычаг разное действие, если плечи сил не равны друг другу. И всё же сами силы равны друг другу! Бывают и случаи, когда вектору трудно приписать конкретную точку приложения. Например, если одна система отсчёта движется  относительно другой со скоростью `vec v`, то какой точке  приписать эту скорость?  Всем точкам движущейся системы!

    2. Сложение двух векторов.

    Пусть даны два произвольных вектора `vec a` и `vec b`.

    Для нахождения их суммы нужно перенести вектор `vec b` параллельно самому себе так, чтобы его начало совпало с концом вектора `vec a`. Тогда вектор, проведённый из начала вектора `vec a` в конец перенесённого вектора `vec b`, и будет являться суммой `vec a` и `vec b`. На рисунке ниже - это вектор `vec c`.

    Описанное правило есть просто определение суммы векторов. Как и в случае с числами, сумма векторов не зависит от порядка слагаемых, и поэтому можно записать

    `vec c = vec a + vec b = vec b + vec a`.   (1)

    Приведённое выше правило геометрического сложения векторов называется правилом треугольника.

    Сумма векторов может быть найдена и по правилу параллелограмма. В этом случае параллельным переносом нужно совместить начала векторов `vec a` и `vec b` и построить на них, как на сторонах,  параллелограмм. Тогда сумма `vec a` и `vec b` будет представлять собой диагональ этого параллелограмма, конкретно - суммой `vec a` и `vec b` будет вектор, начало которого совпадает с общим началом векторов `vec a` и `vec b` конец расположен в противоположной вершине параллелограмма, а длина равна длине указанной диагонали.

    Оба способа сложения дают идентичный результат и одинаково часто применяются на практике. Когда речь идёт о нахождении суммы трёх и более векторов, часто последовательно используют  правило  треугольника. Поясним сказанное.

    3. Сложение трёх и более векторов. 

    Пусть нужно сложить три вектора `vec a`, `vec b` и `vec d`. 

    Для этого  по правилу треугольника сначала находится сумма любых двух векторов, например `vec a` и `vec b`, потом полученный вектор `vec c = vec a + vec b` по тому же правилу складывается с третьим  вектором  `vec d`. Тогда  полученный  вектор `vec f = vec c + vec d` и  будет представлять собой сумму  трёх  векторов `vec a`, `vec b` и `vec d`: `vec f = vec a + vec b + vec d`. Как и в случае с двумя векторами, порядок слагаемых не влияет на конечный результат.

    Чтобы упростить процесс сложения трёх и более векторов, обычно не находят промежуточные суммы типа `vec c = vec a + vec b`, а применяют правило многоугольника: параллельными переносами из конца первого вектора откладывают второй, из конца второго - откладывают третий, из конца третьего  - четвёртый  и  т.  д. 

    Так,   вектор  `vec g`  представляет собой сумму векторов `vec a`, `vec b`, `vec d`, `vec e`,  найденную по правилу многоугольника: `vec g = vec a + vec b + vec d + vec e`.

    Замечание

    Не всякая векторная сумма может иметь физический смысл. Не всякие величины вообще имеет смысл складывать. Так,  например, бессмысленно говорить, что, если у меня температура `36,6^@` и у вас тоже `36,6^@`, то вместе у нас температура `73,2^@`, хотя складывать температуры (числа) никто не запрещает. Всё же чаще всего сумма температур представляет собой никому не нужную величину; она редко входит в какие-либо уравнения (входит почти случайно).

    Иное дело – с массой. Если система состоит из тел с массами `m_1`, `m_2`, `m_3` и т. д., то масса всей системы равна `m = m_1 + m_2 + m_3 + ` и т. д. (Если на лифте написано, что максимальный груз, перевозимый лифтом, равен `500` кг, то перед входом в лифт нужно убедиться, что сумма масс вносимых в лифт грузов не превышает `500` кг.) Говорят, что масса – есть аддитивная величина (от английского слова add – добавлять, прибавлять, складывать). А вот температура – не аддитивная величина.

    Сила есть аддитивная векторная величина. Если к телу в точке (или к системе тел в разных точках!) приложены силы `vec(F_1)`, `vec(F_2)`, `vec(F_3)` и т. д., то сумма векторов сил `vec(F_1) + vec(F_2) + vec(F_3) + ...` есть осмысленная и даже очень нужная величина. Например, в условиях равновесия тела сумма всех приложенных к нему сил `vec(F_1) + vec(F_2) + vec(F_3) + ... = 0`, даже если силы приложены в разных точках тела. Причём это относится не только к твёрдым телам. Если нитка подвешена за два конца к двум гвоздям, а в промежутке перекинута еще через какие-нибудь гвозди, то сначала нужно найти силы со стороны каждого из гвоздей и  силу со стороны Земли (силу тяжести) `vec F_1`, `vec(F_2)`, `vec(F_3)`, `…`; при этом говорят, что к нитке приложена сумма сил `vec(F_1) + vec(F_2) + vec(F_3) + ...`; в условиях равновесия эта сумма будет равна нулю.

    Не так со скоростями. Если система состоит из двух частиц, имеющих в некоторый момент времени скорости `vec(v_1)` и `vec(v_2)`, то это не означает, что в этот момент вся система обладает скоростью равной векторной сумме `vec(v_1) + vec(v_2)`. Никто не запрещает складывать векторы скорости разных частиц; но с точки зрения физики вектор `vec(v_1) + vec(v_2)` ничему приписать нельзя. В этом смысле скорость - не аддитивная величина. Суммой скоростей (векторной суммой) интересуются, когда одно движение накладывается на другое (например, Земля вращается вокруг Солнца, но вместе с Солнцем движется вокруг центра Галактики). А вот сумма скоростей отдельных частиц системы (например, сумма скоростей звезд в Галактике) физического интереса не представляет.

    Родственная скорости величина, с которой вы еще не раз встретитесь в курсе физики, импульс материальной точки, равный произведению массы на скорость, `vec p = m vec v` снова - величина аддитивная.

      В последнем равенстве мы встречаемся с умножением вектора на скаляр. Поясним эту процедуру.

    4. Умножение вектора на скаляр. 

    Произведением вектора `vec a` на число `k` называют новый вектор `vec b = k vec a`, коллинеарный вектору `vec a`, направленный в ту же сторону, что и вектор `vec a`, если `k > 0`, и в противоположную сторону, если `k < 0`, а модуль `b` равен

     `b = |k| a`   (2)

    где `|k|` - абсолютная величина числа `k`. 

    Если два вектора коллинеарны, то они отличаются только скалярным множителем. Наоборот, если два вектора отличаются только ска­лярным множителем, не равным  нулю, то они коллинеарны.      

    В случае, когда `k = 0` или `vec a = 0`, произведение `k vec a` представляет собой нулевой  вектор,  направление которого не определено.

    Если `k = 1`, то согласно (2) `vec b = vec a` и векторы `vec a` и `vec b` равны.

    При `k = - 1` получим `vec b = - vec a`. Вектор `- vec a` имеет модуль, равный модулю вектора `vec a`, но направлен в противоположную сторону.

    Два  вектора,  противоположно  направленные и имеющие  равные длины, называются противоположными.

    Импульс тела `vec p = m vec v` коллинеарен вектору скорости и направлен с ней в одну сторону, т. к. массы всех тел положительны. Чуть ранее говорилось об аддитивности импульса. Если система состоит из материальных точек с массами `m_1`, `m_2`, `m_3`, `...`, которые в некоторый момент времени имели скорости `vec(v_1)`, `vec(v_2)`, `vec(v_3)`, `…`, т. е. имели импульсы `vec(p_1) = m_1 vec(v_1)`, `vec(p_2) = m_2 vec(v_2)`, `vec(p_3) = m_3 vec(v_3)`, `…`, то вся система в этот момент обладает импульсом  

    `vec p = vec(p_1) + vec(p_2) + vec(p_3) + ... = m_1 vec(v_1) + m_2 vec(v_2) + m_3 vec(v_3) + ...`.

    При этом каждое из слагаемых здесь должно быть найдено по правилу умножения вектора (скорости данной частицы) на скаляр (её массу), а затем все эти векторы должны быть сложены, например, по правилу многоугольника.

    5. Разность двух векторов. 

    Вычесть из вектора `vec a` вектор `vec b` означает прибавить к вектору `vec a` вектор   `- vec b`:

    `vec a - vec b = vec a + (- vec b)`

                          

  • Введение

    Традиционно курс физики начинается с изучения механического движения, которое определяют как изменение положения тел или их частей в пространстве относительно друг друга с течением времени. Уже описание движения простейшего объекта - материальной точки (тела, размерами которого в данной задаче можно пренебречь) - требует введения векторных величин: радиус-вектора `vec r (t)` (характеризующего положение точки в пространстве в каждый момент времени `t`), вектора перемещения `Delta vec r`, скорости и др.

    Что же такое векторная величина? Напомним, что некоторые физические величины полностью характе­ризуются единственным числом, которое выражает отношение этой величины к единице измерения. Такие величины называются скалярными. Простейшие примеры их - масса, плотность, температура. Так, температура в Москве `25^@ bb"C"` полностью задана одним числом (`25^@ bb"C"`); нельзя, например, сказать, что она направлена под каким-то углом к горизонту, температура никуда не направлена. То же самое относится к массе тела (но не к силе тяжести!), плотности вещества.

    С другой стороны, для характеристи­ки таких физических величин, как перемещение, скорость, сила, необходимо также знать и их направление. Такие величины называются векторными. Они являются предметом изучения специального раздела математики, называемого векторной алгеброй.

  • Примеры ответов на контрольные вопросы

    Вопрос. Если в четырёхугольнике диагонали перпендикулярны, можно ли утверждать, что этот четырёхугольник – ромб?

    Ответ. Нет, нельзя. Например, четырёхугольник на рисунке ниже,

    в котором `AC _|_ BD`, `BO = OD` и `AO = 3OC`ромбом не является, т. к. `AB != BC`. Верным будет следующее утверждение: если диагонали параллелограмма перпендикулярны, то этот параллелограмм – ромб.

    Вопрос. Можно ли утверждать, что тре¬угольник равнобедренный, если его биссектриса является медианой?

    Ответ. Да, можно. Докажем это. Пусть в треугольнике `ABC` биссектриса `BM` является медианой: `AM = MC`.

    На продолжении биссектрисы `BM` отложим отрезок `MD`, равный `BM`. Треугольники `ABM` и `CDM` равны по первому признаку: у них углы при вершине `M` равны, как вертикальные, и `AM = CM`, `BM = DM`.
    Из равенства треугольников следует
                                                                                  `CD = AB`                                                                  `(1)`
    и `/_ CDM = /_ ABM`. Но `/_ABM = /_ CBM`, поэтому `/_ CDM = /_ CBM`, т. е. в треугольнике `BCD` углы при основании `BD` равны. По теореме этот треугольник равнобедренный: `BC = CD`. Отсюда и из `(1)` заключаем: `BC = AB`.  Утверждение доказано.

  • Домашнее задание

    Прежде чем приступать к нему, ознакомьтесь с нашими пожеланиями и требованиями.

    1. За краткий ответ «да», «нет», «не может быть» без пояснений (доказательство, опровергающий пример) ставится `0` очков. Примеры ответов приведены далее.

    2. Если в контрольном вопросе сначала требуется сформулировать или доказать некоторую теорему, то ответ на сопутствующий вопрос надо постараться дать на основе этой теоремы.

    3. Если в решении длина какого-либо отрезка выразится иррациональным числом (например, `a = sqrt5`), то ни в дальнейших вычислениях, ни в ответе не следует заменять это точное значение на приближённое.

    4. Если в решении использовались тригонометрические функции и получилось, например, `sin alpha =  (2 sqrt2)/3`,  то не следует определять величину угла `alpha` по таблице или на калькуляторе приближённо и затем тем же способом находить значение `cos`, `sin 2 alpha`, `sin (alpha + 45^@)` и т. п. Все значения других тригонометрических функций определяются только по формулам! Например

    `cos alpha = - sqrt(1 - sin^2 alpha) = - 1/3`, 

    если угол `alpha` тупой и `sin alpha = (2 sqrt2)/3`,  а

     `sin (alpha + 45^@) = sin alpha * cos 45^@ + cos alpha * sin 45^@ = (sqrt2)/2 (sin alpha + cos alpha)`.  

    5. Если в Задании контрольный вопрос сопровождается поясняю-щим рисунком, при ответе перенесите рисунок с теми же обозначениями в свою тетрадь, – это облегчит Вашему педагогу проверку работы.

    6. Рисунок к задаче должен быть достаточно большим и ясным, чтобы на нём уместились все введённые Вами обозначения углов, отрезков и данные задачи (посмотрите на рис. 12 и рис. 15 Задания: как хороший рисунок и обозначения помогают увидеть простое решение или проверить его).

    7. Стремитесь к тому, чтобы Ваше решение было кратким, но обоснованным, и было ясным и понятным для проверяющего (работа проверяется без Вас, Вы не можете комментировать, что же имелось в виду). Для этого полезно решение разбивать на шаги: 1) … 2) … 3) … и то, что вычислено или выражено и важно для дальнейшего, выделять, например, так

     AD=3/2x,BC=1\boxed{AD=3/2 x, BC=1}

    Кроме того, вычисления разумно производить в кратких обозначениях (а математика – это здравый смысл), например

    `x/y = u/v`,  `x/v = y/v|=> x = y`   и   `u = v`  

    или `a = sqrt (c(c/2 - 1))`,

    а не `BC = sqrt (AB((AB)/2 - MN))`.

  • 5. Трапеция
    Утверждение 1

    Во всякой трапеции середины боковых сторон и середины диагоналей лежат на одной прямой.

    Доказательство

    Через точку `M` - середину стороны `AB` - проведём прямую, параллельную основанию.

    Докажем, что она разделит пополам обе диагонали и другую боковую сторону. В треугольнике `BAC` MPBCMP \parallel BC  и `AM = MB`. По теореме Фалеса  `AP = PC`.

    В треугольнике `ABD` точка `M` - середина стороны, MQADMQ \parallel AD. По теореме Фалеса `BQ = QD`. Наконец, в треугольнике `BDC` точка `Q` - середина `BD`, QNBCQN \parallel BC. По теореме Фалеса `CN = ND`. 

    Итак, середины боковых сторон (точки `M` и `N`) и середины диагоналей (точки `P` и `Q`) лежат на одной прямой.

    Утверждение 2

    Средняя линия трапеции равна полусумме оснований; отрезок, соединяющий середины диагоналей, равен полуразности оснований.

    Доказательство

    Пусть `AD = a`, `BC = b`. Из Утверждения 1 следует, что `MQ` - средняя линия треугольника  `ABD`, поэтому `MQ = a/2`; `MP` и `QN` - средние линии треугольников `BAC` и `BDC`, поэтому `MP = QN = b/2`. 

    Отсюда следует, что `MN = (a + b)/2`  и  `PQ = (a - b)/2`. 

    Утверждение 3

    Во всякой трапеции середины оснований, точка пересе-чения диагоналей и точка пересечения продолжений боковых сторон лежат на одной прямой.

    Доказательство

    Пусть продолжения боковых сторон пересекаются в точке `K`. Через точку `K` и точку  `O` пересечения диагоналей проведём прямую `KO`.

    Докажем, что эта прямая делит основания пополам.

    Обозначим `BM = x`, `MC = y`, `AN = u`, `ND = v`. 

    Имеем:

    ΔBKMΔAKNBMAN=KMKN;ΔMKCΔNKDMCND=KMKNBMAN=MCND\left.\begin{array}{rcl}\Delta BKM \sim \Delta AKN \Rightarrow \frac {BM}{AN} = \frac {KM}{KN};\\\Delta MKC \sim \Delta NKD \Rightarrow \frac {MC}{ND} = \frac {KM}{KN}\end{array}\right\} \Rightarrow \frac {BM}{AN} = \frac {MC}{ND},   т. е.   `x/u = y/v`. 

    Далее, `Delta BMO ~ Delta DNO => (BM)/(ND) = (MO)/(NO)`,   `Delta CMO ~ Delta ANO => (MC)/(AN) = (MO)/(NO)`,  поэтому `(BM)/(ND) = (MC)/(AN)`,   т. е. `x/v = y/u`.

    Перемножим полученные равенства, получим `x^2/(uv) = y^2/(uv)`, откуда следует   `x = y`,   но тогда и  `u = v`.  

    Утверждение 4

    В равнобокой трапеции углы при основании равны.

    Доказательство

    Проведём CFBACF \parallel BA.

    `ABCF` - параллелограмм, `CF = BA`, тогда треугольник `FCD` равнобедренный, `/_ 1 = /_ 2`. Но `/_ 2 = /_ 3`, следовательно,  `/_ 1 = /_ 3`. 

    Утверждение 5

    В равнобокой трапеции высота, опущенная из конца меньшего основания на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой – полуразности оснований.

    Доказательство

    Если `BM_|_ AD` и `CN _|_ AD`, то `Delta BAM = /_ CDN`.

    `BMCN` - прямоугольник, `MN = b`,  тогда `ND = (a - b)/2`,  а `AN = a - (a - b)/2 = (a + b)/2`. 

    Утверждение 6

    В равнобокой трапеции прямая, проходящая через середи-ны оснований, перпендикулярна основаниям и является осью симметрии трапеции.

    Доказательство

    Пусть `K` - точка пересечения продолжений боковых сторон трапеции.

    Как следует из Утверждения 2, середины оснований – точки `M` и `N` - и точка `K` лежат на одной прямой, а как следует из Утверждения 4, углы `A` и `D` равны. Таким образом, треугольник `AKD` - равнобедренный, `KN` - его медиана, она является и высотой. Итак, `MN _|_ AD`.

    Легко видеть, что при симметрии относительно прямой `MN` точки `A` и `B`  переходят в точка `D` и `C` и наоборот. `MN` - ось симметрии трапеции.

    Утверждение 7

    В равнобокой трапеции диагонали равны.

    Доказательство

    Рассмотрим треугольники `ABD` и `DCA`:

    `AB = DC` (трапеция равнобокая), `AD` - общая сторона, `/_ BAD = /_ ADC` (следует из Утверждения 4). По первому признаку равенства эти треугольники равны и `BD = AC`. 

    Пример 14

    Диагонали трапеции перпендикулярны, одна из них равна Отрезок, соединяющий середины оснований, равен `4,5`.

    Найти другую диагональ.

    Решение

    1. Треугольник `AOD` - прямоугольный, `ON` - медиана, проведённая из вершины прямого угла, она равна половине гипотенузы, т. е.
                                                                          `ON = 1/2 AD`.

    Аналогично устанавливается, что `OM = 1/2 BC`. По Утверждению 3 точки `M`, `O` и `N` лежат на одной прямой. Таким образом,  `MN = OM + ON = 1/2 (AD + BC)`,  поэтому  `AD + BC = 2MN = 9`.

    2. Проведём через точку `D` прямую, параллельную диагонали `AC`, пусть `K` - точка её пересечения с прямой `BC`, Угол `BDK` прямой, это угол между диагоналями трапеции. Кроме того, `ACKD` по построению параллелограмм, `CK = AD`,  значит, `BK = BC + AD = 9`.  Треугольник `BKD` - прямоугольный, один из катетов (пусть `DK`) равен `6`. По теореме Пифагора находим: `BD = sqrt(BK^2 - DK^2) = 3 sqrt5`.

    Пример 15

    В равнобокой трапеции с периметром `10` и высотой `2`  диагонали, пересекаясь, делятся в отношении `4:1`. Найти основания.

    Решение

    1. Пусть `O` - точка пересечения диагоналей трапеции `ABCD`

    и  `AO:OC = 4:1`.  Треугольники `AOD`   и  `COB` подобны,  `AO:OC = AD:BC = 4`,   т.  е.  `AD = 4BC`.  Обозначим  `BC = x`,  тогда  `AD = 4x`.

    2. Пусть `CK _|_ AD`; `CK` - высота трапеции, по условию `CK = 2`,  а как следует из Утверждения 5,
                                                               `KD = 1/2 (AD - BC) = 3/2 x`.    

    Из прямоугольного треугольника `CKD` имеем `CD = sqrt(4 + 9/4 x^2)`.  Выражаем периметр трапеции: `10 = (5x + 2 sqrt(4 + 9/4 x^2) )`.

    Решаем уравнение `2 sqrt(4 + 9/4 x^2) = 10 - 5x`,  оно имеет единственный корень `x = 1`.

    Итак,  `BC = 1`, `AD = 4`. 

  • 4. Задачи о делении отрезка

    Рассмотрим задачи, решения которых основаны на теореме о пресечении угла параллельными прямыми и подобии треугольников. Напомним теорему:
     

    Теорема 6

    Параллельные прямые, пересекая стороны угла, отсекают на них пропорциональные отрезки, т. е. если l1l2l_1 \parallel l_2,  `(AC)/(AB) = (AC_1)/(AB_1) = (C C_1)/(BB_1)`  или `m/x = (m + n)/(x + y) = n/y`. 

    Пример 11

    Точка `N` лежит на стороне `AC` треугольника `ABC` причём `AN:NC = 2:3`. Найти, в каком отношении медиана  `AM` делит отрезок `BN`. 

    Решение

    1. Пусть `O` - точка пересечения медианы `AM` и отрезка `BN`. Требуется найти отношение `BO:ON`.   Обозначим `AN = 2x`, тогда `NC = 3x`. Отметим, что  `BM = MC`.


    Проведём прямую `NK` параллельно медиане `AM`.

    Параллельные прямые `AM` и `NK` пересекают стороны угла `MCA`, следовательно, `(MK)/(KC) = 2/3`.   Полагаем `ul (MK = 2y)`, тогда  `KC = 3y`,    а т. к.  `BM = MC`,  то `ul (BM = 5y)`. 
    2. Те же прямые пересекают стороны угла `NBC`,

    поэтому  `(BO)/(ON) = (BM)/(MK) = (5y)/(2y)`,  т. е.  `(BO)/(ON) = 5/2`. 

    Пример 12

    Точки `D` и `F` лежат на сторонах `AB` и `BC` треугольника `ABC`, при этом `AD:DB = 1:2`  и  `BF:FC = 2:3`.  Прямая `DF` пересекает прямую `AC` в точке `K`.  Найти отношение `AK:AC`. 
       

    Решение

    1. Пусть  `AD = x`, `BF = 2y`, `KA = z`. Тогда  `DB = 2x` и `FC = 3y`.

    Проводим прямую  `AE`,  параллельную стороне  `CB`.

    `Delta ADE ~ Delta BDF| => AE:BF = AD:BD => ul(AE = y)`.

    2. `Delta KAE ~ Delta KCF | => (KA)/(KC) = (AE)/(CF)`,   т. е. `z/(a + z) = y/(3y)`.    Находим `a = 2z`. 

    Ответ:

    `AK:AC = 1:2`. 

    Пример 13

    В треугольнике `ABC` точки `D` и `K` лежат соответственно на сторонах `AB` и `AC`, отрезки `BK` и `CD` пересекаются в точке `O`,

    при этом  `BO:OK = 3:2` и  `CO:OD = 2:1`. Найти в каком отношении точка `K` делит сторону `AC`,  т. е. `AK:KC`.


    Решение

    1. Полагаем `OD = x`, `OK = 2y`,  тогда `OC = 2x` и `BO = 3y`. 
    Проводим прямую  KFCDKF \parallel CD.


    Из KFODKF \parallel OD `(/_ ABK)` следует `BD:DF = 3:2`. Обозначаем `DF = 2p`,  тогда `BD = 3p`.

    2.  `Delta FBK ~ Delta DBO`, `FK:DO = FB:DB`, откуда  `FK = (5p)/(3p) * x = 5/3 x`.

    3. `Delta AFK ~ Delta ADC`, `AF:AD = FK:DC`. Обозначаем `AF = z`, имеем  `z/(z + 2p) = (5/3 x)/(3x)`,
    откуда `z = 5/2 p`, т. е.  `AF = 5/2 p`. 

    4. Рассматриваем `/_ BAC`, FKDCFK \parallel DC, по теореме  `AK:KC = AF:FP`,  т. е.   `AK:KC = 5:4`. 

    Все три рассмотренные задачи могут быть решены с применением теоремы Менелая.

    Теорема Менелая (о треугольнике и секущей)

    Пусть точка `A_1` лежит на стороне `BC`, точка `C_1` - на  стороне `AB`, а точка `B_1` - на продолжении стороны `AC` за точку `C`.

    Если точки `A_1`, `B_1` и `C_1` лежат на одной прямой,

    то выполняется равенство
                                                                `(AC_1)/(C_1 B) * (BA_1)/(A_1C) * (CB_1)/(B_1A) = 1`.                                                    `(**)`
    Обратно, если выполняется равенство `(**)`, то точки `A_1`, `B_1`  и `C_1` лежат на одной прямой. (Заметим, что можно считать `B_1C_1` секущей треугольника `ABC`,  а можно считать `BC` секущей треугольника `AB_1C_1`).


    Доказательство

    а) Предположим, что точки `A_1`, `B_1` и `C_1` лежат на одной прямой. Проведём  CKABCK \parallel AB.  `Delta CKB_1 ~ Delta AC_1B_1`, поэтому  `(CK)/(AC_1) = (CB_1)/(AB_1)`,  откуда `CK = (CB_1)/(AB_1) * AC_1`.
    Далее: `Delta CKA_1 ~ Delta BC_1A_1`,  значит

                                                                         `(CK)/(BC_1) = (CA_1)/(BA_1)`.

    Подставляя сюда выражение для `CK`, получим `(CB_1)/(AB_1) * (AC_1)/(BC_1) = (CA_1)/(BA_1)`,  т. е.  `(AC_1)/(C_1B) * (BA_1)/(A_1C) * (CB_1)/(B_1A) = 1`,  ч. т. д.

    б) Пусть выполнено равенство `(**)` для точек `A_1`, `B_1` и `C_1`,

    докажем, что эти точки лежат на одной прямой.

    Через две точки `A_1` и  `B_1` проведём прямую, пусть `C_2` - её точка пересечения с прямой  `AB`  (точка пересечения будет лежать на отрезке `AB`).

    Три точки  `A_1`, `B_1` и `C_2` лежат на одной прямой и по доказанному в пункте а) выполняется равенство
                                                                  `(AC_2)/(C_2B) * (BA_1)/(A_1C) * (CB_1)/(B_1A) = 1`.
    Сравнив это равенство с равенством `(**)`, придём к выводу, что `(AC_2)/(C_2B) = (AC_1)/(C_1B)`. Точки  `C_2` и `C_1` лежат на отрезке  `AB`  и делят его в одном отношении, считая от конца  `A`.  Следовательно, точка  `C_2`  совпадает с точкой `C_1`,  т. е. точки `A_1`, `B_1` и `C_1`  лежат на одной прямой.

    Стрелки на рисунке (от точки `A`) показывают, как легко запомнить последовательность отрезков в пропорции  `(**)`.

    Например, применим теорему Менелая к задаче из примера 12.

    Полагаем `BO = m`, `ON = n` и рассматриваем треугольник `CBN` и секущую `AM`.
    Имеем:

    `(CM)/(BM) * (BO)/(ON) * (NA)/(AC) = 1`, т.  е.  `1/1 * m/n * (2x)/(5x) = 1`,  откуда  `m/n = 5/2`.